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Abstract

We formulate an original model for statistical machine
translation (SMT) inspired by characteristics of the
Arabic-English translation task. Our approach incor-
porates part-of-speech tags and linguistically motivated
phrase chunks in a 2-level shallow syntactic model of re-
ordering. We implement and evaluate this model, show-
ing it to have advantageous properties and to be com-
petitive with an existing SMT baseline. We also de-
scribe cross-categorial lexical translation coercion, an in-
teresting component and side-effect of our approach. Fi-
nally, we discuss the novel implementation of decoding
for this model which saves much development work by
constructing finite-state machine (FSM) representations
of translation probability distributions and using generic
FSM operations for search. Algorithmic details, exam-
ples and results focus on Arabic, and the paper includes
discussion on the issues and challenges of Arabic statis-
tical machine translation.

1 Introduction

In this work we define, implement and evaluate
a novel model for statistical machine translation
(SMT), which is motivated by considerations of
Arabic syntactic ordering as they affect Arabic-to-
English translation.

Our goal was to produce a SMT system for trans-
lating foreign languages, and Arabic in particular,
into English by utilizing some information about
syntax in both the foreign language and English
without, however, requiring a full parse in either
language. Some advantages of not relying on full
parses include that (1) there is a lack of availabil-
ity of parsers for many languages of interest; (2)
parsing time complexity represents a potential bot-
tleneck for both model training and testing.

Intuitively, the explicit modeling of syntactic phe-
nomena should be of benefit in the machine trans-
lation task; the ability to handle long-distance mo-
tion in an intelligently constrained way is a salient
example of this. Allowing unconstrained transla-
tion reorderings at the word level generates a very

large set of permutations, creating a difficult search
problem at decode time. We propose a model that
makes use of shallow parses (text chunking) to al-
low long-distance motion of phrases while ignor-
ing deeper issues of syntax. The resources required
to train this system on a new language are mini-
mal, and we gain the ability to model long-distance
movement as well as some interesting properties
of lexical translation across parts of speech. Ara-
bic has a canonical sentence-level order of Verb-
Subject-Object, which means that translation into
English (with a standard ordering of Subject-Verb-
Object) commonly requires motion of entire phrasal
constituents, which is not true of French-to-English
translation, to cite one language pair whose char-
acteristics have wielded great influence in the his-
tory of work on statistical machine translation. A
key motivation for and objective of this work was to
build a translation model and feature space to effec-
tively handle the above-described phenomenon.

2 Prior Work

Statistical machine translation, as pioneered by IBM
(e.g. Brown et al., 1993), is grounded in the noisy
channel model. And similar to the related channel
problems of speech and handwriting recognition,
the original SMT language pair French-English ex-
hibits a relatively close linear correlation in source
and target sequence. Most common non-sequential
motion that is observed, in terms of adjective-noun
swapping, is well modeled by the relative-position-
based distortion models of the classic IBM ap-
proach. Unfortunately, these distortion models are
less effective for languages such as Japanese or Ara-
bic, which have substantially different top-level sen-
tential word orders from English.

Wu (1997) and Jones and Havrilla (1998) have
sought to more closely tie the allowed motion of
constituents between languages to those syntactic
transductions supported by the independent rota-



tion of parse tree constituents. Yamada and Knight
(2000, 2001) and Alshawi et al. (2000) have effec-
tively extended such syntactic transduction models
to fully functional SMT systems, based on channel
model tree transducers and finite state head trans-
ducers respectively. While these models are well
suited for the effective handling of highly divergent
sentential word orders, the above frameworks have
a limitation shared with probabilistic context free
grammars that the preferred ordering of subtrees is
insufficiently constrained by their embedding con-
text, which is especially problematic for very deep
syntactic parses.

In contrast, Och et al. (1999) have avoided the
constraints of tree-based syntactic models and al-
low the relatively flat motion of empirically derived
phrasal chunks, which need not adhere to traditional
constituent boundaries.

