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Abstract  

We introduced, for Translation Memory System, a statistical framework, which unifies the different 
phases in a Translation Memory System by letting them constrain each other, and enables 
Translation Memory System a statistical qualification. Compared to traditional Translation Memory 
Systems, our model operates at a fine grained sub-sentential level such that it improves the 
translation coverage. Compared with other approaches that exploit sub-sentential benefits, it unifies 
the processes of source string segmentation, best example selection, and translation generation by 
making them constrain each other via the statistical confidence of each step. We realized this 
framework into a prototype system. Compared with an existing product Translation Memory 
System, our system exhibits obviously better performance in the "assistant quality metric" and gains 
improvements in the range of 26.3% to 55.1% in the "translation efficiency metric". 

                                                   
1 This work was finished while the authors were working at Microsoft Research Asia (MSRA).   

1 Introduction 

As a kind of Translation Aid tool, Translation 
Memory System (TMS) re-uses existing 
translations to perform its translation assistant task. 
A typical TMS consists of two parts: translation 
memory (TMEM), which records bilingual 
sentence pairs as examples; a search engine, which 
searches the most similar example (s) from TMEM. 
TMS provides the Target Language (TL) part of the 
best matched example to users for post-editing, and 
other matched examples could be provided to users 
as suggestions for translation. Normally, TMS does 
not conduct real translation (Macklovitch & Russell, 
2000; Planas & Furuse, 2000).  

TMS has been broadly used in technical 
document translation, localization, and other 
professional translation areas. These translation 
tasks have strict requirements on both translation 
quality and consistency. Not only the original text 
meaning, but also the presentation style should be 
rendered in target language (Boitet, 1994). For 

these requirements, TMS may not be simply 
replaced by fully-automatic Machine Translation 
system.  

However, previous TMSs show obvious 
limitation in their translation assistant ability. They 
provide good translation references only when there 
are completely similar examples in TMEM, and 
therefore lead to low coverage on unseen texts 
(Macklovitch & Russell, 2000). It is because of 
their rudimentary matching technique that most of 
the previous TMSs do similarity calculation only on 
complete segments (Lepage, 1998; Planas & Furuse, 
2000). The problem of the complete segment 
matching is that, an example normally tends to be 
excluded from the matching candidates even though 
it contains a useful sub-segment that could be 
helpful to the translation.  

Making use of sub-sentence matching is 
significant to improve the translation coverage 
(Brown, 1996; Weale and Way, 1997; Macklovitch 
and Russell, 2000; Planas and Furuse, 2000; Simard 
and Langlais, 2001, Langlais and Simard, 2002). 



Brown (1996, 1999) proposed a lexical 
Example-based Machine Translation approach in 
which no structural information was employed. His 
system segmented the input sentence into sequences 
of words occurring in the parallel corpus, and 
determined the translation of the word sequences by 
performing sub-sentential alignment on each 
matched example pair.  

Simard and Langlais (2001) presented a 
Generalized TMS (GTMS), in which example 
matching phase was considered as an information 
retrieval process, so that sub-sentential sequences of 
words could be exploited from TMEM. Their 
search engine ranked examples with regard to the 
longest common sub-sequence of words. A longest 
available sub-sequences strategy was adopted in 
input sentence chunking and TL text generation to 
cover as much part of source sentence as possible. 
Langlais and Simard (2002) merged the 
Example-Based system with a statistical engine. 
The lattices of TL text were fed to a dynamic 
programming-based decoder to generate final 
translation.  

Another irradiative work was Marcu (2001). He 
built a statistical TMEM to save bilingual word 
sequences, and produced the translation by using 
both TMEM and the statistical model so that the 
system could exploit the translation knowledge not 
only at word level but also at phrase level.  

