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Abstract

Structural divergence presents a challenge to the use of syntax in statistical machinetranslation. We
address this problem with a new algorithm for alignment of loosely matched non-isomorphic
dependency trees. The algorithm selectively relaxes the constraints of the two tree structures while
keeping computational complexity polynomial in the length of the sentences. Experimentation with
a large Chinese-English corpus shows an improvement in alignment results over the unstructured

models of (Brown et al., 1993).

1 Introduction

The datistical approach to machine trandation,
pioneered by (Brown et al., 1990, 1993), estimates
word to word trangdation probabilities and sentence
reordering probabilities directly from alarge corpus
of parallel sentences. Despite their lack of any
internal representation of syntax or semantics, the
ability of such systemsto leverage large amounts of
training data has enabled them to perform
competitively with more traditiona interlingua
based approaches. In recent years, hybrid
approaches, which am at applying statistica
models to structural data, have begun to emerge.
However, such approaches have been faced with the
problem of pervasive structural divergence between
languages, due to both systematic differences
between languages (Dorr, 1994) and the vagaries of
loose trandationsin real corpora.

Syntax-based statistical approaches to alignment
began with (Wu, 1997), who introduced a
polynomial -time solution for the alignment problem
based on synchronous binary trees. (Alshawi et al.,
2000) extended the tree-based approach by
representing each production in pardld
dependency trees as afinite-state transducer. Both
these approaches learn the tree representations
directly from parallel sentences, and do not make

allowance for non-isomorphic structures. (Yamada
and Knight, 2001, 2002) model trandation as a
sequence of operations transforming asyntactic tree
in one language into the string of the second
language, making use of the output of an automatic
parser in one of the two parallel languages. This
alows the model to make use of the syntactic
information provided by treebanks and the
automatic parsers derived from them. While we
would like to use syntactic information in both
languages, the problem of non-isomorphism grows
when trees in both languages are required to match.
The use of probabilistic tree substitution grammars
for tree-to-tree alignment (Hajic et d., 2002) alows
for limited non-isomorphism in that n-to-m
matching of nodes in the two trees is permitted.
However, even after extending this model by
allowing cloning operations on subtrees, (Gildea,
2003) found that parallel trees overconstrained the
alignment problem, and achieved better resultswith
atree-to-string model using oneinput tree than with
atree-to-tree model using two.

In this paper we present a new approach to the
alignment of paralel dependency trees, allowing
the tree structure to constrain the aignment at the
high level, but relaxing the isomorphism constraints
as necessary within smaller subtrees. The algorithm
introduced in this paper addresses the alignment
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task on its own, rather than viewing it as a part of a
generative translation model. The algorithm uses
the paralel tree structure to iteratively add
constraints to possible aignments between the two
input sentences. In each iteration, the algorithm
first estimates the word-to-word trandation
parameters, then computes the scores of a heuristic
function for each partial aignment, fixes the more
confident partial aignments, and re-estimates the
tranglation parametersin the next iteration.

Wefirst give aformal definition of the alignment
problem and introduce the iterative framework of
the algorithm in section 2. Then we explain the
usage of dependency trees and two heuristic
functionsin sections 3 and 4. The formal algorithm
and an example for illustration are given in sections
5 and 6. The alignment results are evaluated in
section 7.

2 TheFramework

21 TheAlignment Problem

Mathematically, the machine trandlation task can be
viewed as a noisy channel. Given the task of
translating a foreign language sentence to English,

P(e)P(f |e)
P(f)

€ are source and target language sentences. We

want to find e =argmaxP(e)P(f |e) . The

we have: P(e| f) = where f and

conditional probability part of the right hand sideis
usually referred to as the trandation model (TM).
During the construction of a machine trandation
pipeline, the alignment problem is usually handled

as part of the TM and P(f |e) =) P(f,ale),

where a isany possible aignment between e and
f . This approach requires a generative tranglation
model.

