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Abstract

We present and evaluate an algorithm
which extracts a translation grammar
(TG) from a bilingually aligned text.
We show that lexical transfer rules
automatically extracted from specific-
domain alignments (an excerpt from
the Canadian Hansard) enhance the
quality and coverage of a general-
purpose bilingual dictionary. We dis-
cuss a number of desirable properties
of TGs. We show that TGs can be
fruitfully integrated within a statisti-
cal machine translation system.

1 Introduction

In the framework of example-based machine
translation, a number of methods have been
proposed for automatically inducing transla-
tion correspondences from aligned texts. In
so-called “pure” EBMT systems, the only
available knowledge resource is the aligned text
itself, (Block, 2000; Brown, 2003), while in
richer systems additional, linguistic or lexical
knowledge resources are used to a varying
degree. Experiments have also been carried out
where alignments are parsed with the aim of
linking word translations and internal nodes of
derivation trees in both language sides of the
alignment. Wu (1995), for instance, proposes a
bilingual stochastic parser. This parser analyses
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both language sides of an alignment in parallel
where the leaves of the binary derivation
trees are terminal symbols and all internal

nodes are non-terminals.  Watanabe (2003;
Menezes and Richardson (2003) and
Meyers et al. (1998) parse each language

side independently and try to find the most
probable node correspondences in the derivation
trees.!

This paper describes and evaluates an al-
gorithm which generates and filters a transla-
tion grammar (TG) from partially parsed and
aligned texts. Section 2 describes the algorithm
and section 3 reports a number of experiments
and findings.

The aim of the algorithm is to induce a set
of the most probable invertible, compositional
and homomorphic transfer rules from an aligned
text. We briefly clarify these concepts.

Homomorphy and Isomorphy
As defined in (Huijsen, 1997), a TG is homomor-
phic if every rule has the same arity on its left-
hand side (LHS) and right-hand side (RHS)
and there exists a 1-to-1 link between the vari-
ables in LHS and the variables in RHS. The
TG in figure 4, for instance, is homomorphic be-
cause every transfer rule has the same number
of variables (NP2 or DP'?) on its LHS and
RHS which are linked by their superscribed in-
dexes. Homomorphic T'Gs generate isomorphic
derivation trees, where for every partial deriva-
tion tree in one language there exists a linked

'For an overview of different techniques and represen-
tations see (Somers, 2003).



derivation tree with the same depth and arity in
the other language.

Compositionality and non-monotonicity
As Turcato and Popowich (2003) point out,
translations can be compositional or they can
be non-monotonic. For instance, the translation
equivalence (a) is compositional because “viaje”
is a translation of “trip” and “negocios” is a
translation of “business” while the translation
equivalence (b) is non-compositional (“field”
is not a translation of “estudio”) and (c)
non-monotonic combining both, compositional
and non-compositional parts.

a)  business trip <+ viaje de negocios
b) field trip «  viaje de estudio
¢) long field trip <> viaje de estudio largo

It is hard for an uninformed learner to know
up to what extent a translation is compositional
and when it starts to become non-monotonic.
Therefore, for every highest scored isomorphic
translation, we extract both the most composi-
tional and a non-monotonic transfer rules.

Ambiguity and Invertibility
In order to achieve high reliability of the TG, ev-
ery transfer rule in a TG should be unique. As
we shall show in a later section, ambiguities pro-
duced during transfer which cannot be resolved
in the target language do not help to increase
the translation quality. For this reason some re-
searchers (Menezes, 2002) retain sufficient con-
text in transfer rules to distinguish it from com-
peting mappings during translation. In this pa-
per we compare invertible TGs and ambiguous
TGs. A TG is invertible iff both language sides
of the transfer rules are unique in the grammar;
ambiguous grammars allow more than one map-
ping of the same string into the target language.

2 Inducing a TG

This section describes an algorithm which gen-
erates a TG from a set of alignments. TGs are
made up of lexical transfer rules which contain
only terminal symbols and translation templates
- i.e. generalized transfer rules - which also con-
tain variables. The resources required for the
induction include:

1. a set of reference alignments (RA) from
which a TG is to be induced.

2. a (partial) parser for both languages which
brackets those translation units to be ex-
tracted from the alignments.

