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Abstract  

We describe the implementation of two new language pairs (English-French and English-German) which use 
machine-learned sentence realization components instead of hand-written generation components. The resulting 
systems are evaluated by human evaluators, and in the technical domain, are equal to the quality of highly respected 
commercial systems. We comment on the difficulties that are encountered when using machine-learned sentence 
realization in the context of MT. 

 

1 Introduction 
Recently, statistical and machine-learning 

approaches have been applied to the sentence 
realization phase of natural language generation. 
The Nitrogen system, for example, uses a word 
bigram language model to score and rank a large 
set of alternate sentence realizations (Langkilde 
and Knight, 1998a, 1998b). Other recent 
approaches use syntactic representations. FERGUS 
(Bangalore and Rambow, 2000), HALogen 
(Langkilde 2000, Langkilde-Geary 2002) and 
Amalgam (Corston-Oliver et al., 2002) use 
syntactic trees as an intermediate representation to 
determine the optimal string output. 

Amalgam, the sentence realization system 
introduced into our machine translation system 
maps a semantic representation to a surface syntax 
tree via intermediate syntactic representations. The 
mappings are performed with linguistic operations, 
the contexts for which are primarily machine-
learned. The resulting syntax tree contains all the 
necessary information on its leaf nodes from which 
a surface string can be read. Our sentence 
realization system was first applied to German, 
although its architecture was designed to be 
language-independent. It was subsequently adapted 
to French, as described in (Smets et al., 2003), and 
is currently being ported to English.  

The purpose of this paper is to present a full 
scale machine translation system using this 
sentence realization module and to report the 
quality of the resulting translations. We also 
review the results of testing only the sentence 
realization system (i.e., with native, not transferred 
input) and point out the issues that arise in the 
translation context. Work in progress to address the 
issues specific to translation is briefly outlined.  

2 Overview of the Machine Translation 
system 

The machine translation system described here 
operates from English as source language to 
German or French. It uses broad-coverage 
analyzers (the NLPWin system (Heidorn, 2000)) 
for those languages, large multi-purpose 
monolingual dictionaries, automatically generated 
bilingual dictionaries (English-French and English-
German), the Amalgam sentence realization 
system, and a transfer component. The transfer 
component consists of transfer patterns 
automatically acquired from sentence-aligned 
bilingual corpora using an alignment grammar and 
algorithm described in detail in (Menezes & 
Richardson, 2001). Training takes place on aligned 
sentence pairs which have been analyzed by the 
source and target NLPWin analysis systems to 
yield sentence-level semantic dependency graphs 
(Logical Forms or LFs). The LFs have fixed 
lexical choices for content words and represent the 
predicate-argument structure of a sentence. LFs 
include semantic information concerning relations 
between nodes of the graph (Heidorn, 2000). The 
LF structures, when aligned, allow the extraction 
of lexical and structural translation 
correspondences which are stored for use at 
runtime in the transfer database. The transfer 
database can also be thought of as an example base 
of conceptual structure representations. The 
transfer database for English-French is trained on 
approximately 1.8 million aligned sentence pairs; 
the database for English-German is trained on 
900,000 aligned sentence pairs. The training 
corpus is extracted from manually translated 
computer manuals and help files. This machine 
translation system architecture was previously 



implemented for French-English, German-English, 
Spanish-English, English-Spanish, English-
Japanese, and Japanese-English. However, in each 
of these language pairs, the generation components 
for English, Spanish, or Japanese was created by 
hand. The novelty in the implementations of the 
systems for English-French and English-German is 
the use of the Amalgam generation component 
which uses machine learning extensively. In what 
follows, we will give an overview of the Amalgam 
sentence realization system for German and for 
French, then describe our evaluation methodology 
and results, and finally examine some issues in the 
systems. Our conclusion is that even without 
adaptation to the special conditions of MT, our 
machine-learned realization system allows us to 
produce output which is of comparable quality to 
current commercial MT systems. 

3 Overview of the Amalgam sentence 
realization system 

Amalgam takes as its input an LF graph. An 
example of a French logical form is given in 
Figure 2. Amalgam first degraphs the logical form 
into a tree and then augments it by the insertion of 
function words, assignment of various syntactic 
features, syntactic labels, etc., to produce an 
unordered syntax tree. Amalgam then establishes 
intra-constituent order. After syntactic aggregation, 
insertion of punctuation, morphological inflection, 
and capitalization, an output string is read off the 
leaf nodes. The contexts for most of these 
linguistic operations are machine-learned (Gamon 
et al. 2002a). 

