
SYSTRAN New Generation:
The XML Translation Workflow

Jean Senellart Christian Boitet Laurent Romary

SYSTRAN S.A.
1, rue du Cimetière

95230 Soisy-sous-Montmorency
France

senellart@systran.fr

GETA, CLIPS, IMAG, BP 53
385 rue de la Bibliothèque
38041 Grenoble cedex 9

France

Christian.Boitet@imag.fr

LORIA
Campus Scientifique, BP 239
54506 Vandoeuvre-les-Nancy

France

Laurent.Romary@loria.fr

Abstract

Customization of Machine Translation (MT) is a prerequisite for corporations to adopt the technology. It is therefore
important but nonetheless challenging. Ongoing implementation proves that XML is an excellent exchange device
between MT modules that efficiently enables interaction between the user and the processes to reach highly
granulated structure-based customization. Accomplished through an innovative approach called the SYSTRAN
Translation Stylesheet, this method is coherent with the current evolution of the “authoring process”. As a natural
progression, the next stage in the customization process is the integration of MT in a multilingual tool kit designed
for the “authoring process”.

1 Introduction
Easy and deep customization of Machine
Translation for a customer’s specific needs has
always been a challenge for MT vendors. As the
corporate environment becomes increasingly
multilingual, the importance of this issue grows.
The typical corporate MT customer produces
technical support documentation in one language
and may need to provide multilingual support for
an increasing number of non-English speaking
customers. Human translation is not an option for
such needs: the number of documents is huge, the
database is frequently updated, and not all
documents need to be translated into each target
language. Finally, the prohibitive costs and the
inability to quickly turnaround voluminous
amounts of context-specific monolingual content
into parallel multilingual corpora make human
translation unsuitable for this kind of application.
Alternatively, machine translation provides on-
demand translations at relatively low costs. But to
improve the usability level, the translation system
needs to be customized. Classically, a
customization process has two main components:
terminology customization and engine
customization. The first component is developed
and maintained by the user (SYSTRAN Intuitive

Coding, 2003), while the second (engine
customization) traditionally relies on SYSTRAN's
expertise and is therefore more costly. Note that in
a typical production-level customization process,
MT is applied at the very end of the text
production workflow. This means that MT applies
on publication format and for this reason does not
benefit from potential XML structure that is
commonly used in today’s leading Content
Management systems. On the contrary, working on
this publication format leads to complex “format
filtering” issues.

2

This article illustrates that the ongoing
advancement of SYSTRAN New Generation (NG)
engines for XML provides tools tailored for use
concurrent with the progressive evolvement of
content. This opens a new perspective for fine-
grained MT customization, as this development
overrides the traditional problematic aspects of the
“engine customization” and “format filtering”.

We describe two major applications of XML in the
SYSTRAN New Generation Systems.

MT XML Workflow
In this section, we depict the meaning of an “XML
Workflow” for complex translation engines, and

mailto:senellart@systran.fr
mailto:Christian.Boitet@imag.fr
mailto:Laurent.Romary@loria.fr

further explain how this workflow improves
translation quality by providing users (through the
translation authoring tool or integration with a
generic authoring tool) with a very simple way of
interacting with internal low-level linguistic
modules.

stage leads to a dead-end, the process is re-
initialized in the context of the first choice and
a second section is then explored.

• Delayed selection – some decisions normally
made at a given stage are delayed by

introducing an explicit “undefined” state.

Format

Tokenization

Entity Recognition

Normalization

Segmentation

W ord Boundary

Analysis

Transfer

Synthesis

Typography

Tgt Normalisation

Surface Projection

Format

Translation Memory

Terminology Extraction

• Parallel computation – several possibilities are
explored at the same time. The duration of the
parallel computation is generally short for
efficiency reasons. Typically, the
disambiguation stage requires such processing.

• “Fix” rules – certain rules look for an expected
incorrect result from an earlier process stage
and fix this result based on additional

Simple word lookup

Expression – 1

Disambiguation

Expression – 2

Guess

w
Figure 1a - General SYSTRAN translation workflo
2.1.1 General MT Needs and Module Interaction
At a basic level, the MT process is perceived as a
sequence of “independent” modules as represented
in Figure 1a, in which:
• The workflow input is formatted text (html, doc,

... file).
• The workflow output is a formatted file with

equivalent structure representing the translation
of the input text.

