
Statistical Machine Translation: Rapid Development with Limited
Resources

George Foster, Simona Gandrabur, Philippe Langlais,
Pierre Plamondon, Graham Russell and Michel Simard

RALI/DIRO, Universit́e de Montŕeal
Montreal, Canada

www-rali.iro.umontreal.ca

Abstract
We describe an experiment in rapid development of a statistical machine translation (SMT) system from scratch, using limited
resources: under this heading we include not only training data, but also computing power, linguistic knowledge, programming
effort, and absolute time.

1 Introduction
A subject of current interest in the machine translation
(MT) world, in the United States in particular, is the rapid
development of systems for novel language pairs. This
trend is marked by a number of assumptions. Often, at
least one of the languages in question is taken to be pre-
viously unknown to system developers, who must either
acquire the necessary knowledge and technology or de-
vise methods that will mitigate the effects of their ab-
sence. Similarly, for many of the candidate languages
there exists relatively little in the way of suitable training
material, thus restricting the scope of purely statistical ap-
proaches.

This is quite uncontroversial, and may indeed be
viewed as a welcome counter to excessive reliance on
exceptionally large and ‘clean’ parallel corpora. How-
ever, other limiting factors are less frequently discussed
in this context: the process of training and testing sophis-
ticated translation models is extremely expensive, con-
suming important amounts of cleaning efforts, comput-
ing power, programming effort, and time. This paper re-
ports an experiment one of whose aims was to answer the
following question: “What progress can a small team of
developers expect to achieve in creating a statistical MT
system for an unfamiliar language, using only data and
technology readily available in-house, or at short notice
from external sources?” Options were constrained by the
fact that the source language was Chinese, of which the
development team had no knowledge, that no in-house
Chinese-specific tools existed, and that available com-
puting resources consisted of Pentium-4 class PCs with
a maximum of 1Gb RAM.

This work was conducted within the NIST 2003
machine translation evaluation task,1 specifically the
Chinese-to-English task using the large but limited data

1 http://www.nist.gov/speech/tests/mt/. This and other
URLs cited here are valid as of late July 2003.

set.2 Advantages included ready access to sufficient data,
an automatic scoring mechanism, and the possibility of
comparison with other systems engaged on the same task.

2 The NIST Experience
At the outset, what motivated us to participate in the
NIST evaluation was a desire to learn what was really
involved in putting together a working statistical MT sys-
tem. Deadlines appeared reassuringly distant and we had
a plan to achieve good performance despite the limita-
tions mentioned in the previous section. We put our
hope into a rescoring approach built on top of a roughly
state-of-the-art translation model such as IBM Model 4.
Rescoring has been extensively used in automatic speech
recognition (ASR) on n-best lists or word-graphs (Ort-
manns et al., 1997; Rose and Riccardi, 1999), and has
more recently been proposed for use in SMT (Och and
Ney, 2002; Soricut et al., 2002; Ueffing et al., 2002).

The first step was to install the necessary packages,
train translation and language models, and begin work on
decoders for IBM Model 4. We also designed a rescor-
ing infrastructure that could host any component able to
return a score on a source-target sentence pair. Up to this
point we were on familiar territory, since the work was
based on a clean and well aligned bitext derived in-house
from the Canadian Hansard.

By the time the training corpora were made available,
a good deal of code had been written, if not fully tested.
We were confronted by an obvious corollary of the statis-
tical MT paradigm: a word-based approach to SMT can
only be neutral with regard to the languages under con-
sideration to the extent that adequately tokenized training
and test corpora exist. Section 3 describes the difficulties
we experienced in this area.

2 Details of the corpora can be found viahttp://www.nist.gov/
speech/tests/mt/resources/.

As time quickly passed we rapidly learned the sec-
ond lesson of this exercise: building a statistical MT en-
gine, even largely from pre-existing components, is by
no means straightforward. Several unexpected problems
arose which in retrospect are quite interesting. First,
training very large models with publicly available pack-
ages is feasible only to the extent that the correspond-
ing memory demands can be met (see section 4.1). Sec-
ond, dealing with multiple decoders inevitably compli-
cates development. However, thanks to the multiple de-
coder strategy suggested by Germann et al. (2001) we
managed to get a decent IBM 4 decoder. Third, we ob-
served that decoding in itself involves a compromise be-
tween quality of results and the length of the delay before
results are emitted: tuning for performance is a delicate
and time-consuming process.