Our current paper takes a middle path, by ground-
ing motion in syntactic transduction, but in a much
flatter 2-level model of syntactic analysis, based
on flat embedded noun-phrases in a flat sentential
constituent-based chunk sequence that can be driven
by syntactic bracketers and POS tag models rather
than a full parser, facilitating its transfer to lower
density languages. The flatter 2-level structures also
better support transductions conditioned to full sen-
tential context than do deeply embedded tree mod-
els, while retaining the empirically observed advan-
tages of translation ordering independence of noun-
phrases.

Another improvement over Och et al. and Ya-
mada and Knight is the use of the finite state ma-
chine (FSM) modelling framework (e.g. Bangalore
and Riccardi, 2000), which offers the considerable
advantage of a flexible framework for decoding, as
well as a representation which is suitable for the
fixed two-level phrasal modelling employed here.

Finally, the original cross-part-of-speech lexical
coercion models presented in Section 4.3.3 have re-
lated work in the primarily-syntactic coercion mod-
els utilized by Dorr and Habash (2002) and Habash
and Dorr (2003), although their induction and mod-
elling are quite different from the approach here.

3 Resources

As in other SMT approaches, the primary training
resource is a sentence-aligned parallel bilingual cor-
pus. We further require that each side of the corpus
be part-of-speech (POS) tagged and phrase chun-
ked. Our translation experiments were carried out
using the United Nations Arabic-English parallel

corpus made available (with sentence alignments)
by the Linguistic Data Consortium.

POS tagging and phrase chunking in English
were done using the trained systems provided with
the fnTBL Toolkit (Ngai and Florian, 2001); both
were trained from the annotated Penn Treebank cor-
pus (Marcus et al., 1993). For Arabic, we used a col-
league’s POS tagger and tokenizer (clitic separation
was also performed prior to POS tagging), which
was rapidly developed in our laboratory. Phrase seg-
mentation was achieved via a simple decision list of
chunk join/split decisions, based on variable-length
right and left context patterns, as illustrated in Table
1. The highest-ranked matching pattern was used
at each decision point (between any two contigu-
ous words we consider there to be a decision point,
at which a binary decision must be made between
split and join). Each such segmentation decision
was made in isolation, that is, with no global maxi-
mization.

Context Context Context
Rules Rules Rules

N+DN D+N MN+N
N|DA RIN N+NNN
N|D N+N N+NND

DN|D DNIN N+NNA

NN|D AN+N N+NN
A|N RN+N VN+A

Table 1: A small sample of the phrase segmentation patterns
used. | means insert a phrase chunk boundary at this point.
-+ mean join left and right context into a single phrase at this
point. N,D,A,V etc. refer to Arabic core parts of speech.

A further input to our system is a set of word
alignment links on the parallel corpus. These are
used to compute word translation probabilities and
phrasal alignments. The word alignments can in
principle come from any source: a dictionary, a spe-
cialized alignment program, or another SMT sys-
tem. We used alignments generated by Giza++
(Och and Ney, 2000) by running it in both direc-
tions on our parallel corpus. The union of these
bidirectional alignments was used to compute cross-
language phrase correspondences (alignments) by
simple plurality voting. Specifically, each Arabic
phrase in the training corpus was allowed to vote
on the single English phrase to which it was most
strongly aligned. Each word alignment link be-
tween a token in the Arabic phrase and a token in
an English phrase was counted as a unit vote. Ties
among English phrases with equal scores were bro-
ken by taking the leftmost such English phrase. The



resulting phrasal alignments were taken as hard de-
cisions, and while individual word alignment links
violating the induced phrase alignments were still
used in calculating word translation probabilities,
they were ignored with respect to the alignment
model®. For purposes of estimating word transla-
tion probabilities, each link in the union of word
alignments was treated as an independent instance
of word translation.

4 Translation M odel

Now we turn to a detailed description of the pro-
posed translation model. The exposition will give a
formal specification and also will follow a running
example throughout, using one of the actual Ara-
bic test set sentences. This example, its gloss, sys-
tem translation and reference human translation are
shown in Table 3.

