
Combining decision trees and transformation-based learning
to correct transferred linguistic representations

Simon Corston-Oliver and Michael Gamon

Microsoft Research
One Microsoft Way

Redmond WA 98052, USA
{simonco, mgamon}@microsoft.com

Abstract
We present a hybrid machine learning
approach to correcting features in
transferred linguistic representations in
machine translation. The hybrid approach
combines decision trees and
transformation-based learning. Decision
trees serve as a filter on the intractably
large search space of possible
interrelations among features.
Transformation-based learning results in a
simple set of ordered rules that can be
compiled and executed after transfer and
before sentence realization in the target
language. We measure the reduction in
noise in the linguistic representations and
the results of human evaluations of end-to-
end English-German machine translation.

1. Introduction
In an ideal world, the transferred linguistic

representations produced by a machine translation
(MT) system would contain all and only the
features needed to ensure perfect fluent and
grammatical text realization in the target language.
In the world that we inhabit, transferred linguistic
representations deviate from this ideal in three
ways: the representations may be overspecified or
underspecified or may contain noise.

Overspecification describes the situation in
which more precision is given in the description of
a linguistic constituent than is required by the
target language. For example, a distinction in
gender between masculine and feminine is
semantically relevant to pronouns in English, but is
only explicitly encoded for third person animate
pronouns (e.g. “he” vs. “her”). Spanish, on the

other hand, encodes a masculine vs. feminine
distinction for inanimate third person pronouns.
When translating from Spanish to English, we
might see an overspecification of gender for third
person pronouns, influenced by the lexical or
semantic gender of the antecedent in Spanish. If
the English sentence realization module is
confronted with a node marked [-Animate +Pers3
+Masc] it must decide which features are overly
specific. Overspecification of pronouns is a
common problem given the fact that the resolution
of antecedents in the source language is usually
incomplete or uncertain using current anaphora
resolution algorithms.

Underspecification describes the situation in
which less precision is given in the description of a
linguistic constituent than is required by the target
language. For example, Japanese noun phrases are
usually not marked for definiteness or number,
whereas English frequently requires that these
features be explicitly indicated by analytic or
synthetic means. In the majority of cases, the
machine translation system must make reasonable
inferences concerning the source language to
satisfy the requirements of the target language. An
alternative approach would be to require the
analysis of the source language to specify all the
features required for a given target language, an
approach that would become impractical as the
number of target languages increases.

Among the residual noise, i.e. errors in the
transferred linguistic representations that are
neither over- nor under-specification, are
incorrectly specified lexical items, gross errors in
the structure of the logical form, and errors
resulting from the transfer process or from mis-
analyses of the source language. For typologically
similar languages, in particular for those languages

with similar feature makeup, many residual errors
are simply minor differences in logical form
representation.

As analysis and transfer algorithms continue to
be improved, we would hope to see less and less
noise in machine translation. There remain other
scenarios, such as dialogue (with noise inherent in
speech recognition) and generation from non-
linguistic inputs in which a sentence realization
module must gracefully handle erroneous input.

We present a hybrid machine-learning approach
to resolving errors in transferred linguistic
representations, using a combination of decision
tree learning and transformation-based learning.
The resulting rule set changes binary feature values,
thus correcting feature based deficiencies. We
evaluate the effectiveness of this hybrid approach
at reducing noise in transferred linguistic
representations known as logical forms (LFs), and
then evaluate the impact of those changes on
translations generated in an English-to-German
machine translation system (Dolan et al. 2001).

2. The Microsoft Research Machine
Translation system (MSR-MT)

The experiments presented here were
performed in the context of the MSR MT system
(Dolan et al. 2001). The MSR-MT system is a
data-driven translation system with knowledge-
engineered analysis components. At training time,
an aligned bitext is analyzed into Logical Form
(LF) graphs. An alignment algorithm finds
mappings between the LF of the source and target
language (Menezes et al. 2001). The learned
mappings are then stored in a bilingual transfer
memory. At translation time, a sentence in the
source language is analyzed to LF. The resulting
LF is then mapped onto matching LF sub-graphs
from the transfer memory, and a target language
LF is constituted from the matching sub-graphs.
Finally, the target language LF is used to generate
the target sentence string.