In this paper, we enhance the state-of-the-art of 
TMS by proposing a model to enable TMS a unified 
statistical qualification in the whole process of input 
sentence chunking, best example set selection, and 
the generation of a seamless translation without 
overlapping. We extend TMEM with three 
components: domain un-restricted monolingual 
corpora in both source language (SL) and TL; a 
bilingual Example Base (EB), which contains 
user-specified (and normally domain-restricted) 
bilingual sentence pairs and their word alignment 
information; a statistical Term Base (TB) which is 
automatically extracted from EB, contains bilingual 
word sequences (each word sequence includes at 
least one word either in SL or TL), their translation 
probabilities in the EB, and the information of their 
original examples which contain the word 
sequences in context. A confidence level prediction 
approach is proposed so that only dependable 
translations could be provided to user. A prototype 

system named EBMTLoc has been developed and a 
series of experiments show that, compared to a 
traditional TMS, LocStudio 4.5, an internal 
localization tool in Microsoft, EBMTLoc shows 
obviously better translation assistant quality 
especially when there is no very similar example in 
TMEM. The translation efficiency with the 
assistance of EBMTLoc shows remarkable 
improvement too, which is by the range of 26.3% to 
55.5% in our experiments.   

According to Simard and Langlais’s (2001) 
definition on GTMS, that was, GTMS has ability to 
operate at a sub-sentential level while traditional 
TMS only handles complete sentence match, we 
call EBMTLoc a Statistical GTMS.  

In the following, the model and EBMTLoc will 
be described in Section 2. The description of 
TMEM used in our system will be given in Section 
3. The system evaluation and discussion will be 
shown in Section 4. Finally, the conclusions will be 
given in Section 5.  

2 The Model and the System 

Given an SL string Js1 =s1…sj…sJ, which is to be 

translated into a TL string It1 =t1…ti…tI; our  

translation procedure will be: 1) chunk Js1  into a 

sequence of phrases Ks1
~ (k=1,…,K; 

kk jjk sss ,...,~
11+−

= ); 2) get the translation result 
Kt1

~ (
kk jjk ttt ,...,~

11+−
= ) through chunk-by-chunk 

translation; and 3) get the best translation result It1̂
 

by a target language model. Denote the SL and TL 
monolingual corpora with CS and CT, the bilingual 
EB with E, we have,  

Here, we use a direct translation model instead 
of source-channel approach (Och and Ney, 2002). 
Considering the model is for a TMS, and what we 

want is not only the best TL translation It1̂ , but also 

the best example set ê  to support the translation It1̂ , 
we have,  
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Where e’ is the example set which is related to 
Ks1

~  (“related” means each example in e’ contains at 

least one chunk ks~  of Ks1
~ ). e is a sub-set of e’ which 

is related to both Kt1
~  and Ks1

~ .  
In practice, we use phrase based unigram in 

language model to avoid data sparseness problem.  

2.1 Chunking  

The task of SL chunking model is, given an input 

string Js1 , a SL monolingual corpus CS and a 

bilingual EB E, get the SL chunking result Ks1
~ .  

A chunk (phrase) is a continuous of base chunks 
with non-zero word in it. A base chunk is equal to a 
syntactic constituent in CoNLL-2000 (Erik et al., 
2000). And if several continuous base chunks in 
input sentence are continuous too in any one 
example, then they will have opportunity to be 
combined to a “chunk (phrase)”.  

There are two sub-phases in chunking phase, the 
first one is monolingual corpus based chunking to 

get base chunk '
1'

~ Ks ; the second one is example 
based chunk combination phase to get final chunk 

Ks1
~ , in which the chunk is normally as long as 
better to get more natural translation. Consider the 
system gets the example set e’ from E after the 
chunking procedure, we could omit it from the 
equation. We have, 
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Introduce the independent approximation, get, 
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In base chunking, we follow the SL monolingual 
chunking model that is introduced by Wang et al. 
(2002), in which 13 chunk types were used for 
English, which is the same with Erik et al. (2000). 

In experiment, 92.52% of precision and 90.81% of 
recall in English base chunking is obtained, which 
is above the average level in CoNLL-2000 (Erik et 
al., 2000). 

The second sub-phase is example-based chunk 
combination. If two or more than two continuous 
base chunks appear in any example, they have the 
opportunity to be combined to one chunk.  

We express the procedure of getting 
),'~|~Pr( '

11 Ess KK  with function )|~'~( 1
'

1 EssF KK → . 
Consider the data sparseness problem, submit to 
losing some of linguistic constraints, we get a back 
off function )|~'~( 1

'
1 EssL KK →  which is based on a 

weighted length to substitute the function F. We 
have:  

)|~'~(),'~|~Pr( 1
'

1
'
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Here is an example for chunk combination. 