• The process parameters are general translation
options and resources (choice of user
dictionary, linguistic switches, etc.).

The linguistic core of a Machine Translation
“analysis-transfer-generation” process is defined in
Figure 1b.
This modular organization is a requirement for
maintaining very large coverage of NLP systems
(NG system, 2001). It also allows the user to easily
combine some of the modules in order to build a
new specific NLP application, or customize an
existing engine with specific modules.
In a large-scale MT system, such as the SYSTRAN
systems, all interaction between these modules are
handled through:
• Backtracking – if one selection made at a given

information pr

Analy

Expressio

Transfer Di

Transfer

Rearrange

Morpho

These interaction
real “communic
modules becaus
control the tran
hand, they are co
Consequently,
satisfactory f
customization. U
the user should b
process (implic
through addition
interaction with
the modules. W
using a generic X

Figure 1b - Schematic "linguistics" workflow
esent at the current stage.

sis

n – 3

ctionary

Rules

ment

logy

 mechanisms do not represent
ation channels” between the
e they cannot be used to

slation process. On the other
mplex to monitor.

none of these solutions is
or reaching fine-grained
ndeniably, to reach this goal,
e able to drive the translation

itly or explicitly), not only
al resources, but also by direct
the different choices made by
e show how this is simplified
ML workflow.

 2.1 XML - Communication Model Between
Modules and with an External Layer

The fundamental idea of the XML Workflow is
simple:
• The input document is converted into an XML

format. This conversion preserves (hides) the
original formatting in <tag> nodes, and
normalizes font properties into <ts> nodes1.

• All modules in the process maintain this XML
structure and compose its evolution.

• This occurs with the following main
restriction. In every module, each XML
structure output is aligned with the XML
structure input. This alignment is done at the

paragraph level, sentence and token2 levels.
This is performed by several means: IDREF,
“norm” attributes preserving the state before
the current transformation (for example, in
tokenization or entity recognition) and
duplication of structures.

A $100 wrist-watch.

Input Text

<html><hr>A $100 wrist-watch.</html>

first xml
representation

<?xml version="1.0"?>
<document original_format="html"><tag>&<lt;hr></tag><par id="1">A <ts
face="bold">$100</ts> wrist-watch.</par>
</document>

tokenized text
after entity
recognition

[...]
<par id="p1" xml:lang=”en”>
 <token type="word" capit=”first” id=”t1”>A</token>
 <ts face="bold"><entity type="monval" id=”t2”>$100</entity></ts>
 <token type="word" norm=”wrist-watch” id=”t3”>wristwatch</token>
 <token type=”punct” id=”t4”>.</token>
</par>
[...]

segmented,
translated text

[...]
<par id="1">
 <tu_group id="s1">
 <tu xml:lang=”en”>
 <token type="word" id="t1" capit=”first”>A</token>
 <ts face="bold"><entity type="monval" id=”t2”>$100</entity></ts>
 <token type="word" norm=”wrist-watch” id=”t3”>wristwatch</token>
 <token type=”punct” id=”t4”>.</token>
 </tu>
 <transtu xml:lang=”fr”>
 <token id="t1" synt="pos=det">Une</token>
 <token type="word" type=”noun” id=”t3”>montre-bracelet</token>
 <token type=”det” id=”t2-0”>de</token>
 <ts face="bold"><entity type="monval" id=”t2”>$100</entity></ts>
 <token type=”punct” id=”t4”>.</token>
 </transtu>
 </tu_group>
</par>
[...]
<html><hr>Une montre-bracelet de $100.</html> output text

Une montre-bracelet de $100.
Table 1 - Some intermediary translation steps within the translation of a single html sentence.

1Preserving character property in the translation process is
critical for preserving the identical font style in the text output
and for allowing translation memory parsing (TM entries in
SYSTRAN systems are full enriched sentences)

As a result, the input text can be regenerated with
additional tagging introduced in a given step of
the process, at any time.

An illustration of this workflow is provided in the
table above. Note that only some steps of the
process are represented.