Amalgam is based on a division of labor 
between linguistically motivated, knowledge-
engineered linguistic operations, and their 
machine-learned contexts. A linguist decides 
which stages and operations are necessary for 
sentence realization. The contexts or “triggering 
environments” in which these operations apply are 
machine-learned as classifiers on events extracted 
from LFs and corresponding syntax trees. Even the 
ordering component is viewed as a classification 
task: daughter constituents of any given parent 
node are ordered from left-to-right with a classifier 
determining which of the yet unordered daughter 
nodes is most likely to occur “next”, given the set 
of already ordered nodes1. Training proceeds from 
a monolingual corpus which is parsed by the 
analysis system to LFs. Features are then extracted 
from LF nodes and their corresponding syntactic 

                                                      
1 This sorting approach to ordering has outperformed 
language-model-based ordering for French, English and 
German. We report on the details of these results in work in 
progress (Ringger et al. 2003). 

nodes. These extracted features comprise the data 
for machine learning of mapping operations from 
LF to a syntax tree. All machine-learned 
components employ decision trees for 
classification and for probability distribution 
estimation (Gamon et al., 2002b). The decision 
trees are built with the WinMine toolkit 
(Chickering, 2002). 

In determining the set of necessary operations, 
we have taken care to be as language- and corpus-
independent as possible. In this way, adapting the 
sentence realization to a different corpus requires 
only retraining on new data (an advantage of 
machine-learned systems), and the sentence 
realization system can be easily adapted to a 
different language (Smets et al., 2003). 

Amalgam was first developed for German, then 
ported to French, and is currently being ported to 
English. The specifics for the German and French 
Amalgam modules are detailed in the next 
sections. 

3.1 Overview of German Amalgam 

Figure 1 lists the eight stages in German 
Amalgam: the label ML denotes that the context 
for the operation is machine-learned, Proc denotes 
the procedural (knowledge-engineered) character 
of the operation. 

Stage 1 Pre-processing (Proc): 
•  Degraphing of the semantic representation.�
•  Retrieval of lexical information.�

Stage 2 Flesh-Out (ML): 
•  Assignment of syntactic labels.�
•  Insertion of function words.�
•  Assignment of case / verb position 

features.�
Stage 3 Conversion to syntax tree (Proc): 
•  Introduction of syntactic representation for 

coordination.�
•  Splitting of separable prefix verbs based 

on both lexical information and previously 
assigned verb position features.�

Stage 4 Movement: 
•  Raising, wh movement (Proc). 

Stage 5 Ordering (ML): 
•  Ordering of constituents and leaf nodes in 

the tree 
Stage 6 Extraposition (ML) 
Stage7 Surface clean-up (ML): 
•  Lexical choice of det. and relative 

pronouns.�
•  Syntactic aggregation.�

Stage 8 Punctuation (ML) 
Stage 9 Inflectional generation (Proc) 

Figure 1 : The stages of German Amalgam 



There are a total of twenty-one decision trees in 
the German system. The complexity of the 
decision trees varies with the complexity of the 
modeled task: the number of branching nodes in 
the decision tree models in the German system 
ranges from just 4 to 7,876 in the order model. 

3.2 French Amalgam 

French Amalgam re-uses the architecture of the 
German system. Indeed, sentence realization on the 
basis of a semantic graph must undergo many of 
the same transformations regardless of the 
language: pre-processing of the logical form, 
fleshing-out, conversion to syntax tree, etc. We 
outline below the stages of the French system, and 
compare them to the German system. 

Stage 1, the pre-processing of the data, involves 
language-neutral transformations from a graph 
representation to a tree representation, and can be 
reused without alteration by the French system. 

The fleshing out of the logical form in Stage 2 
required changes for French. French does not need 
a machine-learned model for case. On the other 
hand French requires a model for clitic insertion 
which does not exist in German. 