Suppose '321
'

1 '~...'~'~'~'~
K

K sssss = after base chunking, 

and the chunk 1'
~s  and 2'

~s  appear in one example as 

continuous chunks, while 2'
~s  and 3'

~s appear and be 

continuous in another example, then we could have: 
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2.2 Example-based Phrase Translation Model  

The translation model is different from existing 
ones in two respects: first, it is a translation model 
on phrase (including word) level and all phrases are 
related to their original examples.  Second, the 
model should give the TL translations with the 
original examples which support the translations.  

Suppose the input is a phrase sequence Ks1
~  and 

its related example set e’, then the translation 
procedure is: get related examples {

kse~ } to each 

phrase ks~ ; get TL correspondences { kt
~ }of ks~ from 

{
kse~ }; get the probability of the translation of each 

Kt1
~  and its example set e with equation (3). The 

best translation Kt1
~̂ of Ks1

~ and the best example set 
ê for the translation should gain the highest Pr(e, 

Kt1
~ | Ks1

~ , e’). 
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There are an example selection model and a 
phrase-based translation model in the 
example-based translation model. The distortion 
model is not adopted because our model is for a 
TMS and only partial translation will be provided to 
users.  

Example selection model Given a SL phrase 

sequence Kk
K ssss ~...~...~~

11 = , the example selection 

model selects the matching example
kse~  to each 

phrase ks~ for any Kk ≤≤1 . Assume that the more 

similar example would be more helpful to the 
translation of the input string, the model could be 
simplified to a similarity calculation: 
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In above equation, |x| means the weighted length 
(word number) of string x. A content word gains 1.0, 
where it is 0.4 and 0.2 for a function word and a 
character in our experiment.  

The translation model Given a SL phrase ks~  

and the matching example
kse~ , what we want to get 

is the TL translation kt
~ .  

Consider data sparseness problem may result in 
the undependable corpus-dependent translation 
probability ),~|~Pr( Est kk  (simply )~|~Pr( kk st ) which 

is estimated from the EB, we introduce 
example-dependent translation likelihood of ks~ and 

kt
~ in given matching example

kse~ , which is denoted 

by ),~|~( ~
kskk estSF . We have: 

),~|~()1()~|~Pr(),~|~Pr( ~~
kk skkkkskk estSFstest ××−+×≈ βαα  (5) 

where, α is corpus-dependent coefficients, and 
β  is interpolation coefficient for using translation 
likelihood with translation probability. Intuitively, 
α should be low and so the example-based 
translation likelihood ),~|~( ~

kskk estSF could be higher 

weighted when )~|~Pr( kk st is not informative (for 

example, ks~  could be translated to five TL phrases, 

and each translation probability between them is 

20%), and α could be high otherwise. In our 
experiments, αis set to 1.0 when the co-occurrence 
frequency of ks~ and kt

~  in EB is larger than 5, and 

the corpus-dependent translation probability 
)~|~Pr( kk st  is higher than 0.4; Otherwise αwill be 

set to 0.  
The corpus-dependent translation probability is 

estimated from the bilingual EB and saved to TB in 
advance to raise the performance; and the 
example-dependent translation likelihood is gotten 
through phrase alignment, which we describe in 
TMEM building (Chapter 3).  

2.3 Decoding Algorithm  

Consider the decoding as a best path finding 
problem, a dynamic programming algorithm is 
employed in our system (figure 1). The proposed 
integrated model (equation 1), in which the 
distortion model and language model is omitted for 
the specific object TMS, is employed as the 
evaluation function in the algorithm. 
Input: W, the weight matrix for a path with vertices v1, …, vn; 
and n. 
Output: D, an n×n matrix; D[i, j] = distance from vi to vj. 
   Procedure Distances (W: Matrix; n:integer; D: Matrix); 
   Begin 
            D := W;          

        for i := 1 to n do 
        for j := i to n do 

for k := i to j do 
             D[i, j] := min(D[i, j], D[i, k]+D[k, j]) 
        end end end {for loops} 
end {Distances} 

Figure 1. Dynamic-Programming Algorithm 

Here is the implementation strategy of the 
algorithm:  
•  Select n-best chunking results by equation (2) 
•  Select n-best examples for each chunk by 

equation (4). 
•  Edge each chunk with related example ID and 

the similarity weight of the example that is 
acquired from equation (4). For example, if 
there are two related examples to the same 
chunk, each with ID 12007, 52773 and 
similarity weight 0.31, 0.77, respectively, then 
there will be two edges given to the chunk, and 
each of them is marked with <12007, 0.31> and 
<52773, 0.77>, respectively.   