However, when the alignment problemis viewed
on its own, a generative model is not necessary. In
other words, we can ssimply maximizeP(a|e, f)
using a conditional model. More straightforwardly,
the alignment problem can be defined as Definition
(1), which is equivalent to the alignment problem
definition in (Och and Ney, 2000):

Here, f i and eaj are words in the source and

target language sentences f and e, respectively. 0

Definition (1)
Foreach f; e f ,findalabeling e, ,

where €, € eu{0}

stands for the “empty symbol”, which means f j

could be aligned to nothing. This definition does not
allow multiple English words being aligned to a
same foreign language word.

2.2 Algorithm Outline

We introduce the framework of the alignment
algorithm by first looking at how the IBM models
handle aignment. In Model 1, al connections for
each foreign position are assumed to be equally
likely, which implies that the orders of the wordsin
both sentences do not matter. Model 2 more
redistically assumes that the probability of a
connection depends on the position which it
connects to and on the length of the two strings. In
Models 3, 4 and 5, the foreign language string is
devel oped by choosing for each word in the English
sting, first the number of words in the foreign
language string it will generate, then the identity of
each foreign language word, and finaly the
positions that these foreign language words will
occupy. Briefly, Model 1 removes al the
positioning information from the sentence pair and
can be viewed as a “bag of words’” model. And
starting with Model 2, word positioning
information is gradually added.

We do not have to model word positioning
information the way Models 2 to 5 did if we can
find an dternative source for positioning
information. Syntactic structures offer a promising
choice. We use automatic syntactic parsers to
produce the parallel unaligned syntactic structures:
(Collins, 1999) for English, (Bikel, 2002) for
Chinese. The syntactic trees model the interaction
between words within one language, instead of
viewing them as alinear sequence. If two syntactic
trees are partially aligned, the freedom of alignment
for therest of the unaligned nodesin thetwo treesis
restricted by the aligned nodes, and these unaligned
nodes are no longer free to be aligned to any
position in the counterpart sentence.

Observing this, an iterative agorithm for MT
alignment that bootstraps between statistical
modeling and the parallel tree structures can be
constructed. The following description of the



algorithm views the aignment problem as a
labeling task as mentioned in Definition (1):

Step 0. Unfix al the labeling for f; except the

root; initiaize the two trees for e and f as

the only tree pair.

Step 1. Train a statistical translation model on all
the tree pars to acquire word-to-word
trandation probabilities. The tree pairs are
used as “bags of words’ in this step and a
statistical model such as IBM Model 1 can be
used.

Step 2. Compute the labeling for all unfixed nodes.
Use a heuristic function to select confident
labelings, and merge these labelings into the
fixed labeling set.

Step 3. Project the fixed labeling set back onto the
English and foreign language tree structures as
fixed nodes

Step 4. Partition the both the English and foreign
language trees with the fixed nodes, producing
aset of “treclet” pairs.

Step 5. Go to Step 1 unless enough nodes fixed

We call theresulting treesfrom atree partitioning
operation “treelets’ instead of “subtrees’ since they
do not necessarily go down to every leaf. An
example of a tree partition operation is shown in
Figures laand 1b.

jumps
~—\
fox over

% —_—
dog
The quick brown

—7

the lazy

Figurela
“The quick brown fox jumps over the lazy dog.”

Figure1b

Partitioning by fixing “fox” “dog” and “jump”

fox  jumps

7

The quick brown over

dog
the lazy

In each iteration of the algorithm, some unfixed
node pairs are fixed. As the algorithm walks
through the iterations, we have an increasing
number of fixed node pairs, together with
increasingly fine-grained treelet pairsin step 4. The
algorithm stops when enough labels are fixed.
Overadl, each foreign word is free to be aligned to
any English word initialy. As the agorithm
continues, both the foreign and the English treelets
get smaller in size and the complexity of labeling is
reduced.

3 Using Dependency Trees

Thisframework of alignment utilizestree structures
to provide the positioning information. At a glance,
phrasal structure trees (treebank style trees) seemto
be a natural choice. However, phrasal structure
trees have two types of nodes, namely nonterminals
and lexical items. The projected |abelings dways go
to the lexica itemswhile the domain information is
stored in the nonterminas. It is difficult to
determine how to partition a phrasal structure tree.
To solve this problem, we use dependency trees.