The translation model (TM) we describe is
trained directly from counts in the data, and is a di-
rect model, not a noisy channel model. It consists
of three nested components: (1) a sentence-level
model of phrase correspondence and reordering, (2)
a model of intra-phrase translation, and (3) models
of lexical transfer, or word translation. We make a
key assumption in our construction that translation
at each of these three levels is independent of the
others.

41 SentenceTrandation

As mentioned, both the foreign language and En-
glish corpora are input with “hard” phrase brack-
etings and labeled with “hard” phrase types (e.g.,
NP, VP2, PPNP3, etc.). These are denoted in the
top-level model presentation in Table 4 (1). Given
word alignment links, as described in Section 3, we
compute phrasal alignments on training data. We
contrain these to have cardinality (foreign)v «
1(English). Next, we collect counts over aligned
phrase sequences and use the relative frequencies
to estimate the probability distribution in Table 4
(2). Particularly for smaller training corpora, un-
seen foreign-language phrase sequences are a prob-

!Note that the described phrasal alignment procedure re-
sultsin an (Arabic—English) N«1 cardinality of phrasal cor-
respondences. Thisis an attribute of the current implementa-
tion, but there is no inherent requirement to respect this partic-
ular cardinality. One avenue of future enhancement will be to
explore modifying or eliminating this constraint.

2P in our parlance is perhaps more properly called a verb
chunk: it consists of averb, its auxiliaries, and contiguous ad-
verbs.

3PPNP consists of aNPwithits prepositional head attached.

lem, so we implemented a simple backoff method
which assigns probability to translations of unseen
foreign-language phrase sequences®.

Table 4 (3) encapsulates the remainder of the
translation model, which is described below.

As an example, see Table 2 for the most prob-
able aligned English phrase sequence generations
given an Arabic simple sentence having the canoni-
cal VSO ordering.

Arabic Phrase | Aligned English | Prob.
Sequence Phrase Sequence

VP; NPy NP3 | NP, VP, NP; 0.23
VP; NP, NP3 | VP; NPy PPy 0.10
VP; NP2 NP3 | NP3 VP o 0.06

Table 2: Top learned sentence-level reorderings for Arabic,
for canonical Arabic simple sentence structure VP (verb) NP
(subject) NP (object). Subscripts in English phrase sequence
are alignments to positions in Arabic phrase sequence.

4.2 Phrase Trandation

Given an Arabic test sentence, a distribution of
aligned English phrase sequences is proposed by
the sentence-level model described in the previous
section and in Table 4. Each proposed English
phrase in each of the phrase sequence possibilities,
therefore, comes to the phrase translation level of
the model with access to the identity of the Arabic
phrase(s) aligned to it. Phrase translation is imple-
mented as shown in Table 8. The phrase translation
model is structured with several levels of backoff:
if no observations exist from training data for a par-
ticular level, the model backs off to the next-more-
general level. In all cases, generation of an English
phrase is conditioned on the foreign phrase as well
as the type (NP, VP, etc.) of the English phrase.
Table 8 (1) describes the initial phrase translation
model. It comes into play if the precise sequence
of foreign words has been observed aligning to an
English phrase of the appropriate type. In the exam-
ple, we are trying to generate an NP given the Ara-
bic word string “Al- Ijnp Al- sAdsp” (literally: “the
committee the sixth”). If this has been observed in
data, then that relative frequency distribution serves
as the translation probability distribution. The fol-
lowing table (Table 5) contains examples of some

4Using heuristics, Arabic phrase chunks and English phrase
chunks were clumped into segments (e.g., a segment might
be NP PPNP). Arabic segment to aligned English segment
trandation probabilities were estimated from counts (e.g., NP;
PPNP, — NP> NP; with probability 0.1). A sentence-level
segment reordering probability distribution was estimated sep-
arately.