The immediate aim of the NIST exercise we partic-
ipated in was to translate 919 Chinese sentences (length
varying from 5 to 101 words, with an average of 29) into
English. Additionally, the rescoring strategy required the
translation of some 20,000 sentences for the purpose of
training the rescoring layer. In the event, slower than ex-
pected progress here meant that rescoring could not in
fact be applied before the NIST submission deadline ar-
rived, and the 919 test sentences were submitted in their
raw state.

In the hope that the lessons learned during this expe-
rience may benefit other teams tempted to engage in the
exercise of building a statistical MT system from scratch,
the following sections are an attempt to describe what
to expect at each stage in the development of an SMT
engine. More precisely, section 3 discusses the non-
rewarding but vital task of preprocessing the available
corpora. The different decoders we implemented are pre-
sented in section 4 and their performance compared in
section 5. In the calmer post-NIST environment a second
experiment was conducted in order to measure the impact
of the training corpus on translation performance. We re-
port the result of this study (referred in the following as
the take2 experiment) in section 6. Finally, section 7
summarizes the major lessons learned during this exer-
cise.

3 Corpus Preprocessing
Rather than the simple formality we had hoped for, cor-
pus preparation turned out to demand almost one man-
month of effort. This excludes time spent on the several
training runs which had to be aborted when preprocess-
ing errors were discovered. The lesson here is that this
phase of work requires realism concerning the initial state
of the data, a judicious mixture of automatic and semi-
automatic approaches, and either close attention to qual-
ity control or being prepared to repeat the process until it

is correct. Major difficulties are briefly outlined below.

3.1 Collection

Training data for the NIST task, in the form of a range of
Chinese-English corpora, was distributed by the Linguis-
tic Data Consortium (LDC).3 Nevertheless, the collection
process was not entirely trivial, since a certain amount of
interaction with the LDC was necessary before a defini-
tive list of texts could be obtained.

Individual corpora were supplied in a surprising vari-
ety of formats; this had the effect of multiplying the ef-
fort expended on conversion. Similarly, since the original
Chinese texts were produced in Hong Kong, Taiwan and
the PRC, the variations in character set and encoding em-
ployed in the different language communities also posed
some problems.

3.2 Segmentation and Tokenization

The treatment of the English texts was accomplished with
the help of existing in-house facilities. As expected, most
of the Chinese texts lacked annotations indicating sen-
tence and word boundaries, and so mechanisms were de-
vised to add these. Sentence boundaries were identified
by a table-driven scanner sensitive to sentence-final punc-
tuation.

Word boundaries were inserted by means of a re-
vised version of themansegment program supplied by
the LDC. Its basic idea is to employ a unigram word
model within a dynamic programming framework to pro-
duce the most probable token segmentation over a given
sequence of characters. It was found that performance
in terms of both speed and accuracy could be improved
significantly by presegmenting the initial character se-
quence in order to isolate punctuation characters, and ap-
plying the probabilistic component only between these
positions.

3.3 Sentence Alignment

For the NIST exercise (take1), only pre-aligned texts
were used. Some regions acknowledged by the supplier
to be potentially unreliable were omitted. No systematic
manual checking of alignment quality was performed,
and the few instances of obvious errors (largely due to
faulty segmentation) which came to our attention were
ignored. We call this corpus thetake1 corpus.

When time permitted, following the NIST exercise,
we conducted a second experiment in which non-aligned
corpora were automatically aligned at the sentence level
by an in-house aligner. In the hope of improving the qual-
ity of the bitext, we provided the aligner with a bilingual
dictionary extracted from the translation model trained
on thetake1 corpus, frequent and likely associations ac-

3 http://www.ldc.upenn.edu/

cording to the model being retained as entries in the lex-
icon. Certain alignments were filtered out: those (n-0,
0-n) with empty source or target, and those in which the
disparity between source and target lengths exceeded an
ad hoc threshold.