 

Figure 2. Find the best path 

•  Get translation probability of each edge from 
equation (5), multiply by the edge weight 
(example similarity weight), and write the 
reciprocal of the weight into the weight matrix 
W. 

•  Get each path weight and finally the best TL 
translation and the best example set 

>=< et J ˆ,1̂ >< et K ˆ,~̂
1  by the algorithm figure 1. 

2.4 Confidence Level Prediction 

Most TMSs provide confidence levels. Confidence 
level is helpful to user for reference in post-edition, 
as well as it can be used to cut off undependable 
translation outputs that system does not confident 
enough. However, according to the translation 
methodology, the confidence levels of existing 
TMSs are only related to the similarity between 
input string and the employed example.  

As a GTMS, The confidence level is in inverse 
proportion to the number of the adopted examples 
and the chunk number of the input string, and in 
direct proportion to the final translation percentage 
and the alignment confidence of each translated 
chunk. Alignment confidence level is related to the 
consistence between aligned words and the 
unaligned word number in the phrase alignment 
result. The confidence level could be expressed 
with equation (6). 
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Where, ConL denotes the translation confidence 
level; |ê| is the employed example number; K is the 
chunk number of the input string; AlignConL is 
average alignment confidence level of each chunk; 
TransPercent is weighted translation percentage of 
the input string.  

3 TMEM Building 

There are three components in the TMEM. One is 
domain unrestricted monolingual corpora; one is 
bilingual EB with word alignment information; and 
the final one is bilingual TB with translation 
probability. Monolingual corpora will be used in SL 
chunking and TL generation, while the EB and TB 

will be employed in the whole procedure of input 
sentence chunking, best example set selection and 
translation generation. The word alignment 
information and TB are automatically acquired. In 
this chapter, we give description on how we build 
the EB and TB.  

Example Base EB saves bilingual sentence 
pairs with their word alignment information. An 
inverted example bi-term index is saved in a table to 
speed up the example retrieval process (Table 1). 
The second column shows the related examples’ ID 
and the position of the bi-term in each example. For 
example, bi-term “variation over” occurs in 
example “771” with position 13 and example “776” 
with position 4 and 27.  

value type 28948|6 

variation over 771|13_776|4^27 

Table 1. Bi-term indexing for EB 

The bilingual examples are saved in another 
table with their IDs and word alignment results 
(Table 2). From table 2, we can see the example ID 
is “28948”, the SL and TL parts have been 
segmented, and the word alignment and the 
alignment confidence level which reflect the 
consistence between two TL and SL words have 
been given after the “[A]” mark.  

(ID: 28948); ([SL] Operand/1 is/2 something/3 other/4 than/5 
a/6 value/7 type/8 ./9); ([TL] 操作数 /1 不是/2 数值/3 类型
/4 。/5); ([A] (1:1_0.32); (7:3_0.64); (8:4_0.64); (9:5_0.64).  

Table 2. Bilingual example with word alignment result 

The word alignment results are acquired 
automatically by using following the approach 
introduced in Wang et al. (2001). The precision of 
the word alignment is 88.48%, and the recall is 
76.36% in software domain.  

Term Base TB is automatically exacted from 
EB, it is saved into TMEM for raising the 
performance. TB saves bilingual word sequences 
(terms) and their corpus-dependent translation 
probabilities )~|~Pr( st  (Table 3).  