The logical form that we employ is a graph data
structure that expresses the propositional content of
a sentence. Nodes in the graph contain citation
forms of content words, annotated with binary
features such as tense, aspect, definiteness, number,
and person. Relations between nodes are indicated
by labeled arcs. The LF normalizes surface

syntactic alternations such as active/passive. The
LF is described in more detail in (Heidorn 2000).

In our experiments, we employ our approach to
clean up features on LFs transferred from English
to German, attempting to make the combination of
features on each node in the transferred LFs more
closely resemble the LFs that result from analysis
of native German sentences.

3. Transformation-based error-driven
learning

Transformation-based error-driven learning
(Brill 1993a, 1995), commonly referred to as
“transformation-based learning” or TBL, is an
automatic machine learning technique. The output
of TBL is an ordered list of rules whose
application to data results in a reduction in error.
The best-known application of TBL has been to the
task of part-of-speech tagging (Brill 1992, 1994).
TBL has also been applied to a number of diverse
linguistic tasks such as resolving syntactic
attachment ambiguities (Brill and Resnik 1994),
syntactic parsing (Brill 1993b), and word sense
disambiguation (Dini et al 1998).

Figure 1 gives pseudo-code that describes the
learning phase of transformation-based learning.
As is customary, we explain the learning phase
with respect to the task of part-of-speech tagging.
An initial part-of-speech tag is assigned to each
word, typically by choosing randomly among the
parts-of-speech observed for each word, or by
choosing the most commonly observed part-of-
speech for each word. Transformations consist of
what Brill (1995:545) calls a “rewrite rule” such as
“Change the tag from modal to noun” and a
“triggering environment” such as “The preceding
word is a determiner.”

Assign an initial value to each data point to create
data set, D
Repeat

Find the transformation Ti that gives the best
reduction in errors in D
If (ErrorReduction(Ti) ≥ Minimum)

Add Ti to the ordered list of rules, R
Apply Ti to all relevant cases in D

End if
Until (ErrorReduction(Ti) < Minimum)
Emit R

Figure 1: Pseudo-code for TBL learning

The learning phase is a greedy search. During
each iteration the transformation that results in the
greatest reduction in errors in the data set D
compared to a reference data set is selected. If
more than one transformation yields the greatest
reduction, one candidate is arbitrarily selected. The
same transformation might be selected multiple
times.

Learning ceases when the reduction in errors is
less than a predetermined minimum. When
investigating the performance of the algorithm in
the limit, a minimum value of one or two is
typically used. For practical purposes, higher
minima might be used to reduce learning time and
to avoid overfitting to the training data. The
learned list of rules can simply be applied in strict
sequence to new situations.

Transformation-based learning has several
attractive properties. Most notably, the rules that
are learned are interpretable by humans.
Furthermore, the lists of rules tend to be more
parsimonious than the output of a stochastic tagger.
Brill (1995:557) for example, notes that 200 TBL
rules trained on 64,000 words yielded comparable
tagging accuracy to a set of 10,000 contextual
probabilities emitted by a stochastic tagger.

On the downside, the run-time performance of
TBL can be prohibitive. Performance during the
learning phase can be improved by indexing
schemes, by sampling from the set of possible
transformations, or by assuming independence
among the transformations (Samuel 1998, Ngai
and Florian 2001, Hepple 2000). Similarly, the
application of sequences of learned rules can be
improved by indexing schemes that eliminate the
vacuous application of rules to new data (Satta and
Brill 1996) and by compiling the list of rules into a
finite state transducer (Roche and Schabes 1995).