3.4 Sentence Length

The program selected for training translation models (see
section 4) places a limit of 40 tokens on the length of a
source-language sentence. Tokenization of the training
corpus produced a high proportion of sentences longer
than this, and a number of solutions were considered.
Note that the 40-token limit is present for good reasons;
while it could in principle have been raised or removed al-
together, this would have led to increased memory usage,
an area in which performance was already borderline.

Rather than arbitrarily discarding or truncating the af-
fected data it was decided for thetake1 exercise to split
each long source or target sentence into a sequence of
‘pseudo-sentences’, none of which would exceed 40 to-
kens in length, to be presented to the training component
individually.

Consistent with the knowledge-poor context of this
work, no Chinese parser or chunker was available to
support this process. Instead, a heuristic approach was
adopted, in which input sentences were split either im-
mediately before or immediately after certain classes of
punctuation; the process also took into account different
‘strengths’ of punctuation, and aimed to minimize vari-
ation in the length of the resulting pseudo-sentences. In
the rare cases where no suitable punctuation existed, sen-
tences were split at an arbitrary token boundary.

For thetake2 experiments, however, we decided to
simplify this process by discarding segment pairs for
which the source sentence was longer than 40 words.

4 Translation Engines
The problem of statistical translation can be viewed as
an optimization problem where, given a source string
F = 〈f1, . . . , fj〉, a translation modelPtm(·) and a lan-
guage modelPlm(·), we try to find a target stringE =
〈e1, . . . , ei〉 that maximizes the joint probability

Plm(E) ∗ Ptm(F |E).

As such, it is an instance of the noisy channel approach
(Brown et al., 1993), in which an output signal is ‘de-
coded’ in order to recover the original input; algorithms
which perform this task are known as decoders.

The probabilitiesPlm(·) and Ptm(·) are derived by
training on monolingual and bilingual corpora. The lan-
guage model used in this work was a trigram model
trained by an existing in-house package, and the trans-
lation models considered were the IBM model 2, also

trained using an in-house tool, and IBM model 4, trained
using the GIZA++ package (Och and Ney, 2000).4

One important choice for rescoring is how to repre-
sent the sets of translations that are output from the base
model. There are at least two possibilities: n-best lists—
explicit enumerations of the candidate translations—and
word graphs (Ueffing et al., 2002), which are capable of
storing much larger sets of translations implicitly. Word
graphs are potentially more powerful than n-best lists, but
they are also more complex to implement. Furthermore,
they constrain the rescoring layer to respect the factoriza-
tion inherent in the graph. Because of these problems, we
chose a simple n-best list representation.

4.1 Crucial Details

It is certainly näıve to assume that any package as com-
plex as GIZA++ (which is nevertheless exceptionally well
written and documented) can be ready for full-scale use
immediately upon installation. In retrospect, we esti-
mate that around 3 weeks were required to master in-
put/output formats, including the time to write wrappers
for the model data structures. Establishing the limits of
the package (maximum input size, etc.) took at least an-
other week of monitoring, excluding computation time.

We soon found that using GIZA++ to train a trans-
lation model on a corpus of more than one million sen-
tence pairs was impractical. Beyond this point, memory
is saturated and the system is forced to swap, drastically
increasing the time required.

IBM model 4 conditions the distortion probabilities
on the class of the centroid source and target words.
To acquire these classes, we used the programmkcls.5

In contrast to the bilingual procedure described by Och
(1999), for which no ready-made solution was immedi-
ately available, this permits only the creation of mono-
lingual classes. Using this program, source and target
vocabulary were processed into 50 classes; this required
around ten hours of computation.

In total, the full training of an IBM model 4 on a cor-
pus of around one million sentence pairs requires two to
three days of computation on a 1GB memory Pentium 4
desk computer.

4.2 Multiple Decoders

Three different decoders, all previously described in the
statistical MT literature, were implemented. One advan-
tage of having several decoders at one’s disposal is that
certain bugs may be detected by comparing the trans-

4 http://www-i6.informatik.rwth-aachen.de/

Colleagues/och/software/GIZA++.html. GIZA++ also
provides IBM model 2, but it was felt that faster progress could be
made with the more familiar alternative.