In addition, the dependency representation has
the best phrasal cohesion properties. The percentage
for head crossings per chance is 12.62% and that of
modifier crossings per chance is 9.22%, according
to (Fox, 2002).

Dependency trees can be constructed from
phrasal structure trees using a head percolation
table (Xia, 2001). Each node of a dependency tree
dominatesits descendents. If the dependency treeis
stored with loca word order information at its
nodes, a tree traversal agorithm starting at any
arbitrary node of the tree always generates a chunk
in the original sentence. The sentence “The quick
brown fox jumps over the lazy dog” is represented
as adependency treein Figure la

When some of the nodes in adependency tree are
fixed, we can partition the tree with each of the
fixed nodes as a new root for the resulting treelets.
Figure 1b shows the resulting three treelets by
fixing the words “jumps’, “fox” and “dog’.
Algorithmically, fixing one node in a treelet will
result in two subsequent treelets. The treelet rooted
at the origina root iscalled the “ outside treelet” and
the treelet rooted at the newly fixed node is called
the“insidetreelet”. ThisisshowninFigure2. Asa
result, if we have n fixed nodes in a dependency
tree, we will always have n tredets (assuming the



root of the whole tree is aways fixed). This
guarantees that whenever wefix apair of nodes, the
resulting partitioned treelets are always matched in
pairs.

house _
house built
[> —7 /
a built red recently
—
recently ‘ Outside treelet ‘ ‘ Inside treelet ‘

Figure 2 Inside and Outside Treelets
Partition “a recently built house” by fixing “built”

The correctness of the algorithm lies in what we
refer to as our partition assumption:

Partition Assumption
If (f;, a) (f;..e " ) are two aigned pairs

of nodesin two Ianguages and
f,.isadescendent of f; in the dependency

treeof f e must also be a descendent of

e, in the dependency tree of €

This assumption is much looser than requiring
the two dependency trees of the two languagesto be
isomorphic. A typical violation of this assumption
is the set of crossing-dependency alignments
between two structures shown in Figure 3 below:

el Ll

e2 f2

Figure 3. A crossing-dependency alignment
(dotted lines stand for the alignment)

While such violations of the partition assumption
exigt in real language pairs (as reported by (Fox,
2002) to be around 10%), the hopeis, if we only fix
node pairs above and below such violations, the
“bag of words’ translation model will correctly
aign the words with crossing-dependency
alignments.

4 Heuristics
The heuristic function in Step 2 takes a tentative
node pair (f. ) from the two treelets and

l’a

outputs a certain value which corresponds to
confidence in this labeling. Here we introduce two
heuristic functions.

4.1 Entropy

Since the labd for the foreign language word fj is
computed by simply choosing argmaxt(f; [e),

6 cE
where E isthe set of possible labels for fj in the

English treelet, and t(f,; |g) is the probability of
translated to f.

€ being J
_t(f; |e)P(e)
t(e | f,—)—Tfj)

tranglation probabilities will provide a distribution

with a high concentration of probabilities on the

chosen labels. Intuitively, the conditional entropy of

the trandation probability distribution will serve as

a good estimate of the confidence in the chosen

labeling. Let S= ) t(g | f;) anddefine éc E as
e cE

arandom variable.

we have

A reliable set of

H(é|f))
f. f.
_ z t(‘5‘1| ) (t(‘%é ,))
z—t(Q | f;)log(t(g | ;)
=a<E +logS

S
Since we need to compute conditional entropy

given fj , here the trandation probabilities are

normalized. The first heuristic function is defined
as.

h(f.q)=H(lf)
4.2

Suppose we have two trees initially, T(e) and
T(f).Whenwefix apair of words (f. ), both

trees will be partitioned into two treelets. Here we
borrow the idea from PCFG parsing, and call the

treelets rooted with €, and f; inside treelets
Tn(ee,) and T, (f,f)).
treelets are called outside treelets T, (e,€
T (f, f.). So, wehave:

Inside-Outside Probability

J'a

And the other two
i) and



PCT(T), (1;,8,)[T(8)
= P(Tout(f ! fJ) |Tout (e' eaj ))
x P(T(f, 1) T (e8,))

Define the size function to be the number of
nodesin atreelet. And let

Iout = SiZe(Tout (e' eaj )) ! r‘nout = s.Ze(-l-out(f ! fj ))
i, =size(T, (a8, ), m, = size(T,, (f, f;))

we have:
P(Tout( f ! fJ) |T0ut (e' eaj ))

1
me H zt(fkleak)

Tout (f ’ fJ ) eak ETout (ereaj )U{O}

P(Tm(f ! f) |Tin(eieaj ))

1
= t(f le,)
(I, +D™ fkeTil;[f,m eakeﬂn(géaj)u{km b
The above two probabilities are derived using
ideas from IBM Model 1. Similarly, define the
second heuristic function as;

h,(f;.e, ) =P(T(f), (f;.e,)IT(e)
4.3 Fertility Threshold

Again, let us suppose we want to create two treelet
pairs by fixing the node pair (f. ,e, ). In the first

IR

heuristic, the size and topology of the two resulting
treelet pairs are not taken into consideration. If we
are unlucky enough, we may well end up having a
treelet pair with one node on one side and 9 nodes
on the other. So we set afertility threshold to make
sure that the resulting treelet pairs have reasonable
sizes on both sides. Currently it is set to be 2.0.
Any labeling resulting in a treclet pair that the
number of the nodes on one sideislarger than twice
the number of the nodes on the other will be
discarded.

5 Formal Algorithm

Here we present the forma agorithm. The
following invariant holds at Step 1 of each iteration
because every new treelet created by the tree
partition operation in Step 3 is an inside treelet
rooted by a fixed node. Hence it is guaranteed that
each partition operation in Step 3 will create a new
treelet pair.

An Invariant of the Algorithm:

At Step 1 of each iteration,
(eaj , f,) e Fixed(e, f) if and only if

exists (T,,T;) € Trees(e, f) such that
f; =root(T;) and g, = root(T,)

® StepO:
Let Fixed(e, f) = {(root(T (€)),root(T ()))};
Let Trees(e, ) ={(T(e), T(f))}
where T(e) and T(f) are dependency structures
constructed from e and f .
® Stepl:
Run IBM Model 1 on Trees(e, ) to acquire
translation probability t(f; |g) for alignment
® Step 2
For ech (T,,T,) e Trees(e, ) {
Let Unfixed(T,)
={e e eT..(8.%) ¢ Fixed(e, )}
Let Unfixed(T,)
={f; | f, eT,,(*,f,) ¢ Fixed(e, )}
For each f; e Unfixed(T;) {
e, =argmaxt(f; |e)
: & eUnfixed (T,)

if (h(f e

] T

) and (e

]! A

) satisfy certain
constraints), Let
Fixed(e, f) = Fixed(e, f)u(eaj £
}// for each
}// for each
® Step 3
For each (T,,T,) e Trees(e, f) {
if (Exists
(f, eT; € ETe'(fj’eai)e Fixed(e, f)))
{
Trees(e, f) =
Trees(e, f) U

(T ) T (T 1)

U
{(Toutside(Te’eaj )’Toutside(Tf J fj )) }

} It
} // for each



® Step 4: goto Step 1 unless enough nodes fixed

In IBM Modd 1, P(f |e) has a unique loca
maximum, so the values in the t table are
independent of initialization. In Step 1, the valuesin
t table converge to a unique set of values. So
theoretically, the result of this algorithm is only
dependent on the choice of the heuristic function h.
The agorithm calls the heuristic function h
linearly to the size of the treelet. So the time
complexity of the agorithm is O(nxT(h)) ,
whereT (h) is the time complexity for the heuristic

function and n isthe length of the shorter sentence
of the sentence pair.