Technically, the introduction of this XML
workflow is based on the SYSTRAN NG Engine
Architecture (NG, Senellart 2001). For current
“classical SYSTRAN engines”, this new XML
Workflow fully replaces the existing workflow

2 A “token” becomes a “word” when linguistics really starts.

modules which are not “purely linguistic”, and
complements the current structure for “purely
linguistic” modules. The most important point is
that the internal structure (Analysis Area) on which
linguistic routines apply is preserved, but is
synchronized with this XML structure during any
point in the process.

Figure 2 - XML tree and associated
memory representation

The actual XML structure updates are performed
by a “lazy algorithm” for efficiency reasons. The
internal structure handled by the modules is not the
XML structure itself, but an optimized memory
structure. For example, a “token” node is internally
represented by a “token” structure. If the frame for
storing the token is still the XML tree, the up-to-
date “token” representation is the memory
structured stored as a pointer in a private field of
the corresponding “token” node. The token node is
synchronized when a dump of the XML structure
is required, or when an XML operation, such as an
XPath evaluation, is performed.

The communication “model” is then applied using
a “mark_choice”, and/or “post_choice”
markup in the structure, as detailed in the
following application “User-Process interaction”.

 2.2 User-Process Interaction
Based on the previous workflow, defining the
interaction between user and process is
straightforward:
Let us consider noun-verb disambiguation. Figure
4 displays the feedback and the interaction process:
• The first process is run and stops after

executing the disambiguation routine.

par

token structure
_private

token nodetoken

tu

• Selected system choices for this routine are
integrated in the XML structure via
<mark_choice> tags.

Source
Text

Marked up
Source

Text

Disambi-
guation

<mark_choice
process_path="//ling/disambiguation[@type='noun
-verb']" values="verb noun”
confidence="0.5">verb</post_choice>

Target
TextFigure 4 - "markup/interaction/post"

process

• The source text is regenerated and tags are
converted into user readable tags such as
textual marks, or, as in figure 3, into user-
friendly html scroll-down control).

• The user reviews and modifies the system

choices.

• When translation is eventually run, the user
choices are integrated into the XML structure
as <post_choice> tags.

<post_choice
process_path="//ling/disambiguation[@type='noun-
verb'] ">noun</post_choice>
• The disambiguation routine replaces the

system choices with user choices when
provided.

In SYSTRAN’s system, the process and markup
type identification is performed using an XPath
expression in the “process tree”. Each module is
identified as a “node” in the process tree. Using
this classification allows us to define a
“communication” scheme with any new modules,
as well as the possibility express precise
restrictions, such as the following:

Figure 3 - Conversion of "mark_choice" system tags
into html controls

<!-- markup all noun-verb or noun-adj system
choice in disambiguation process -->
<select
process_path="//ling/disambiguation[@type='noun-
verb' or @type='noun-adj']"/>

<!-- markup all linguistic choices with a low
confidence -->
<select process_path="//ling/*[@confidence <
0.2]"/>

2.2 SYSTRAN Translation Stylesheet

In this part, we portray a second application for
XML in SYSTRAN NG Engines. This approach is
independent of the XML workflow described
above, but demonstrates that the combination of
both allows the system to reach an effective
customization frame based on the deep
interaction between the translation system and
highly granulated structure-based customization.

 In the XML workflow, the input structure is
mapped into an internal XML generic structure.
However, this mapping only allows for the
handling of shallow document structure. A typical
example is PDF translation. For most PDF
documents, the information that the PDF filter can
retrieve is limited to a sentence list. Numbering
may be preserved but without minimal structure
information that clarifies two list items as
consecutive and belonging to the same
enumeration. Bold face font mat be preserved but
not the style category that generated it. Even
worse, words with internal elision may not be
correctly reconstituted; not because of the poor
quality of the PDF import filter, but because that
information is no longer present in the document,
and can only be reconstituted, at best.
This limitation example of PDF documents is not
unique. To a lesser extent, we observe the same
phenomenon in all classical document formats.
For example, an html page generated from a
newspaper database does not contain information
pertaining to the database structure, only its

presentation3. The newspaper website contains
different articles presented together and probably
stored internally with domain information. But in
most cases, this information is no longer part of the
html structure; and even when present, is only
expressed as comments but not sufficiently
structured for automatic processing.
Finally, it is important to note that this situation is
more than a question of format. Most word
processors are designed to handle named styles
(for example, paragraph or character styles), but
this option is usually ignored, as manual direct
formatting is preferred.