5 http://www-i6.informatik.rwth-aachen.de/

Colleagues/och/software/mkcls.html

lations they produce (and this did in fact occur). More
central to the rescoring strategy adopted for this work is
the fact that differences in translation quality arising from
the individual characteristics of the decoders can be ex-
ploited, as described in section 5.2.

4.2.1 Greedy Decoder

The first decoder we tried (referred to here asGREEDY)
was the greedy decoder described in Germann et al.
(2001). This approach starts with an initial guessE0

which it iteratively tries to enhance (i.e., transform to a
better scoring string) by applying a series of operators,
mainly insertions, deletions or replacements in source
words. After each modification is made the resulting
string is scored, and the best result at iterationi becomes
the next sourceEi+1. Iteration stops when no improve-
ment is made, i.e. whenEi+1 = Ei . Since we are working
with n-best lists, we keep theN best generated hypothe-
ses (including intermediate results).

The algorithm was implemented almost exactly as de-
scribed, with only a slightly different way of choosing
the fertility-0 list (the list of words that can be ‘sponta-
neously’ inserted into the source). In addition to using
fertility 0 probability, word frequency was also used as a
criterion to choose the words in the list: these were se-
lected exclusively from the 10% most common words in
English.

Although the ISI REWRITE DECODER6 was avail-
able, using it would have implied training a new lan-
guage model with the CMU-Cambridge Statistical Lan-
guage Modeling Toolkit (Clarkson and Rosenfeld, 1997),
rather than taking advantage of an existing model: since
the algorithm is simple, it was re-implemented.

4.2.2 Stack-based Decoder

The second decoder, referred to asFST, used a stack-
based approach (Germann et al., 2001) in which a trans-
lation is seen as a path in a probabilistic FST, with states
being ‘translation contexts’ and transitions being simple
alignments with their scores.

The translation context associated with a state con-
tains all information needed to obtain the list of align-
ments that are possible from that state, that is, the align-
ments that can be added to the path ending at that state.
It consists mainly of the two last target words of the path
(needed by the trigram language model), the quantities
cρi andclass(eρi) of Germann et al. (2001) (needed for the
distortion component of Model 4), and the set of source
words already covered.

The initial state is the empty alignment, using none
of the source or target words. Then, from any given state
there are transitions for every possible single alignment
from that state, each transition leading to a new state

6 http://www.isi.edu/licensed-sw/rewrite-decoder.

translation context. We reach a final state when the align-
ment is complete. The score of the alignment is the sum
of the transition weights.

The FST is traversed in a best-first manner. Unfortu-
nately, the search problem is NP-complete, so the space
must be reduced. For that, we used an-dimensional beam
table for comparing and pruning hypotheses. Then di-
mensions of the table divide the paths into subsets of
paths (each table cell corresponding to a distinct subset)
expected to be directly comparable. While expanding a
current path (adding all possible transitions to that path)
the out paths formed are directly compared with their sub-
set’s current best, and dropped if their score falls outside
the beam. An alternative to using a beam is to set a max-
imum number of paths.

In our case the table had three dimensions, the source
path length (number of source words covered by the
path), the target path length (number of target words
used), and the sum of the logarithm of the frequency of
the source words already used (a crude approximation to
the joint probability of those words). This last heuristic
was introduced as a normalization in order to moderate
the strong influence that frequent words in the training
corpus tend to have at translation time. This means that
we only compare paths using the same number of source
and target words, and whose source words have similar a
priori probabilities.

4.2.3 Inverted Alignment Decoder

In an attempt to gauge the influence of both decoders and
models on the overall translation quality, we also imple-
mented a version of the inverted alignment search algo-
rithm described by Nießen et al. (1998) for IBM 2 mod-
els. The basic idea of this method is to expand hypothe-
ses along the positions of the target string while progres-
sively covering the source. The algorithm allows any tar-
get word to be aligned to none, one or several consecu-
tive source words (up to a maximum that was set to 3 in
the reported experiments); thus, this search accounts for
the notion of fertility which is not explicitly captured by
IBM 2 models.