6 An Example

An example of iterative partitioning of thetredletsis
given below toillustrate the algorithm. The Chinese
is given in romanised form.

®[English] | have been here since 1947.
®[Chinese] 1947 nian yilai wo yizhi zhu zai zheli.

Iteration 1:
One dependency tree pair. Align “1” and “wo”

been

AN

I have here since

zhu

I\

wo vyilai yizhi zai

A ~ « / N
- 1 947/’ nian zheli
,,,,,,,,,,, - /
1947
Iteration 2;

Partition and form two treelet pairs.
Align “since” and “yilai”

been

VAN

zhu

AN

I wo have here since # “yilai yizhi zai
) S N~ / AN
1947  nian zheli
/
1947

Iteration 3:
Partition and form three treelet pairs.
Align “1947" and “1947”, “here” and “ zheli”

I WO gince 4 Vyilai been zhu
v v
~ /
1947 nian
/ / have here yizhi zai
1947 4 —
,,,,, » zheli

Figure4. An Example

7 Evaluation

We used the LDC Xinhua newswire Chinese —
English parallel corpuswith 60K+ sentence pairs as
the training data.! The parser generated 53130
parsed sentence pairs. We evaluated different
alignment models on 500 sentence pairs provided
by Microsoft Research Asia. The sentence pairs are
word level aligned by hand.

In Tables 1 and 2, the numbers listed are the
2|ANG|
|Al+]G|
where A is the set of word pairs aligned by the
automatic alignment algorithm and G is the set of
word pairs aligned in the gold file.

In Table 1, the IBM models are bootstrapped
from Model 1 to Modd 4. The evaluation F-scores
did not show significant improvement from Model
1 to Model 4, which we bdieve is partially caused
by the difference in the genres of the training and
evaluation data. Also the IBM models showed signs
of overfitting.

[tn# 1BM 1
0.0000
0.2464
0.4607
0.4935
0.5039
0.5073
0.5092
0.5099
05111 05138 0.5138 0.5195
10 05121 05127 0.5132 0.5195

Table 1: Evaluation resultsfor IBM Modds 1-4

F-scores for the alignments. F =

IBM 2
0.5128
0.5288
0.5274
0.5275
0.5245
0.5215
0.5191
0.5160

IBM 3
0.5082
0.5077
0.5106
0.5130
0.5138
0.5149
0.5142
0.5138

IBM 4
0.5130
0.5245
0.5240
0.5247
0.5236
0.5220
0.5218
0.5212

©CoO~NOOUILDS, WN P

1 The original LDC Xinhua newswire corpus is very noisy and
we filtered out roughly half the sentences.



In Table 2, Models hl and h2 are our models that
use heuristic function hl and h2, respectively. We
find that with the current parameter settings,
Models hl and h2 tend to overfit after the second
iteration. Table 2 shows results after one iteration
of steps 2 through 4 of our agorithm, after
successive iterations of IBM Model 1 in step 1 of
the second iteration. The two iterations of the
algorithm take less than two hours on a dual
Pentium 1.2GHz machine for both heuristics. Error
analysis snowed that the overfitting problem is
mainly caused by violation of the partition
assumption in fine-grained dependency structures.

M1 Itn# Model h1 Model h2
1 0.5549 0.5151
2 0.5590 0.5497
3 0.5632 0.5515
4 0.5615 0.5521
5 0.5615 0.5540
6 0.5603 0.5543
7 0.5612 0.5539
8 0.5604 0.5540
9 0.5611 0.5542

10 0.5622 0.5535

Table 2: Evaluation results for our agorithm with
heuristic function hl and h2

8 Conclusion

Our model, based on partitioning sentences
according to their dependency structure,
outperforms the unstructured IBM models on a
large data set. The model can be thought of as in
sense orthogonal to the IBM modelsin that it uses
syntactic structure but no linear ordering
information.

Possible future extensions to the model include
adding information on linear order, alowing
alignments that violate the partition assumption at
some cost in probability, and conditioning
alignment probabilities on part of speech tags.
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