The most glaring deficiency of transformation-
based learning, and the motivation for the
technique described in this paper, is the lack of a
mechanism for navigating the space of possible
transformations. In practice, researchers have
managed the search for transformations by
specifying templates that describe a set of
transformations to be tried. For example, in part-
of-speech tagging, the pretheoretical intuition is
that resolving part-of-speech ambiguities can be
achieved with reference to very local contexts only.
Templates can constrain the search space by
considering the part-of-speech and/or lexeme of

each token within a fairly small window of tokens
on either side of the position under consideration.
For example, one template might describe
triggering environments that consider the part-of-
speech of a word to the left of the current token
and the lexeme of the word to the right. Ramshaw
and Marcus (1994) show that with the right set of
templates, TBL appears to be immune to
overtraining. If irrelevant templates are added,
however, overtraining is likely, especially near the
end of the list of transformations. An example of
an irrelevant template in part-of-speech tagging is
a triggering environment five tokens removed from
the current token, i.e. a token that is unlikely to be
in a dependency relation to the current token. It is
also conceivable that omitting a relevant rule
template could lead to a degradation in tagging
accuracy, since some relevant phenomena will not
be captured.

Thus, current approaches to TBL crucially
depend on preselecting all and only the relevant
templates for transformations. Failure to satisfy
this precondition will result in overtraining or
under-performance. Satisfying this requirement has
not been problematic in the tasks to which TBL
has been applied to date, because a pretheoretical
understanding of those tasks has enabled the
formulation of appropriate sets of templates. In the
experiments that we describe below, we did not
have such pretheoretical intuitions to guide us. We
have therefore formulated an approach to
generating possible transformations by first
building decision trees.

4. Combining decision trees and
transformation-based learning

The main problem for the task of learning a set
of rules to correct a noisy vector of features
describing a node in the LF is the large number of
features to be manipulated and the large number of
features in the conditioning of the rules. On each
LF node we have thirty-eight binary features that
we want to manipulate. Each of those features is
potentially conditioned on each of the remaining
thirty-seven features on that node, as well as
additional multi-valued features (such as the
governing preposition) on the node and the parent
node. Each node is described by a feature vector
containing 370 elements—38 features to be
manipulated, plus 332 features that are also

considered in the triggering environment. Each of
the 38 features to be manipulated is potentially
dependent on a combination of one through 369 of
the remaining features. If all features were binary,
this would yield a search space of

∑
= −

⋅
369

1)!369(!

!369
38

n nn

i.e. 1.2x10111 possible transformations. Clearly it is
not practical for TBL to consider such a large
search space.

In order to narrow the rule space for the TBL
learner to consider, we begin by learning a set of
decision trees to predict the value of each of the
thirty-eight target features given all other features
in the vector. We use the WinMine toolkit
(Chickering 2002) as our decision tree learner.
Since the leaf nodes of the decision trees produced
by WinMine describe probability distributions over
possible values for the feature, the features in the
vector could in principle be binary or multi-valued.
For our experiments, however, all target features
were binary-valued, although some of the input
features are multi-valued.

For decision tree learning we use the complete
set of feature vectors automatically extracted from
all LF nodes in the analysis of 100k German
sentences drawn from technical manuals.

A first reduction of the potential rule space is
achieved through feature selection by the decision
tree learner: of the 370 input features, only 221
were selected by WinMine as being predictive of
the target features. Figure 2 illustrates a highly
simplified fragment of the decision tree for the
target feature [Def] (definite). On all nodes of the
decision tree the probabilities for the 0-value and
for the 1-value of the definiteness feature are given.
The highlighted path through the tree is translated
into rule format at the bottom of Figure 2. The
feature [Proximal] is found on certain
demonstratives. Note that in the feature notation
used here, [-Def] does not entail [+Indefinite], e.g.
generic NPs may occur with no explicit indication
of definiteness.