Arabic Example Sentence From Test Set
ARABIC:

BRACKETED ARABIC:
GLOSS:

MT OUTPUT:
REFERENCE TRANS.:

twSy Al- ljnp Al- sAdsp Al- jmEyp Al- EAmp b- AEtmAd m$&wE Al- mgrr Al- tAly :

[twSy] [Al- ljnp Al- sAdsp] [Al- jmEyp Al- EAmp] [b- AEtmAd m$&wE Al- mgrr Al- tAly] [:]

[recommends] [the committee the sixth] [the assembly the general] [to adoption draft the decision the following] [:]
[the sixth committee] [recommends] [the general assembly] [in the adoption of the following draft resolution] [:]
the sixth committee recommends to the general assembly the adoption of the following draft decision :

Table 3: An Arabic trandation from the test set. We revisit portions of this example throughout the text. All Arabic strings in this
paper are rendered in the reversible Buckwalter trangdliteration. In addition, al words or symbols referring to Arabic are italicized.

Top-level Definition of Translation Model

Example Instantiation of Model Variables

Model Description

P( the sixth committee recommends the general assembly .. |
twSy Al- [jnp Al- sAdsp Al- jmEyp Al- EAmp .. ) =

P([twSyly p, [Al-ljnp Al- sAdsp] x p, [Al- jmEyp Al- EAMD] N P, .

twSy Al- [jnp Al- sAdsp Al- jmEyp Al- EAmp .. )
*P( NP2 VP; NP3 PPNP4 PUNC:s |
VP1 NP2 NP3 PPNP4 PUNCs )

* P ( [the sixth committee] iy p, [recommends]y p,
[the general assembly] x p, .. |

[WS]y p, [Al- linp Al- SAdp] v p, [Al- JmEyp Al- EAMY] v p, .,

NP2 VP; NP3 PPNP; PUNCs )

P( english_words | foreign_words ) =

@]

@

P( english_phrase_sequence , phrase_alignment_matrix |
foreign_phrase_sequence )

©)

english_phrase_sequence , phrase_alignment_matrix )

Table 4: Statement of the translation model at top level.

of these literal phrase translations from the Arabic
data.

Type | Arabic English Prob.
Phrase Phrase
NP Al- AtfAq | the agreement 0.593
NP Al- AtfAq | agreement 0.268
NP Al- AtfAq | anagreement 0.041
NP Al- AtfAq | the compact 0.031
NP Al- AtfAq | thisagreement 0.010
NP Al- AtfAq | theform of the agreement | 0.010
NP Al- AtfAq | theaccord 0.010
NP Al- AtfAq | thelargest agreement 0.005
NP Al- AtfAq | the standard agreement 0.005
PPNP | Al- AtfAq | inthe agreement 0.313
PPNP | Al- AtfAq | by the agreement 0.313
PPNP | Al- AtfAq | with the agreement 0.187
PPNP | Al- AtfAq | beforethe compact 0.063
PPNP | Al- AtfAq | totheaccord 0.063
PPNP | Al- AtfAq | to agreement 0.063
VP Al- AtfAq | agree 0.321
VP Al- AtfAq | toagree 0.226
VP Al- AtfAq | agreed 0.094
VP Al- AtfAq | agreeing 0.057
VP Al- AtfAq | could agree 0.019
VP Al- AtfAq | beagreed 0.019
VP Al- AtfAq | establishes 0.019
VP Al- AtfAq | isunderstood 0.019
VP Al- AtfAq | cannot agree 0.019
VP Al- AtfAq | will have to be agreed 0.019
VP Al- AtfAq | areagreed 0.019

Table 5: Literd phrase trandations learned by the system,
including some coercions across phrase type (NP — NP,
PPNP, VP). Trandation probability of the English phrase
is conditioned on the English phrase type and the Arabic
phrase. Examples are al for the Arabic phrase Al- AtfAq (“the

agreement”).

The next stage of backoff from the above, literal
level is a model that generates aligned English POS
tag sequences given foreign POS tag sequences: de-
tails and an example can be found in Table 8 (2).
The sequence alignments determine the position in
English phrase and the part-of-speech into which we
translate the foreign word. Again, translation is also
conditioned on the English phrase type. See Figure
1 for the most probable aligned English sequence
generations for two of the phrases in the example
sentence.