Figure 2 : French logical form 

Because French does not have separable prefix 
verbs, the lexical operation that splits prefixes in 
German is not needed in Stage 3. French uses a 
head-switching operation for verb phrases headed 
by modal verbs, because of the status of French 
modals: although they share the semantic 
characteristics of modal verbs, they behave 
syntactically as main verbs (see Smets et al., 
2003). Figure 2 is the logical form of the sentence 
in (1) which illustrates a modal construction. The 
modal (pouvoir, ‘must’) is the syntactic head, but 
an attribute of its complement (envoyer, ‘send’) in 
the logical form. 

(1) Vous ne pouvez pas envoyer un 
message à plusieurs personnes en même 
temps. 

 ‘You cannot send a message to several 
people at the same time’.  

Stage 4 (raising and Wh-movement) is identical 
for both languages. 

In stage 5, both German and French use a left-
to-right model of constituent order. For each 
language, the model is a decision tree representing 
the probability distributions involved in ordering. 

Extraposition of relative and complement 
clauses, which is common in German (Gamon et 
al., 2002c), is rare in the French technical software 
manuals: there were too few examples of 
extraposition in the French data to train an 
extraposition model for Stage 6. 

Stage 7 (clean-up) uses language-specific 
information, especially in the realization of lexical 
forms of function words. 

Finally, stage 8, the realization of inflection, is 
completely language-specific. 

Figure 3 provides a summary of the French 
sentence realization system. 

There are twenty-one decision trees in the 
French system, and as with German the complexity 
of the decision trees varies with the complexity of 
the task modeled. The number of branching nodes 
in the decision tree models in the French system 
ranges from 10 (for the subconj model, which 
decides whether to insert the subordinate 
conjunctions que (‘that’), si (‘whether’) or nothing) 
to 1,040 (the label model), except for the order 
model for verb phrases which has 5,456 branching 
nodes. 

Stage 1 Pre-processing (Proc): 
•  Degraphing of the logical form. 
•  Retrieval of lexical information. 

Stage 2 Flesh-Out (ML): 
•  Assignment of syntactic labels. 
•  Insertion of function words. 
•  Insertion of clitics. 
•  Assignment of case (Proc). 

Stage 3 Conversion to syntax tree (Proc): 
•  Introduction of syntactic representation for 

coordination. 
•  Head-switching (ML). 

Stage 4 Movement: 
•  Raising, wh movement (Procedural). 

Stage 5 Ordering (ML): 
•  Ordering of constituents and leaf nodes in 

the tree. 
Stage 6 Surface clean-up (ML): 
•  Lexical choice of determiners and relative 

pronouns. 
•  Syntactic aggregation. 

Stage 7 Punctuation (ML) 
Stage 8 Inflectional generation (Proc) 

Figure 3: The stages of French Amalgam 

There are a number of differences between the 
French and German systems, some concerning 
models that are language-specific, others relating 
to features relevant only for one language. Most of 
the differences are in feature extraction and in the 
linguistic operations relying on the information 
provided by the models. See (Smets et al., 2003) 
for a discussion of these differences. 



4 Data and feature extraction 
The data for all models are automatically 

extracted from a set of 100,000 sentences drawn 
from software manuals. Depending on the 
linguistic phenomenon to be modeled, between 
30,000 and one million cases are extracted from 
these sentences. The sentences are analyzed in the 
NLPWin system (Heidorn, 2000), which provides 
a syntactic and logical form analysis. Nodes in the 
logical form representation are linked to the 
corresponding syntax nodes, allowing us to learn 
contexts for the mapping from the semantic 
representation to the surface syntax representation. 
The data is split 70/30 for training versus model 
parameter tuning. For each set of data we build 
decision trees at several levels of granularity and 
select the model with the maximal accuracy as 
determined on the parameter tuning set. 

We attempt to standardize as much as possible 
the set of features to be extracted. We exploit the 
full set of features and attributes available in the 
analysis, instead of pre-determining a small set of 
potentially relevant features for each model. This 
allows us to share the majority of code among the 
individual feature extraction tasks and among 
languages. Typically, we extract the full set of 
available linguistic features of the node under 
investigation, its parent and its grandparent, with 
the only restriction being that these features need 
to be available at the stage where the model is 
consulted at generation run-time. This yields 
approximately six hundred features that provide a 
sufficiently large structural context for the 
operations. There are three types of features: 
lexical, syntactic and morpho-syntactic. The 
decision tree learner selects appropriate features 
for a particular task. For example, for the insertion 
of infinitive markers in French, the selected 
features fall in the following categories (in 
decreasing order of importance, according to the 
learner): 

•  Grammatical function of the infinitive 
clause, e.g., whether it is a purpose clause 
or an object. 