Undoubtedly, XML content management and
structured documents represent the future of text
authoring. Several pure XML publication formats,
like DocBook and specialized technical XML
formats like XBRL (Extensible Business Reporting
Language), are now recognized asstandards. Even
major word processors and other content editing
tools today integrate XML as a reference content
format (such as OpenOffice, Office11).

Translating
Localizing

Multilingual
Authoring FormattingAuthoring Formatting Translating

Authoring

Publishing

TranslatingFigure 5a-Classical use of
Machine Translation,
downstream text production using
Word Processor Translation

Figure 5c- Integration of
XML multilingual
Workflow in the Authoring
Process

Figure 5b- Use of
Publishing and Translation
Stylesheets downstream

3 Even if HTML language was to some extent designed to
represent meta-information through tags like <quote>,

 Below we display that the concept of
“translation filter” is totally overridden by the
“Translation Stylesheet” (TS).
2.2.1 Definition - Translation and Formatting

Stylesheets
A stylesheet is a way of associating “style” to
formatting marks. In other words, the stylesheet is
“the file that describes how to display a given
(XML) input file”.
XSL (Extensible Stylesheet Language) is a
powerful language used to express stylesheets. As
a complete language based on XML objects, XSL
provides the opportunity of transforming a source
XML document into a target XML document,
which goes far beyond “formatting”.
By extending “formatting” stylesheets and
comparing publishing in the content production
workflow (figure 5), we use this transformation
mechanism to produce fine-grained customized
multilingual content.

The Translation Stylesheet is thus “the file that
describes how to translate a given (XML) input
file”.

2.2.2 SYSTRAN Translation Stylesheet
SYSTRAN Translation Stylesheet is based on a
single extension function

“systran:translate”. The whole translation
process is driven by a xslt processor (xsltproc).

<systran:output>
 <source xml:lang="en">The <name>Z12</name> driver is
loaded.</source>
 <target xml:lang="fr">Le <mark type="dict" name="global">
 driveur</mark> <name>Z12</name> est chargé.</target>
 <options>
 <dicts><dictionary name="global"/></dicts>
 <marks><dict_mark type="xml"/></marks>
 <misc><extract_nfw/></misc>
 <ling><imperative type="technical"/></ling>
 </options>
 <nfw_list>Z12</nfw_list>
</systran:output>

code sample 1- Translation output - a tree fragment that contains source, target, not found word list,
and translation options. Among translation options, “mark-up” of user-dictionary is activated.

<code>, ...

Technically the systran:translate function
has the following “xslt” APIs:
node-set systran:translate(node-set
text,node-set translation_option)
node-set systran:translate(string
text,node-set translation_option)

The input is either a node-set or a string (depends
on the calling context in the XSL process).
The functions return a tree fragment that contains
the translated node-set, and the translation process
feedback, such as a list of NFWs (Not Found
Words) or sentence dictionary, etc.
The set of translation options is represented by an
option tree, and controls the type of information
returned by the function. The following example
shows a typical output structure.

<xsl:template match="CommandName">
 <systran:dnt type="noun">
 <xsl:copy-of select="."/>
 </systran:dnt>
</xsl:template>

Source
XML

Target
XMLxsltproc

Translation Stylesheet code sample 2 - XSLT template transforming
<CommandName> element into
<systran:dnt>. The node content is not
translated, but integrated in the sentence
analysis as a full noun, preserving the
sentence structure.

.