Figure 2: A decision tree fragment for the target
feature [Def] (definite)

Next, we generate a set of transformations from
the decision trees. We extract each path from the
root to a leaf node, as well as each sub-path from
the root to a branching vertex for each of the
decision trees. These paths and sub-paths
constitute the triggering environment for a
transformation. For each path or sub-path, we note
the most likely value for the target feature. This
corresponds to the rewrite part of a transformation.
As an illustration, given the decision tree fragment
in Figure 2, we would extract the transformations
in Figure 3. In our experiment, 18,420
transformations were generated from the decision
trees. The triggering environments are formulated
as C++ code, and then compiled.1

1 It would be possible to manipulate the tree data

structures directly at run-time, but compiling these
conditions into executable code has yielded tremendous
benefits in execution speed.

IF NOT(3rd Person): -Def
IF 3rd Person: -Def
IF 3rd Person AND Indefinite: -Def
IF 3rd Person AND NOT Indefinite: +Def
IF 3rd Person AND NOT Indefinite AND NOT Plural: +Def
IF 3rd Person AND NOT Indefinite AND Plural: -Def
IF 3rd Person AND NOT Indefinite AND Plural AND Proximal: +Def
IF 3rd Person AND NOT Indefinite AND Plural and NOT Proximal: -Def
IF 3rd Person AND NOT Indefinite AND Plural and NOT Proximal AND Part-of-Speech is
Noun: -Def
IF 3rd Person AND NOT Indefinite AND Plural AND NOT Proximal AND Part-of-Speech is NOT
Noun: -Def

Figure 3: All complete and partial paths of the decision tree fragment in Figure 2

The initial state of the data set used during TBL
is set by taking the reference data (250k feature
vectors extracted from German LF nodes) and
randomly adding noise. Points in the vectors for
the data set are randomly selected and changed.
Because all target features are binary, values are
either flipped from a one to a zero, or vice versa.
More principled methods of adding noise might be
appropriate in other contexts. For our experiments,
however, we have no way of guessing what the
pattern of errors might be in the transferred logical
forms, since the pattern will vary according to the
source language. Another possibility, training on
actual transferred LFs, was not practical: The LFs
are frequently so different from the LFs of the
human reference translations as to make it
impossible to align the two.

The TBL learning proceeds as described in
Figure 1 with some optimization added to improve
the execution speed of the learning phase. During
the first iteration, each transformation is
considered, and its error reduction noted. This
error-reduction is cached for subsequent runs. The
best transformation is added to the list of rules, and
applied to the data. During subsequent iterations,
we again consider all transformations, but only
need to recalculate the error reduction for a subset
of the transformations. If the best transformation
during the previous iteration changed the value of
featurej then for the next iteration we only need to
recalculate the error reduction for those
transformations that make reference to featurej.

An additional optimization also substantially
reduces the time taken during the learning phase.
During learning each transformation is tested on
each case in the data set. We can skip the

remaining cases in the data set if the number of
errors added by the current transformation is
greater than or equal to the number of remaining
cases, i.e. even if every remaining case were to
result in an improvement the net effect of applying
this transformation would be zero.

5. Results
Figure 4 presents the results for a data set of

250,000 LF nodes automatically extracted by the
German NLPWin system from German technical
manuals. The training set consisted of 200,000
randomly selected cases. The blind test set
consisted of the remaining 50,000 cases. Varying
amounts of noise were added to the data, ranging
from 250,000 errors to five million errors. 221
features were used. Three multi-valued features,
[POS] “part-of-speech”, labeled relation to the
parent node and the citation form of the governing
preposition for both the current node and its parent
were part of the conditioning features. The
remaining 215 features, including the thirty-eight
target features, were binary-valued linguistic
features.

The results in Figure 4 show the reduction in
the error rate measured against the blind test set.
TBL learning ceased when no transformation
yielded a net improvement of two or more. As the
graph shows, the TBL learning is robust in the face
of increasing amounts of noise. Furthermore, the
TBL learning does not appear to overfit to the
training data. As Ramshaw and Marcus (1994)
observe, the addition of irrelevant rule templates
does lead to overfitting. We avoid this situation by
the automatic preselection of relevant rules.