•  Is there already a governing preposition? 
•  Subcategorization features of the parent 
•  Category of the parent 
•  Semantic features of the node, parent and 

grandparent 
•  Subcategorization features of the node 

itself 
•  Other arguments of the parent 
•  Is there a preposition introducing the 

parent? 
•  Function of the parent 
•  Nominal features of the parent  

•  Arguments and agreement features of the 
grandparent 

The top features selected by the decision tree 
learner correspond to linguistic intuition: the 
choice of an infinitive marker depends on the 
function of the clause, on whether the infinitive 
clause is already introduced by a preposition, and 
on subcategorization features of the parent. Other 
features, however, are less intuitive (for example, 
agreement features of the grandparent), but are 
judged less significant by the learner. 

In addition to these standard features, for some 
of the models we add a small set of specially 
computed linguistic features that we believe to be 
important for the task at hand. For example, the 
model which inserts negation in French must 
choose between inserting “ne pas” or “ne”. The 
first value is the default as in (2), while the second 
value is chosen if a negative quantifier is present 
among the arguments of the verb, as in (3). 

(2) Assurez-vous que les périphériques ne 
bougent pas ou ne vibrent pas 

 “Make sure the devices are not moving or 
vibrating” 

(3) Dans ce cas, aucune modification n’est 
observée 

 “In this case, no change is seen” 

In order to learn the correct context for each 
form of the negation, the decision tree has to take 
into account the presence of negative quantifiers in 
the clause. Because this information is not readily 
available on the node under consideration (the 
verb), its parents or its grandparent, we define 
specific functions to compute that feature. 
Similarly, we compute special features which 
assess “heaviness” in terms of character and token 
length for the models of clausal extraposition in 
German, and for punctuation insertion in the 
Amalgam modules for all languages. 

5 Evaluation of Amalgam as a stand-
alone module (German to German and 
French to French) 

The evaluations performed for Amalgam as a 
stand-alone component and the evaluations 
performed for machine translation follow the same 
model. Each evaluator sees the output that the 
system produces, and also sees the reference that is 
considered perfect. In the case of a French-to-
French evaluation, the reference is the original 
sentence. For the evaluation of translation, the 
reference is the reference translation. We use 
approximately five raters for each evaluation, and 
all data is blind and distinct from training data. 
Raters evaluate around 500 sentences taken 



randomly from our test corpus (a subset of 
Microsoft technical manuals). 

For the evaluation of Amalgam, 545 test 
sentences in isolation from a blind technical 
software corpus were analyzed with our analysis 
system, giving a logical form representation. Our 
sentence realization system then generated the 545 
sentences on the basis of that representation. We 
did not control for noise introduced into the data 
by the analysis phase (in about 15% of the 
sentences). Nevertheless, this experiment gives us 
a good indication of the performance of our 
system. 

All the raters assigned an integer score between 
1 and 4, comparing each sentence to the reference 
using the scoring system in Table 1. 

 1 “Unacceptable”. Absolutely not 
comprehensible and/or little or no 
information transferred accurately 

2 Possibly Acceptable: Possibly 
comprehensible (given enough context 
and/or time to work it out); some 
information transferred accurately 

3 “Acceptable”: Not perfect (stylistically 
or grammatically odd), but definitely 
comprehensible, AND with accurate 
transfer of all important information 

4 “Ideal”: Not necessarily a perfect 
translation, but grammatically correct, 
and with all information accurately 
transferred 

Table 1 : the rating system for evaluation  

The score of a sentence is the average of the 
scores given by the five raters. The resulting score 
is the average of the scores of all of the sentences 
by all of the raters. The results for both the German 
and French sentence realization systems appear in 
Table 2. Note the very high quality of both 
systems. German, which was created first, rates 
higher in absolute quality than French. 