A hypothesis is fully determined by four parame-
ters: the source and target positions, the source cover-
age in words and the target word found at the target po-
sition. Therefore, the search space can be represented
as a 4-dimensional table, each item in the table contain-
ing backtracking information and the hypothesis score.
We extended the algorithm in a straightforward manner
to account for a trigram language model instead of the
bigram language model originally proposed. We exper-
imented with several pruning strategies and report (in
table 2) results from two configurations illustrating the
usual compromise between decoding speed and quality:
IBM 2-FAST applies stringent pruning filters and trans-

lates a 20-word sentence within a few seconds;IBM 2-
SLOW performs almost no filtering and, with luck, trans-
lates a 20-word sentence in approximately half an hour
on our standard Pentium-4 computer.

4.3 Costs of Diversity

While there are advantages in using several decoders
(Germann et al., 2001), there are also obvious drawbacks
where time is concerned; these are summarized in ta-
ble 1. There is an element of arbitrariness in these es-
timates, since other tasks were being carried out concur-
rently. Nevertheless, we believe it is worth trying to dis-
tinguish coding time from tuning time. The former is the
time required to produce a decoder that runs on several
benchmarks with no obvious bugs either in the code or
in the output produced. The latter is the time required to
optimize the code and to devise a general filtering strat-
egy that does not exclude too many good hypotheses. In
practice, of course, the two are interrelated, optimization
of the code sometimes coming at the price of revisions to
data structures, and so on.

A working but unfinished decoder can be had in two
to three weeks of fairly pleasant work. A final, stable,
version tends to take as much time again, giving a total of
something over one month. Note that in order to accom-
modate a different language pair, it would probably be
necessary to adjust certain tuning parameters; part of the
work in the second phase of decoder development would
therefore have to be repeated.

As one might expect, development of the greedy de-
coder was the most straightforward, and creating a de-
coder for an IBM Model 2 is slightly faster than doing so
for the more complex Model 4. In total, preparation of
the decoders required over three man-months of effort.

decoder coding tuning

GREEDY 2 1
FST 3 3
IBM2 2 3
total 7 7

Table 1: Approximate number of man weeks of de-
velopment (coding + tuning) of the different decoders
used in this study.

5 Comparing Decoders
In order to compare the decoders, we ran 4 translation
sessions; each of these consisted in translating 100 sen-
tences (of at most 20 words, and naturally not seen at
training time) randomly selected from the texts provided
for the NIST exercise.

Table 2 shows the results in terms of word error rate

(WER) and NIST scores as returned by themteval pro-
gram.7 Two values returned by this package are actually
reported: theNIST score of the candidate, and its normal-
ization by theNIST score obtained by the reference itself
(NIST%). These three measures are reported for both the
best translation (column 2) and the 100 best translations
(column 3) in which case the best value of each score over
the 100-best translations is the one reported.

5.1 The Bigger the Better?

Several patterns emerge from these figures. First, we see
a great difference in performance over the kind of sen-
tences being translated. Reasons for the notably bad re-
sults obtained onsinorama andxinhua are addressed in
section 5.3.

Decoder performance also varies greatly. The greedy
decoder seems to be the weakest; this was to be expected
since the search space considered by this method is fairly
small and since the operations described by Germann
et al. (2001) were designed for a different pair of lan-
guages (time did not permit us to investigate operations
other than those described by the authors). Interestingly,
the fast version of the IBM Model 2 decoder yields bet-
ter results than the greedy decoder relying on Model 4.
On the other hand, if time is not a concern better trans-
lations can be obtained with theFST method: extending
the search space is obviously worth the effort. This is
also confirmed by the fact that theIBM 2-SLOW method
outperforms itsIBM 2-FAST counterpart. It is also worth
noting that, in this setting, Model 4 provides better results
than Model 2.

Finally, significantly better results can be expected
if we consider even a fairly small number of alternative
translations, in this case one hundred. For example, a po-
tential gain of 17% was observed usingIBM 2-SLOW on
thehansard corpus.