From the table 3, we can see the SL term 
“action” has three translations in TL: “操作 

SL ( s~ ) TL ( t~ ) Freq )~|~Pr( st  

Action 操作^动作^Action 354^96^59 0.66^0.18^0.11 

action menu “ 动作” 菜单 24 0.96 

Table 3. Term-Base (corpus-dependent translation probability) 



([caozuo], means ‘operation’), “ 动作 （[dongzuo], 
means ‘movement’）, “Action (the same with its 
original form in English, for menu item)”, each with 
frequency “354”, “96” and “59” in the EB  and 
translation probability “0.66”, “0.18” and “0.11”, 
respectively.  

There are two steps in TB extraction. Firstly 
chunk the bilingual EB by following the bilingual 
chunking approach introduced in Wang et al. (2002) 
to get syntactic chunks, and then perform phrase 
alignment on all of the SL chunk sequences by 
following the phrase alignment approach 
introduced in Wang et al. (2001).  

In practice, the phrase pair recorded to TB 
should satisfy requirements of: s~ is not longer than 
5 words; the co-occurrence of s~  and t~  (“Freq” in 
table 3) is higher than 5 (times); and )~|~Pr( st  is 
higher than 0.10. In the experiment, we extract 
14,795 phrase items from 62,844 example pairs 
with 90% of translation precision in software 
domain.  

4 Experiment 

To give the meaningful evaluation result, the 
experiment should answer the questions from users 
that, how much improvement in the quality and the 
efficiency could be expected compare to the 
traditional TMS? To give as fair answer as possible, 
a real localization task is simulated in our 
experiment.  

4.1 Experiment Design 

The EBMTLoc engine is evaluated from two 
aspects: “translation efficiency” and “translation 
assistant quality”. The traditional TMS employed 
for comparison is LocStudio 4.5, which is an 
internal tool of Microsoft for software localization. 
It is a typical TMS that employs full segment 
matching methodology like most of the existing 
TMSs.  

The experiment environments, including the test 
set and the EB of the TMEM are the same to the two 
systems. The EB contains the same 62,844 string 
pairs that from Office 2000 software, and the two 
test set contains totally 400 strings that are 
randomly from Office XP software. The precision 
and the recall of the EBMTLoc EB word alignment 
are 88.48% and 76.36%, respectively, while the TB 

of EBMTLoc contains 14,795 items with 90% of 
precision (see chapter 2).  

The two right most columns in table 4 show the 
conditions of the test set. The “matching ratio” is 
from the “confidence level” of LocStudio, which 
reflects the similarity between the inputs and the 
most similar examples of them in TMEM.  

Table 4. Test set and the translation assistant quality 

4.2 Translation Assistant Quality 

There are two ways in the evaluation of translation 
assistant quality. The first one is relative 
evaluation. Four evaluation groups (one person per 
group) are required to compare the translations 
from the two systems, and mark each test string 
with “T-TMS is better”, “E-Loc is better”, “both 
good” and “both bad” (See column “Assistant 
Quality” in table 4. “T-TMS” is for LocStudio 4.5 
means “traditional TMS”, “E-Loc” is for 
EBMTLoc).  

From the table 4, we can see that EBMTLoc 
shows obviously better result than traditional TMS. 
Especially when consider only fuzzy matching 
cases, in which matching ratio do not reach 100%, 
64.2% of the translations are marked with “E-Loc is 
better”, while the cases of “T-TMS is better” is only 
0.5%.  

The second way in assistant quality evaluation is 
absolute evaluation. All of the suggestions and the 
translations from the two systems will be valued by 
the four evaluation groups with score “-1, 0, 1, 2, 3, 
4” independently (-1 is for “bothersome”; 0 is “no 
help”; 1 is “little help”; 2 is “helpful”; 3 is “very 
helpful”; and 4 is for “perfect”, respectively).  

Figure 3 shows the average scores of the two 
systems. The suggestions and translations from 
EBMTLoc and LocStudio gain 3.44, 3.28, 2.81 and 
2.18, respectively. Both of the results of EBMTLoc 
(3.44 and 3.28) are in the interval between “very 

 Assistant Quality 
Matching 

Ratio Count Per 
T-TMS 
better 

E-Loc  
better 

Both 
good 

Both 
Bad 

==100 207 52% 10 3 192 2 
>= 90 and <100 10 2%   10  
>=80 and <90 14 4%  9 5  
>=60 and <80 56 14%  45 2 9 
>=40 and <60 57 14%  46 1 10 
>=25 and <40 28 7%  15 2 11 

<25 28 7%  9 2 17 
Count 400  10 127 214 49 Total 

Percent  100%  2.5% 31.75% 53.5% 12.25%



helpful” and “perfect”; while the results of the 
LocStudio (2.81 and 2.18) are in the interval 
between “helpful” and “very helpful”. If only 
consider the fuzzy matching cases, the average 
scores are 2.84, 2.52, 1.54, and 0.25 respectively.  