Pair Date Score 
FF 11/02 2.92 +/- 0.19 
GG 1/03 3.25 +/- 0.16 

Table 2 : results of French-to-French and 
German-to-German evaluation 

Poor scores can be due to the analysis system 
(for the evaluation, a sentence is first analyzed into 
a logical form, from which Amalgam realizes the 
sentence again). If we start from a faulty logical 
form, the realized sentence is most likely of poor 
quality. This occurs mainly with long sentences. 
Problems of the sentence realization systems often 
involve word order (if the word order is incorrect, 

a sentence can be unintelligible, even with all the 
correct content words), absence of syntactic 
aggregation (some constituents are redundant). 
Examples of problematic sentences for the French 
system are given below. The first sentence suffers 
mainly from word order and syntactic aggregation 
issues, and received a score of 2. The second  
sentence received a score of 1, and has a problem 
of word order and negation insertion (a negation is 
not inserted when it should be inserted). 

Ces propriétés ainsi que d'autres peuvent être 
définies et modifiées directement à partir du 
diagramme de base de données2. 
 
Peut ces propriétés ainsi qu' autre sont 
directement modifiée à partir de le diagramme 
de base de données et peut ces propriétés ainsi 
qu' autre sont directement définie à partir de le 
diagramme de base de données. 
 
Si un serveur n'est pas trouvé, le programme 
d'installation affiche un message indiquant que 
ce serveur n'est pas joignable3. 
 
S' un serveur est ne trouvé le programme d' 
installation affiche un message indiquant que ce 
serveur est joignable. 
 

6 Evaluation and Results for English-
French and English-German 

We performed evaluations of both translation 
systems in June of 2003. For the evaluation of 
translation, 500 sentences were analyzed by the 
English analysis system to give logical forms, 
which were transferred into logical forms of the 
target language. Amalgam realized sentences of 
the target language on the basis of these transferred 
logical forms. 

For each language pair, the evaluators evaluated 
our system concurrently with a highly respected 
commercial system (the competition), which serves 
as a baseline for performance. In both cases, we 
found that our system, which in the case of French 
was first assembled in January 2003, equals the 
level of absolute quality of the competition. 

The competition for English-French is the latest 
Systran system for EF; the competition for 
English-German is the latest Systran system for 
EG. These competitor systems are run with the 

                                                      
2 ‘These properties and others can be defined and directly 
modified from the database diagram’. 
3 ‘If no server is found, the installation program displays a 
message stating that the server cannot be found’. 



available domain dictionaries (computer 
dictionaries). Results appear in Table 3 below. 

Pair Date Our system  Competition 
EF 6/7/03 2.43 +/- 0.17 2.26 +/- 0.16 
EG 6/16/03 2.43 +/- 0.22 2.14 +/- 0.28 

Table 3 : evaluation results against competitor 
system 

BLEU scores (Papineni et al. 2001) for the E-G 
and E-F systems are given in Table 4. The scores 
were computed on a set of 20K translations of 
held-out source language data, about one month 
after the human evaluations were conducted. 

Pair BLEU scores  
EF 0.382 
EG 0.323 

Table 4 : BLEU scores 

7 Discussion of issues for sentence 
realization in the context of MT 

The results in the previous section show 
significant differences in the scores of monolingual 
sentence realization (French to French or German 
to German), and translation from English into 
French or German. The reason for this gap is the 
noise introduced by the transfer component: 
transferred LFs are not native LFs. This section 
presents some problems encountered in English-
French translation. 

7.1 Issues in French transferred LFs 

A main issue in EF translation is the 
discrepancy between the use of determiners in 
English and in French: determiners in English are 
omitted in a number of cases (indefinite plurals, 
indefinite mass, etc), while in French determiners 
are always used (except in some types of 
collocations). A mismatch between 
definiteness/indefiniteness features in the source 
and target language is detrimental to the 
performance of our realization system. An example 
of a translation problem relating to that issue is 
given in Table 5. 

This will prevent rich-text information from 
being sent along with the message. 
 
Cela empêchera information au format RTF d' 
être envoyée avec le message. 
 

Table 5 : translation problem resulting from 
different use of determiners in English and 
French 

In the French sentence above, information 
should be preceded by a determiner. However, the 
LF transferred from the English LF does not 
contain a definiteness feature. Because our 
sentence realization system is trained on native 
French LFs, it expects that information to be 
present when the decision is made whether to 
insert determiners. 

This problem never arises in French-to-French 
sentence realization, as the relevant information is 
present in the native French LF.  