5.2 Benefits of Diversity

We mentioned in section 4.3 that diversity in approaches
involves certain costs, but fortunately it also yields bene-
fits. Since each decoder has its own characteristics, some-
thing may be gained by combining their outputs. The fol-
lowing experiment demonstrates this: we merged the 25
best translations produced by each decoder for a given
sentence, thus producing a 100-best translation compa-
rable in size to those produced individually by each de-
coder (although several translation might be identical).
The WER measured on this merged session is systemati-
cally lower for each corpus than the lowest of theWERs
measured for each decoder on each corpus. The absolute
improvement inWER (over the minimum observed) is 4·7
for hansard (48·30 instead of 53·03), 4·3 for un, 1·8 for

7 http://www.nist.gov/speech/tests/mt/resources/

scoring.htm

1-best 100-best
decoder WER NIST NIST% WER NIST NIST%

hansard
GREEDY 68·93 2·41448 24·20 61·71 3·68806 37·00

IBM 2-FAST 65·87 3·22954 32·30 59·22 4·42125 44·20
FST 62·86 4·19043 41·90 55·24 5·10464 51·00

IBM 2-SLOW 63·85 3·85769 38·50 53·03 5·28764 52·80
un

GREEDY 70·35 2·76181 26·10 62·97 3·98415 37·70
IBM 2-FAST 69·80 3·19254 30·20 63·04 4·38660 41·50

FST 65·57 4·56739 43·20 57·18 5·80536 54·90
IBM 2-SLOW 68·77 4·39036 41·50 58·65 5·77882 54·60

sinorama
GREEDY 86·89 0·79860 7·80 82·16 1·37465 13·40

IBM 2-FAST 87·55 1·09399 10·30 82·45 1·68875 15·80
FST 88·97 1·72001 16·10 85·40 2·35273 22·00

IBM 2-SLOW 87·56 1·46096 13·70 81·55 2·44893 23·00
xinhua

GREEDY 89·64 1·30970 12·70 85·10 2·00496 19·40
IBM 2-FAST 91·09 1·08899 10·30 85·90 1·86932 17·70

FST 90·82 1·08510 10·30 87·98 1·56167 14·80
IBM 2-SLOW 89·13 1·34132 12·70 83·86 2·29718 21·80

Table 2: Decoder performance on four types of corpus.

sinorama and 0·15 for xinhua.
Note that combining the outputs of several translation

engines is a natural idea that was used some years ago in
the work of Frederking et al. (1994).

5.3 Results Explained

The disappointingly mixed results shown in table 2 raise
the question of how the pattern seen there is to be ex-
plained. Is the wide divergence between corpora due to
some hidden defect in the process by which models were
trained or applied, or does it rather reflect an unsuspected
variation in some properties of the corpora themselves?

In view of the multiple engine strategy adopted for
this work, training of IBM models 2 and 4 being per-
formed by two different packages and decoders being
written by two different co-authors, we felt confident in
rejecting the hypothesis of major bugs in the process.

In order to investigate other potential reasons for the
cross-corpus results, we analysed the corpora further.
The poor performance on thesinorama andxinhua cor-
pora may be related to the fact that, as table 3 illustrates,
the train/test data mismatch is more significant on these
corpora than on the others: ignoring entries on the di-
agonal, it can be seen from the perplexities that models
trained on the ‘good’un andhansard corpora tend to per-
form better than those trained on the ‘bad’sinorama or
xinhua. Conversely, all models tend to perform better on
the ‘good’ corpora than the ‘bad’.

Another possible explanation for thesinorama and

test
train hansard sinorama un xinhua

hansard 20·14 451·68 296·10 1005·51
sinorama 769·53 33·85 1058·98 1970·16

un 500·14 860·34 25·01 1007·62
xinhua 1393·69 1269·27 856·07 15·44

Table 3: Language model perplexities obtained by
training and testing on various corpora

xinhua results is their poor target vocabulary coverage, as
illustrated in table 4. The target vocabulary used for de-
coding is obtained by grouping target words coming from
two sources: those directly predicted from source words
through the translation table of the model, and the fertil-
ity 0 words (similar to the fertility-0 list ofGREEDY). A
translation can only be formed with these words.

used complete
corpus OOV rank OOV rank

hansard 11·29 1·4 0·29 44·9
sinorama 29·80 1·8 3·81 143·5

un 8·21 1·3 0·53 25·4
xinhua 43·31 2·1 4·06 162·9

Table 4: Target vocabulary coverage.