If there were no counts for (foreign-POS-
sequence, english-phrase-type) then we back off
to counts collected over (foreign-coarse-POS-
equence, english-phrase-type), where a coarse POS
is, for example, N instead of NOUN-SG. This is
shown in Table 8 (3).

In case further backoff is needed, as shown in Ta-
ble 8 (4), we begin stripping POS-tags off the “less
significant” (non-head) end of the foreign POS-
sequence until we are left with a phrase sequence
that has been seen in training, and from this a corre-
sponding English phrase distribution is observable.
We define the “less significant” end of a phrase to
be the end if it is head-initial, or the beginning if it
is head-final, and at this point ignore issues such as
nested structure in Arabic NP’s.

Finally, we should note here that word gener-
ation from NULL alignments is allowed in some
cases. As a practical matter, some phrases observed

P( foreign_bracketing , foreign_phrase_sequence | foreign_words )

P( english_words, english_bracketing , english_phrase_sequence |
foreign_words, foreign_bracketing , foreign_phrase_sequence,




in training data are so deficient in word-alignment
links (due to the noisy and incomplete word align-
ments available) that they must be discarded with
heuristics from training the POS-sequence align-
ments. For example, it doesn’t make much sense
to generate an English phrase with 4 nouns from an
Arabic phrase with 4 nouns, with only one word
alignment link between a single Arabic-English
noun pair. However, we take phrase pairs with un-
aligned English determiners, prepositions, modals,
etc. (essentially closed-class words) and allow gen-
eration from a list of such possible NULL genera-
tions based only on P(english-word | english-POS).

Phrase Translation Examples
P(aligned Eng. POS sequence | DET1 NOUN-SG: DET: ADJ. ,NP)

.22 | DTo JJ« NN.
.20 | JJa NN»

.13 | DTo NN:

.13 | DTo VBNa NNS:

.02 | NNa NN:

P(aligned Eng. POS sequence | VERB-IMP. ,VP)

.28 | VBZ:
.17 | VBP:
.09 | VBD:

.06 | MDo VB:

Figure 1: From the running Arabic example, (1) top English
NP generations given an Arabic phrase DET NOUN-SG DET
ADJ; (2) top English VP generations given an Arabic phrase
VERB-IMP. Note: 0 denotes anull alignment (generation from
null). Generation from anull alignment is allowed for specifi ed
parts of speech, such as determiners and prepositions.

4.3 Lexical Transfer
4.3.1 Word Trandation Model

In the word generation model, phrases may be trans-
lated directly as single atomic entities (as in Table
8 (1)), or via phrasal decomposition to individual
words translated independently, conditioned only
on the source word and target POS. Word translation
is done in the context that the model has already pro-
posed a sequence of POS tags for the phrase. Thus
we know the English POS of the word we are try-
ing to generate in addition to the foreign word that
is generating it. Consequently, we condition trans-
lation on English POS as well as the foreign word.
Table 6 describes the backoff path for basic lexical
transfer and presents a motivating example in the
Arabic word mrdwd. Additionally, translation prob-

abilities for one of the words in the example Arabic
sentence can be found in Table 7.

Word Generation

Examples Model with Backoff Pathways

P(Wg|mrdwd, NN S)
returns 0.43

PWEIWF, Tfineg)
p(returns|mrdwd, NN S)

wages 0.14
rewards 0.07
proceeds  0.07

T (0ackoff if C(Wr, Triney) = 0)

})(‘/VE‘TI’LleUd7 N) P(WE‘WF,TcoarseE)

return 0.27
returns 0.16 p(returns|mrdwd, N)
wages 0.05
benefi t 0.03

1 (backoff if CWr, Teoarses) = 0)

P(Wg|mrdwd) P(Wg|Wg)
return 0.14

returns 0.08 p(returns|mrdwd)
fi nancial 0.06

yield 0.04

T (backoff if C(Wz) = 0)
p( UNKNOWN_WORD W) = 1

Table 6: Description of the conditioning for different levels
of backoff in the lexical transfer model. The example shows
trandations for the Arabic word mrdwd (fi nancial meaning of
“revenue/return on investment”) conditioned on decreasingly
specifi ¢ values. The progressively lower probability and
ranking of the desired plural noun translation as we move from
fi ne, to coarse, to no POS, illustrates the benefi t of conditioning
generation on the English part of speech.