More severe problems arise: the type of 
complements required by an English verb is not 
always the same as the complement required by its 
French translation. For example, in our corpus, a 
translation is learned between NP may receive a 
message and il se peut que NP recevoir un 
message (‘it is possible that NP receive a 
message’). The information transferred on recevoir 
is the information present on receive in the English 
LF. But receive is a base verbal form, while il se 
peut requires a subjunctive complement clause.  
The verb recevoir, inheriting the features of 
receive, is realized as an infinitive. As a result, 
there is no subordinate conjunction, nor expressed 
subject of the infinitive. Amalgam uses verbal 
features such as tense and mood (among other 
features) to decide whether or not to insert 
subordinate conjunctions, and also whether to 
express the subjects of verbs. French infinitives do 
not head that-clauses, and do not have their own 
subject: this explains the translation in Table 6. 

These examples illustrate the problems we 
encountered when using an automatic sentence 
realization system. The set of transferred features 
is not always what is expected by the sentence 
realization component. Some features are missing, 
others are not appropriate in the target language for 
the constituent they are supposed to characterize. 
This problem of “noisy” transferred logical forms 
is very common, and explains the differences of 
scores between translation and native generation. 

When you try to browse this type of folder, you 
may receive an error message similar to the 
following: 
Quand vous essayez de parcourir ce type de 
dossier il se peut recevoir un message d'erreur 
similaire au suivant: 

Table 6 : translation problem resulting from 
differences in complement structure in English 
and French 

The obvious long-term approach to these 
problems is to incrementally improve the transfer 
mechanism to a point where transferred LFs are 
native-like. It is important to point out, however, 



that issues of over- and underspecification will 
always be a major challenge and that sentence 
realization may also be employed in situations 
where the data are inherently noisy (speech). For 
the latter reasons we have decided to experiment 
with a machine-learning approach to noisy features 
in linguistic representations. The next section 
briefly discusses this approach in the context of the 
Amalgam sentence realization system. 

7.2 Noisy data and pre-generation: future 
work 

An interesting difference exists between a 
machine-learned sentence realization system like 
Amalgam and a hand-coded generation 
component: Amalgam mercilessly picks up on 
distributional regularities of linguistic features, but 
of course lacks the linguistic understanding of 
these features that a human generation grammarian 
possesses and utilizes for maximal grammatical 
accuracy. The result is that the machine-learned 
models may pick up on features and feature 
combinations that seem counterintuitive to a 
grammarian, although they are solid indicators on 
native semantic representations in the set of 
training data provided. For instance, instead of a 
grammatical generalization of the form “if the part 
of speech of X is noun”, a model may learn that “if 
X has the 3rd person feature”. The latter is true for 
the majority of nouns and pronouns, of course, and 
may capture a very similar generalization, but does 
not correspond to the judgment of a grammarian. 
In our experience, this can make Amalgam more 
susceptible to noisy transfer. There is no way we 
can convey to a machine-learning component that 
certain features and feature combinations are to be 
more trusted than others and are more “solid” 
indicators - the machine-learned component can 
(and should) only rely on the information present 
in the training data. 

The result is that correct feature transfer 
becomes a larger issue in the transfer component, 
and that it also may prove useful to have a post-
transfer and pre-generation component which 
specifically deals with feature noise, 
underspecification, and overspecification of 
linguistic features. We are currently experimenting 
with a machine-learned approach to this “clean-up” 
component (see Corston-Oliver and Gamon 2003). 
The basic idea is to learn a set of rules which set or 
delete linguistic features based on function word 
lemmas, the presence of other features in the 
structural neighborhood, parts-of-speech and 
semantic relations. Initial results indicate that this 
approach results in a statistically significant 
improvement in translation quality. 

8 Conclusion 
It is well known that the development of each 

component in the creation of a quality MT system 
can be labor-intensive and time-consuming. In 
order to reduce the time and effort, we have 
incorporated the Amalgam sentence realization 
system, trained only on the target language, in our 
overall machine translation architecture. Porting 
Amalgam to French has proven to be feasible in a 
matter of 10 person weeks. Even at this early stage 
in our experimentations, we found the preliminary 
results of human evaluations of the translation 
quality to be comparable to existing commercial 
systems, and this is very promising. 
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