Table 4 gives the average rank in the translation ta-
ble of the reference words (expected translation) and the
percentage of reference words that are not covered by the

target vocabulary (out-of-vocabulary orOOV). Theused
section refers to the vocabulary that was actually used for
decoding. Thecompletesection corresponds to a com-
plete vocabulary, which is much too large to be used in
practice. We see that bothsinorama and xinhua had a
significant portion ofOOV words in theusedtarget vocab-
ulary. However, thecompleteresults show that even when
these words are covered by the complete vocabulary, their
rank in the translation table is so low that they most prob-
ably would not have been picked anyway. These results
seem to indicate that it is much more difficult to build a
correct target vocabulary forxinhua andsinorama.

6 Influence of the Training Corpus
After the end of the NIST exercise, we conducted a sec-
ond experiment in order to analyse the influence of the
training corpus. Since practical considerations precluded
training a single large model on all the available corpora,
we trained several moderately-sized translation models
on each of them. Their main characteristics are summa-
rized in table 5, along with their performance on the NIST
translation task. We also conducted some experiments in-
volving extracts from the corpora, the details of which are
described below.

take1 is the corpus used for the NIST exercise, contain-
ing a preponderance of sentences from theun cor-
pus: 934,508, plus 205,368 from thehansard cor-
pus, 50,378 fromsinorama, and 35,234 fromxinhua.

MIX is another experiment where we gathered a total
of 166,529 sentence pairs consisting of those of the
fbis, thexinhua and thesinorama corpora, plus the
first 50,000 pairs of thehansard corpus.

HIGH is an experiment where we used the same train-
ing corpus as theMIX experiment, but where the de-
coder was allowed to explore a larger space.

We used a refined version of the FST decoder, with
tunings adjusted so that translating a sentence took 3
minutes on a 1Gb Pentium 4 computer, regardless of its
length. Results are shown in table 5; only the NIST score
is given, as the evaluation was performed by the auto-
mated procedure that NIST maintained after the closing
date of the official evaluation in order to allow further de-
velopment and investigation by participants.

Several interesting observations can be made from ta-
ble 5. First, it is clear that the choice of the corpus has a
clear impact on measured performance: the worst corpus
to train on washansard while the best wasfbis.

Second, a small corpus of within-domain training text
is preferable to a larger out-domain one. This can be seen
by comparing the size of thefbis andhansard corpora,
the latter producing a much lower score than the former

corpus type |lm| |tm| NIST

fbis reports 68,848 36,586 5·0288
sinorama magazine 103,250 53,877 4·2273

un reports 720,000 662,360 4·0975
xinhua news 65,000 39,364 3·7751

hansard hansards 351,514 335,9103·5069

MIX mixed 166,529 166,529 5·6875
HIGH mixed 166,529 166,529 5·5938
take1 mixed 818,937 1,225,488 4·3437

Table 5: NIST score of the translation produced as a
function of the training corpus. The|lm| column indi-
cates the number of English sentences from each cor-
pus used for training the language model;|tm| indi-
cates the number of pair of sentences of each corpus.

even though it is 6 times bigger. Here of course we as-
sume that the test sentences resembledfbis more closely
thanhansard .

A third remark can be made concerning the mixed
experiments. Clearly, mixing several training corpora (at
least for this task, and for in the proportion used) is fruit-
ful. We measured an absolute increase of the NIST score
of 0·6 compared to the best score obtained for an indi-
vidual type of corpus (fbis). This being said, we do not
know exactly how much could be gained by training a
translation model on a much larger corpus.

Finally, from the several experiments carried out on
mixed corpora, it is worth pointing out that the better
model probabilities achieved by increasing the number
of hypotheses considered are not reflected in higherNIST

scores; we observed a decrease of 0·1 from MIX to HIGH.
To the extent that the NIST metric is accurate, this sug-
gests that the models used are somehow inadequate.