Reduction in error on held-out test data

0

10

20

30

40

50

60

70

80

90

100
0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

Rule number

%
 E

rr
o
r 3M Errors

2M Errors

1M Errors

500K Errors

250K Errors

Figure 4: Reduction in error in held-out test data

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Conjuncts

T
ra

n
sf

o
rm

at
io

n
s

se
le

ct
ed

Figure 5: Transformations selected by TBL, introduced errors=1M

We experimented with two additional

constraints that followed naturally from the fact
that the transformations had been extracted from
decision trees. Other things being equal:

1. Prefer transformations with fewer
conjuncts in the conditioning environment,
OR

2. Prefer the transformation with the sharpest
separation between the two values of the
binary feature.

The addition of these constraints did not
materially affect the results. Constraint (1) merely
affected the order in which the transformations
were selected. Constraint (2) also produced only
minor changes in the order in which
transformations were added. This is not surprising:
less sharp separations in the probabilities of the
two binary values correlate with a greater amount
of noise introduced by that transformation during
learning. More noisy transformations are less
likely to be selected during the greedy search.

The decision tree phase of the learning process
proposed 18,420 possible transformations. With
one million introduced errors, 894 of these
transformations were selected. As Figure 5 shows,
many rather complex transformations were
selected. Seven transformations had forty or more
conjuncts in the triggering environment. The most
complex transformation had sixty conjuncts. The
search for this transformation would have been
prohibitive if the TBL stage were required to
search more than 260 possibilities. The initial
decision tree stage however had reduced the search
space to a mere two transformations worthy of
consideration.

6. Evaluation
To evaluate the set of learned transformations,

we compared two translations of a blind set of data.
One set, labeled “No TBL”, consisted of sentences
that had been realized directly from the transferred
LFs. For the second set, labeled “With TBL”, we
applied the learned set of transformations to the
transferred LFs before performing sentence
realization. We applied the set of transformations
learned from 250,000 data points with one million
introduced errors.

We took a sufficiently large sample to ensure
that there were 250 differences in the output of the
two systems. This sample consisted of 250
differences, and 716 sentences that showed no
differences for the two scenarios.

Six independent human evaluators compared
the output of the two systems in a randomized,
anonymous presentation and indicated whether
they preferred the output of one system over the
other, or had no preference. Sentences that did not
differ between the two systems were not evaluated.
The results of the six human evaluators were
averaged. An average score greater than zero

indicates a preference for the “With TBL” scenario.
Statistical significance was determined by Monte
Carlo simulation. All results presented below are
significant at p < 0.01.

For all 966 sentences, including those with no
differences between the two systems, the average
score was 0.093, i.e. there was a slight preference
for the “With TBL” scenario. Considering only the
250 sentences with differences, the average score
was 0.361, i.e. there was a marked preference for
the “With TBL” scenario.

As a simple illustrative example of an
improvement in translation quality through a TBL
rule, consider the following English sentence and
its translation:

Beachten Sie folgendes
Note you following
“Note the following.”

In the German translation of the expression “the
following”, no definite determiner is used with the
present participle “folgendes”. TBL selected the
following rule, extracted from the decision tree
fragment in Figure 2.

IF (3rd person AND NOT Indefinite AND
Plural AND NOT Proximal AND Part-of-
Speech is NOT Noun): -Def

In the “No TBL” scenario, the transferred LF
node corresponding to “folgendes” was marked
[Def], i.e. it was over-specified, influenced by the
English source. This resulted in the ungrammatical
German output “Beachten Sie das folgendes”. In
the “With TBL” scenario, the application of this
transformation removed the erroneous [Def]
feature, resulting in the correct output, “Beachten
Sie folgendes”.