Translation Probabilities for “ljnp”
Arabic English English Prob.
Word POS Word
ljnp NN committee 0.591
ljnp NN commission 0.233
ljnp NN subcommittee 0.035
ljnp NN acc 0.013
ljnp NN report 0.005
ljnp NN ece 0.004
ljnp NN icrc 0.004
ljnp NN aacc 0.004
ljnp NN escap 0.004
ljnp NN escwa 0.004
ljnp NN eca 0.003
ljnp NNS members 0.088
ljnp NNS recommendations | 0.033
ljnp NNS copuos 0.033
ljnp NNS representatives 0.024
ljnp NNS commissions 0.008
Arabic English English Prob.
Word | Coarse POS Word
ljnp N committee 0.577
ljnp N commission 0.227
ljnp N subcommittee 0.035

Table 7: From running example, tranglation probabilities for
Arabic noun |jnp, “committee”.



Phrase Trandation Model with Backoff Pathways

Example Instantiations Model Statement

P( the sixth committee | Al- [jnp Al- sAdsp, NP ) =

P ( the sixth committee | Al- [jnp Al- sAdsp , NP ) (@] P(Wg, Wg, -Wg, |Wr, Wr, . W, ,phrtypeg )

1 (backoffif C(Wp, W, . Wg,,, . phr.typeg) = 0)

P(Tfineg, Trinep, - Tfinep, EilTfinep Trinep, - Tyinep,, POr-ypen)
*P(Wpy | Wrg, () Trineg, )
*P(Wpy Wz, (o) Trinep, )

*.. ok P(WEn ‘WFEi(n) 'Tfi"eEn )

P(DT, iL; NNg | DET; NOUN-SG DET3 ADJy4 , NP) 2
*P(the| Al-,DT)
* P (.committee | ljnp, NN )
* P ( sixth | sAdsp, J0)

l 1 (backoff if C'( TfmeF1 TfmeF2 . Tfi"ﬁFm ,phrtypeg; ) = 0)
P(DTy g NN [ Dy N D3 Ag ,NP) (©)]
*P(the| Al-,DT)
* P (.committee | ljnp, NN )
* P ( sixth | sAdsp, J0)

P(TfineEl Tfi,'n,eE2 - Tfi'n,eEn = ‘TcoaTseFl Tcoarsep2 - Tcoaw‘sepyn , phrtypeg )
*P(Wpy [Wrg, () Trineg, )
*P(Wpy Wz, (o) Trinep, )

*.. ok P(WEn ‘WFEi(n) 'Tfi"fEn )

1 1 (backoff if C'( TcoaTseF] TcoaTsepz - TcoaTseFTn . phrtypeg ) = 0)
P(?|D1 N2D3,NP) 4 P(TfineEl Tfi,'n,eE2 - Tfi,'n,eEn = Tcoaw‘sepl Tcoarsep2 - Tcoa7‘sepm71 , phrtypeg )
! L (KO O Teoaroe p, Teoarse s, - Teoarsep, | PtypeR) = 0)
P(?|Dy N2 ,NP) @ | P(Tfinep, Trineg, -~ Tpinep,, +EilTeoarsep, Teoarsep, - Teoarsep, ., Phr-types )
*

l 1 (backoff if C'( TcoaTseF] TcoaTsepz - TcoaTseFm72 ,phr_type) = 0)

Where:
W, isthe rth word in the English phrase ;
W, isthe rth word in the Arabic phrase ;
phr_typeg isthetype (NPVP....) of the English phrase;
C() represents the occurrence count in training data of the phenomenon at hand ;
Tfineg, iSthefi ne-grained POS-tag of the rth word in the English phrase ;
Ttiner, isthe fi ne-grained POS-tag of the rth word in the Arabic phrase ;
Teoarses, ad Teoarser, havethe corresponding meaning, for coarse-grained POS-tags ;
=, isthe alignment matrix, representing positionsin the Arabic phrase aligning to positions in the English phrase,
for the pair 4 of aligned Arabic and English POS-tag sequences ;
= (r? isafunction taking the position r in the English phrase and returning the position in the Arabic phrase to which it aligns ;
fi nally, ** ...” indicates a product of word trandlation probabilities which was omitted from the fi gure for space reasons.