7 Conclusions
In recent years there has been significant progress in nu-
merous fields of natural language processing (NLP), such
as automatic speech recognition, machine translation, in-
formation retrieval, etc. This progress is in part due to the
introduction of statistical methods and machine learning
techniques, combined with greater accessibility of data
and low-cost computational power. Moreover, a grow-
ing number of out-of-the-box, often open-source, tech-
nology kits, such as statistical machine learning libraries,
have become available. In this context, limits on time and
resources represent smaller obstacles to building reliable
and useful NLP applications than they have in the past.

However, as our current work suggests, the process of
building these applications is not yet as painless and ef-
fortless as we could hope. In our attempt to build a SMT
system from scratch for an unfamiliar language, using
widely available corpora, toolkit for training translation
models, and published decoding algorithms, we encoun-

tered numerous unexpected difficulties. The main lesson
we learned is that essential practical aspects of the pro-
cess, time consuming although of little inherent scientific
interest, often become the bottleneck.

First, training corpora, although available in large
quantities, often require a significant amount of work
even when they are ostensibly clean: inconsistent and in-
correct annotations and corrupt or incomplete data im-
posed some frustrating delays. Second, generally known
decoding techniques and heuristics cannot be simply ap-
plied without extensive experimentations with parame-
ters for accuracy/runtime trade-offs.

References
Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, and

R. L. Mercer (1993). The Mathematics of Statistical
Machine Translation: Parameter Estimation.Compu-
tational Linguistics 19(2), 263–311.

Clarkson, P. and R. Rosenfeld (1997). Statistical Lan-
guage Modeling using the CMU-Cambridge Toolkit.
In Eurospeech’97, Volume 5, pp. 2707–2710.

Frederking, R., S. Nirenburg, D. Farwell, S. Helmre-
ich, E. Hovy, K. Knight, S. Beale, C. Domashnev,
D. Attardo, D. Grannes, and R. Brown (1994). Inte-
grating Translations from Multiple Sources within the
Pangloss Mark III Machine Translation System. In
Proceedings of the First Conference of the Associa-
tion for Machine Translation in the Americas (AMTA),
Columbia, pp. 73–80.

Germann, U., M. Jahr, K. Knight, D. Marcu, and
K. Yamada (2001). Fast Decoding and Optimal De-
coding for Machine Translation. InProceedings of the
39th Annual Meeting of the Association for Computa-
tional Linguistics, Toulouse, pp. 228–235.

Nießen, S., S. Vogel, H. Ney, and C. Tillmann (1998).
A DP based Search Algorithm for Statistical Machine
Translation. InProceedings of the 36th Annual Meet-
ings of the Association for Computational Linguistics
and the 17th International Conference on Computa-
tional Linguistics, Volume 2, Montreal, pp. 960–967.

Och, F. J. (1999). An Efficient Method for Determin-
ing Bilingual Word Classes. InNinth Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL), Bergen, Norway, pp. 71–
76.

Och, F. J. and H. Ney (2000). Improved Statistical Align-
ment Models. InProceedings of the 38th Annual Meet-
ing of the Association for Computational Linguistics,
Hong Kong, pp. 440–447.

Och, F. J. and H. Ney (2002). Discriminative Training
and Maximum Entropy Models for Statistical Machine
Translation. InProceedings of the 40th Annual Meet-

ing of the Association for Computational Linguistics,
Philadelphia, pp. 295–302.

Ortmanns, S., H. Ney, and X. Aubert (1997). A Word
Graph Algorithm for Large Vocabulary Continuous
Speech Recognition. Computer Speech and Lan-
guage 11(1), 43–72.

Rose, R. C. and G. Riccardi (1999). Automatic Speech
Recognition using Acoustic Confidence Conditioned
Language Models. InProceedings of the 6th Euro-
pean Conference on Speech Communication and Tech-
nology (EUROSPEECH), pp. 303–306.

Soricut, R., K. Knight, and D. Marcu (2002). Using a
large monolingual corpus to improve translation accu-
racy. InProceedings of the Conference of the Associa-
tion for Machine Translation in the Americas (AMTA-
2002), Tiburon, CA.

Ueffing, N., F. Och, and H. Ney (2002). Generation of
Word Graphs in Statistical Machine Translation. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 156–
163.