7. Conclusions
We have shown that it is possible to

automatically select a manageable set of candidate
rules for transformation-based learning in a
scenario where feature vectors and the possible
conditioning environments for transformations
would otherwise be prohibitively complex. To
select relevant rules from a massive space of
logically possible transformations, we employ
decision tree learning for those features that need
to be manipulated by transformations. From the
resulting set of decision trees we generate
transformations by reading off partial and complete

paths to the leaf nodes. The set of transformations
obtained from the decision trees is then used as the
set of candidate rules for transformation-based
learning.

We have implemented this technique in the
domain of machine translation, in order to filter
errors in transferred linguistic representations
which are complex and contain large numbers of
interdependent features. We believe that the
technique we describe is generally applicable in
scenarios where the candidate rule-space for TBL
is prohibitive, and where it is impossible to
constrain the space of possible transformation by
using pretheoretical intuition to specify rule
templates.

References
Brill, E. 1992. “A simple rule-based part-of-speech

tagger.” In Proceedings of the Third Conference
on Applied Natural Language Processing.
Trento, Italy. 152-155

Brill, E. 1993a. A Corpus-Based Approach to
Language Learning. PhD thesis, University of
Pennsylvania.

Brill, E. 1993b. “Automatic grammar induction
and parsing free text: A transformation-based
approach.” In Proceedings of the 31st Meeting of
the Association for Computational Linguistics.
Columbus, Ohio, USA. 259-265.

Brill, E. 1994. “Some advances in transformation-
based part-of-speech tagging.” In Proceedings of
the Twelfth National Conference on Artificial
Intelligence (AAAI-94). 722-727.

Brill, E. 1995. “Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging.” Computational
Linguistics 21(4):543-565.

Brill, E. and P. Resnik. 1994. “A transformational-
based approach to prepositional phrase
attachment disambiguation.” In Proceedings of
the Fifteenth International Conference on
Computational Linguistics. Kyoto, Japan. 1198-
1204.

Chickering D. M. 2002. The WinMine Toolkit.
Microsoft Technical Report MSR-TR-2002-103.

Dini, L., Di Tomaso, V., and Segond, F. 1998.
Error Driven Word Sense Disambiguation. In
Proceedings of 36th ACL and 17th COLING.
320-324.

Dolan, B., Pinkham, J., Richardson, S., and
Menezes, A. 2001. “Achieving commercial
quality translation with example-based
methods.” In Proceedings of MT Summit VIII,
Santiago De Compostela, Spain. 293-298.

Heidorn, G. E.. 2000. Intelligent Writing
Assistance. In A Handbook of Natural Language
Processing: Techniques and Applications for the
Processing of Language as Text, R. Dale, H.
Moisl, and H. Somers (ed.), Marcel Dekker, New
York.

Hepple, M. 2000. “Independence and
Commitment: Assumptions for Rapid Training
and Execution of Rule-based POS Taggers.” In
Proceedings of ACL 2000. 278-285.

Menezes, A. and S. Richardson. 2001. “A best-first
alignment algorithm for automatic extraction of
transfer mappings from bilingual corpora.” In
Proceedings of the Workshop on Data-driven
Machine Translation at 39th Annual Meeting of
the Association for Computational Linguistics,
Toulouse, France. 39-46

Ngai, G. and R. Florian. 2001. “Transformation-
based learning in the fast lane.” In Proceeding of
NAACL 2001. 40-47.

Ramshaw, L. and M. Marcus. 1994. “Exploring the
statistical derivation of transformational rule
sequences for part-of-speech tagging.” In The
Balancing Act: Proceedings of the ACL
Workshop on Combining Symbolic and
Statistical Approaches to Language. New
Mexico State University.pp. 135-156.

Roche, E. and Schabes, Y. 1995. “Deterministic
part-of-speech tagging with finite state
transducers.” Computational Linguistics
21(2):227-253.

Satta, G. and E. Brill. 1996. “Efficient
transformation-based learning”. In Proceedings
of 35th ACL. 255-262.

Samuel, K. 1998. Lazy transformation-based
learning. In Proceedings of the 11th International
Florida AI Research Symposium. Florida, USA.
235-239.