Table 8: The phrase translation model, with backoff. Examples on the left side are from one of the Arabic test
sentences. (1) is the direct, lexical translation level. (2) - (4) constitute the backoff path to handle detailed phenomena
unseen in the training set. (2) is a model of fine POS-tag reordering and lexical generation; (3) is similar, but
conditions generation on coarse POS-tag sequences in the foreign language. (4) is a model for progressively stripping
off POS-tags from the “less significant” end of a foreign sequence. The idea is to do this until we reach a subsequence
that has been seen in training data, and which we therefore have a distribution of valid generatons for. The term Z; in
(2) - (4) is a position alignment matrix. At all times, we generate not just an English POS-tag sequence, but rather an
aligned sequence. Similarly, in the lexical transfer probabilities shown in this table, there is a function =;() which
takes an English sequence position index and returns the (unique) foreign word position to which it is aligned. At
present, the model allows 1 < N cardinalities (Arabic < English) for word generation.

4.3.2 Lexical Coercion
Lexical coercion is a phenomenon that sometimes

it turns up interesting associations of meaning. For
example, referring to the table, “yield” is a sensible

occurs when we condition translation of a foreign
word on the word and the target (English) part-
of-speech. We find that the system we have de-
scribed frequently learns this behavior: specifically,
the model learns in some cases how to generate e.g.
a nominal form with similar meaning from an Ara-
bic adjective, or an adjectival realization of an Ara-
bic verb’s meaning. Note the examples in Table 9.
We find the coercion effect to be of note because

way to realize the meaning of the word mrdwd (rev-
enue/return on investment) in an active, verbal form.
Similarly for hdfA (goal/objective/target). The sys-
tem learned to coerce the nominal idea of an “ob-
jective” into the verb forms “undertaking” and “tar-
geted”.



Ar. Wd. | Eng. POS | Eng. Wd.
mrdwd NN return
mrdwd VB yield

hdfA NN objective
hdfA VBN targeted
hdfA VBG undertaking
<tlAf NN destruction
<tlAf VBN destroyed
<tlAf VBG vandalizing

Table 9: Examples of learned lexical coercion across parts
of speech. Each example is the top-ranked choice of
PWEg|Wr, Tfiney).- <tAf means “destruction”; refer to
Section 4.3.2 for the other defi nitions.

5 Decoding

Decoding was implemented by constructing
weighted finite-state machines (FSMs) per eval-
uation sentence to encode relevant portions (for
the individual sentence in question) of the com-
ponent translation distributions described above.
Operations on these FSMs are performed using the
AT&T FSM Toolkit (Mohri et al., 1997). The FSM
constructed for a test sentence is subsequently com-
posed with a FSM trigram language model created
via the SRI Language Modeling Toolkit (Stolcke,
2002). Thus we use the trigram language model
to implement rescoring of the (direct) translation
probabilities for the English word sequences in the
translation model lattice.

We found that using the finite-state framework
and the general-purpose AT&T toolkit greatly fa-
cilitates decoder development by freeing the imple-
mentation from details of machine composition and
best-path searching, etc.