Based on the systran:translate function, the
translation stylesheet describes which XML area to
translate and with which options through “xsl

<systran:output>
 <source xml:lang="en">The <name>Z12</name> driver is
loaded.</source>
 <target xml:lang="fr">Le <mark type="dict" name="global">
 driveur</mark> <name>Z12</name> est chargé.</target>
 <options>
 <dicts><dictionary name="global"/></dicts>
 <marks><dict_mark type="xml"/></marks>
 <misc><extract_nfw/></misc>
 <ling><imperative type="technical"/></ling>
 </options>
 <nfw_list>Z12</nfw_list>
</systran:output>

templates”. Assume that we have an input XML
containing formatted text “Para” nodes that we
want to translate and “Note” nodes that we want to
remain in the source language. The xsl template in
code sample 4 shows how Para nodes are processed.
The main process is based on the following
scheme:
• Define the XML area to be translated (can be a

tree fragment or a string, if translation of
attribute values is needed)

• Preprocess (via another template) the tree
fragment: this module typically interprets
“token level” tags and converts those tags into
internal SYSTRAN tags with appropriate
semantics. For example, in code sample 5, a
template converts CommandName tags into
systran:dnt (Do Not Translate) SYSTRAN
tags, and associates a part of speech to this
word. Therefore, the analysis of the complete
sentence is done with the acknowledgement
that a token should not be translated as it

behaves like a noun.

code sample 3 - Translation output. It is a tree fragment containing source, target, not found
word list, and translation options. Among translation options, “mark-up” of user-dictionary
is activated.

 3 Conclusion and Perspectives
This article discusses the impact related to the
introduction of XML in the New Generation
SYSTRAN MT Architecture. This has and
continues to open new views for Machine
Translation use, as well as the ability to
successfully and simply perform MT
customization. The XML frame is fully functional;
the next stages will focus on its industrialization
through a new preprocessing interface, a new
customization methodology, and the exploration of
new linguistic opportunities. For example, since
the XML workflow enables the dynamic definition
of “translation options” as a part of the
communication channel, a direct application of
this new option could allow some modules to
generate on-the-fly local dictionaries.

The current evolution of transforming the

<xsl:template match="Para">
 <xsl:comment>SYSTRAN translation</xsl:comment>
 <xsl:variable name="preprocess">
 <xsl:apply-templates select="." mode="preprocess"/>
 </xsl:variable>
 <xsl:variable
 name="translation"
 select="systran:translate(exslt:node-set($preprocess)/*,$OPT)"
 />
 <xsl:apply-templates
 select="$translation/target/*" mode="postprocess"/>

code sample 4 - xsl template describes the translation of "Para" element. <Para> nodes are localized,
preprocessed, translated with the current XML option $OPT, and then regenerated using a postprocess
template.

authoring process to structured format initiates
better content control and responds to the
increasing need for defined exchange standards.
Since “exchange” now implies multilinguality, the
natural next step is the introduction of multilingual
consideration, as illustrated in Figure 5. The ability
to rate the machine translatability of a text should
also be considered at the same level as the
validation of text structure or spell-checking.
Beyond the technical issues regarding the
interaction of multilingual tools and text
production, as presented in this paper, this
evolution renews the linguistic definition of
translation tools.

3 Acknowledgments
Special thanks to Daniel Veillard, architect and
main developer of libxml2 and libxslt ; these are
efficient, complete, portable, and free XML
libraries that provide a large number of existing
standards related to markup languages (XML,
XSL, XPath, XInclude, Relax NG, XML Schemas,
etc.). See http://www.xmlsoft.org.

4 Bibliographical References
Senellart J., Dienes P., Váradi T. 2001. New Generation

SYSTRAN Translation System. In Proceedings of
MT Summit IIX

Senellart J., Yang J., Rebollo A. 2003. SYSTRAN
Intuitive Coding Technology. In Proceedings of MT
Summit IX.

Boitet, C. 2000. Handling text and corpus in Ariane-G5,
a complete environment for multilingual MT. In
Proceedings of ACIDCA'2000/

Lieske C., McCormick S., Thurmair G. 2001. The Open
Lexicon Interchange format (OLIF) comes of Age. In
Proceedings of MT Summit IIX.

Walsh N., Muellner, L. 1999. DocBook: The Definitive
Guide. O'Reilly Books.

http://www.xmlsoft.org/

	SYSTRAN New Generation:
	The XML Translation Workflow
	Introduction
	MT XML Workflow
	
	General MT Needs and Module Interaction
	XML - Communication Model Between Modules and with an External Layer
	User-Process Interaction

	SYSTRAN Translation Stylesheet
	Definition - Translation and Formatting Stylesheets
	SYSTRAN Translation Stylesheet

	Conclusion and Perspectives

	Acknowledgments
	Bibliographical References