Assistant Quality 
(absolute evaluation)

3.44 3.28
2.81

2.18
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Figure 3.Absolute evaluation in assistant quality 

From both of the absolute evaluation and 
relative evaluation, we can see that the translation 
assistant quality of EBMTLoc is significantly better 
than that of traditional TMS, and such tendency is 
more obvious when consider only the fuzzy 
matching cases, which should be the main target of 
the TMS.  

4.3 Translation Efficiency 

In “translation efficiency evaluation”, each 
evaluation group will be required to translate 
(localize) given text under the help of EBMTLoc 
system first, and then re-translate the re-ordered text 
under the help of traditional TMS, or vice versa. We 
assume that, the translators (evaluation groups) are 
“new hands” when they translate the given text at 
their first time; and when they re-translate it (with 
another tool), they have become “skilled 
translators”, because at this time they become more 
familiar with the input text and the translation.  

Table 5 shows the experiment design and the 
results. The second column “Eva.” shows the 
testing group; the third column shows the test set, in 
which each test set contains 200 sentences 
randomly from Office XP software; the column 
“Time (min)” shows the working time for 
translation. The test with index “5” and “6” are 
performed additionally for confirmation after the 
test “1” to “4” show obvious tendency that 
EBMTLoc shows better efficiency than traditional 
TMS.  

Index Eva. 
Test  
Set 

1st run 
Time 
(min) 

2nd run 
Time 
(min) 

1 G1 T1 E-Loc 60 T-TMS 80 

2 G2 T2 E-Loc 60 T-TMS 80 

3 G3 T1 T-TMS 116 E-Loc 50 

4 G4 T2 T-TMS 165 E-Loc 66 

5 G2 T1 T-TMS 115 E-Loc 50 

6 G3 T2 E-Loc 58 T-TMS 65  
Table 5. Efficiency evaluation 

From the table 5, we can see that, the average 
translation time with EBMTLoc is 59.3 minutes for 
“new hands” and 55.3 minutes for “skilled 
translators”, while it is 132 minutes and 75 minutes 
when with LocStudio. It shows that, EBMTLoc 
contributes to the translation efficiency to both new 
hands (55.1% enhancement) and skilled translators 
(26.3% enhancement).  The enhancement rate to 
skilled translators is different from the one to news 
hand because skilled translators tend to depend less 
on TMS but more on their self knowledge.  

5 Conclusion 

As an attempt at providing a unified statistical 
model for TMS, the model introduced in this paper 
enables TMS to provide a translation result under a 
statistical qualification. As the result, TMS could be 
expected to gain more success in the translation of 
the inputs that there are no similar examples in 
TMEM.  

An integrated statistical model is introduced to 
give a unified statistical qualification in 
example-based input sentence segmentation, phrase 
translation selection, best example set selection, and 
final translation generation.  

A prototype TMS EBMTLoc has been 
developed which adopts a predigested version of 
the proposed model. As a GTMS radically, 
EBMTLoc exploits sub-sentential word sequences 
but not only complete sentences from TMEM to 
enhance the system coverage, and lows down the 
matching unit from sentence to continuous word 
sequences. The translation result could be a 
complete translation, a partial translation, or no 
translation.  

A series of evaluations have been performed, 
including absolute evaluation and relevant 
evaluation for assistant quality and translation 



efficiency evaluation. As the result, the EBMTLoc 
system shows obviously better translation assistant 
quality than traditional TMS, especially to the input 
sentences when there is no very similar example in 
TMEM. Compared to employ the traditional TMS, 
the translation efficiency with the assistance of 
EBMTLoc could be increased by 26.3%, and this 
percentage rises to more than 55.1% when the users 
are unskilled translators.  
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