The structure of the translation model finite-state
machines is as illustrated in Figure 2. The sentence-
level (aligned phrase sequence generation) and
phrase-level (aligned intra-phrase sequence genera-
tion) reodering probabilities are encoded on epsilon
arcs in the machines. Word translation probabili-
ties are placed onto arcs emitting the word as an
output symbol (in the figure, note the arcs emit-
ting “committee”, “the”, etc.). The FSM in Figure
2 corresponds to the Arabic example sentence used
throughout this paper. In the portion of the machine
shown, the (best) path which generated the example
sentence is drawn in bold. Finally, Figure 3 is a ren-
dering of the actual FSM (aggressively pruned for
display purposes) that generated the example Arabic
sentence; although labels and details are not visible,
it may provide a visual aid for better understanding
the structure of the FSM lattices generated here.

As a practical matter in decoding, during transla-

tion model FSM construction we modified arc costs
for output words in the following way: a fixed bonus
was assigned for generating a “content” word trans-
lating to a “content” word. Determining what qual-
ifies as a content word was done on the basis of
a list of content POS tags for each language. For
example, all types of nouns, verbs and adjectives
were listed as content tags; determiners, preposi-
tions, and most other closed-class parts of speech
were not. This implements a reasonable penalty
on undesirable output sentence lengths. Without
such a penalty, translation outputs tend to be very
short: long sentence hypotheses are penalized de
facto merely by containing many word translation
probabilities. An additional trick in decoding is to
use only the N-best translation options for sentence-
level, phrase-level, and word-level translation. We
found empirically (and very consistently) in devtest
experiments that restricting the syntactic transduc-
tions to a 30-best list and word translations to a 15-
best list had no negative impact on Bleu score. The
benefit, of course, is that the translation lattices are
dramatically reduced in size, speeding up composi-
tion and search operations.

P(commission | ljnp)

P(the | NULL)
P(DT,, NN ;| NOUN-SG ) -

., "commi ssion”
H .. next phrase,
"committee"

A N
P(an|NULL) P(committee | ljnp)

Figure 2: Anillustration of the translation mode! structure
for an Arabic test sentence. (a) The arcs immediately exiting
the start state correspond to different sentence-level reordering
possihilities. These arcs have, as attached weights, the proba
bility of the particular sentence-level reordering designated. (b)
Other arcs in the machine correspond to phrase-level reoder-
ings, as shown in the fi gure. For each of the Arabic phrasesin
the test sentence, there will be a distribution over possible En-
glish reorderings / POS-tag sequence generations, and arcs in
the machine corresponding to different reordering/generation
choices, with associated probabilities. (c) Finally, word trans-
lation is aso represented by arcs in the machine. These are
not epsilon arcs, but rather arcs that emit the particular English
word trandation in question, and which have the appropriate
word-to-word trand ation probability attached to the arc.

6 Evaluation

Table 10 below lists evaluation results for transla-
tion on the Arabic test set. Results for a compari-



Figure 3: A portion of the translation model for an Arabic test
sentence, aggressively pruned by path probability (pruning was
performed for display purposes only: search for decoding was
performed on unpruned FSMs). This is presented to further
illustrate the structure of the FSMs used for decoding.

son system — the Giza++ IBM Model 4 implemen-
tation (Och and Ney, 2000) with the ReWrite de-
coder (Marcu and Germann, 2002) — are included
as a baseline. For the Arabic UN corpus, we trained
our system on a large subset of the UN corpus and
evaluated on a 200-sentence held-out set. For this
150K sentence Arabic training set, Giza++ and the
shallow syntax model achieved very similar perfor-
mance. Results are scored via the Bleu metric pro-
posed by Papineni et al. (2001).

Bleu Score
System 150K
Trn. Sent.
Giza++/ReWrite Decoder 0.17
2-level Syntax Model 0.17

Table 10: Results comparison for Arabic-English translation
on UN corpus. (200-sentence evaluation set)

7 Conclusions

This paper has presented an original model for sta-
tistical machine translation inspired by and tailored
to the syntactic divergences and other characteris-
tics of Arabic-English statistical machine transla-
tion. The two-level syntactic transduction model
supports both sentence-level and intra-phrase struc-
tural reordering, as well as a word translation com-
ponent which benefits from empirically induced
cross-part-of-speech lexical coercion. Current per-
formance of this original full SMT model matches

that of an existing, widely utilized SMT baseline ap-
proach.
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