3. a bilingual dictionary to find connecting an-
chor points in the two language sides of the
reference alignments.

The algorithm works in three phases:

1. Finding possible chunk-chunk (c-c) transla-
tions

2. Generating Translation Templates
3. Filtering the TG

These phases are discussed more closely in the
following subsections. The algorithm is depicted
in figure 5.

2.1 Finding possible c-c Translations

In the first part of the algorithm in figure 5,
each alignment is successively treated to find po-
tential c-c translations. First, bilingual anchors
are detected by means of an English-French dic-
tionary. Then a partial parser recognizes com-
plex (nominal) chunks independently in both
language sides. The result of this processing is
a lexically anchored and partially parsed align-
ment, as shown in Figure 1.

Potential c-c translation candidates are de-
tected in the alignment (those that are actually
present in the general dictionary) and weighted.
The weight is the mean of an internal weight w;
and an external weight w,, the computation of
which is described hereafter. Intuitively, the in-
ternal weight captures the strength (or ambigu-
ity) of the lexical anchors which a c-c translation
contains, while the external weight captures the
strength (or ambiguity) of the c-c translation in
which it is contained.

The internal weight is recursively calculated
based on the internal weights of the lexical and
the complex anchors it contains (see equation 2
in figure 5). Complex anchors are c-c transla-
tions which are contained in larger c-c trans-
lations. For instance in Figure 2, NP3_4 <



Figure 1: A lexically anchored and partially parsed English-French alignment. Connecting lines

represent lexical anchors; underlined words represent chunks.
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Figure 2: A segment of the alignment in Figure 1 showing three English chunks lexically anchored
with one French chunk. Subscribed indexes in nodes refer to the position in alignment of Figure 1.

All NPz_, is wasted if the sniper misses DPyj_j2. If the target is missed, DP2p_21 is DPag_24.

e

S’il rate DP;_5 , toute le NPy_14 ne lui sert & rien, et DPas_23 est D Pag_2g.

Figure 3: Template of the Alignment with substituted Chunk-Chunk (c-¢) Translations

1 All other sniper training is wasted if the sniper misses his target. If the target is missed, the mission is a failure.

“
5’il rate sa cible toute le reste de son instruction de tireur d’élite ne lui sert & rien, et la mission est un échec.

2 All DP! is wasted if the sniper misses DFP2, If the target is missed, DP® is DP?%,
< Sl rate DP? toute le NP; ne lui sert & rien, et DP3 est DP?,

3 (other sniper training)yp 4+  (reste de son instruction de tireur d’élite Jxp

4 (other NP! NP® )yp 4>  (reste de son NP> de NP')yp

5 (training)wp ++  (instruction)np

6 (sniper)wp 4+ (tireur d’élite) xp

T (his target)pp ++ (sa cible)pp

8 (his NP')pp <+ (sa NP')pp

9 (the mission)pp <+ (la mission)pp

10 (the NPY)pp +« (la NPY)pp

11 (a failure}pp 4+ (un échec)pp

12 (a N.Pl)pp — (l.ln NP‘)DP

Figure 4: Generated Translation G

rammar for the English-French alignment of Figure 1. Super-

scribed indexes in nodes indicate links of variables.



w(lhs <+ rhs)

s(lhs <> rhs) = 2x Sw(lhs & )+ S w( © rhs) W
2% BSOS if lhs « rhs lexical anchor

i(lhs ¢ rhs) = 2

wi(lhs + rhs) %%, if lhs > Ths complex anchor it

' lhs is substring of Lhs
we(lhs > ths) = 3 wiLhs, Bhs) ..} snp (3)
A AR TGO L), rhs is substring of Rhs

lhs is substring of Lhs
anch(Lhs, Rhs) = ng(lh,s < rhs) if ¢ AND (4)
rhs is substring of Rhs

lhs is substring of Lhs
noise(Lhs, Rhs) = Y wi(lhs ¢ rhs) if { XOR (5)
rhs is substring of Rhs

Finding possible chunk-chunk (c-c) translations:
1 for all bilingual alignments LHS < RHS:
2 match alignment against bilingual dictionary to find lexical anchors.
3 calculate internal weights w; of lexical anchors according to equation 2.
4 parse nominal expressions (i.e. chunks) independently in LHS and RHS.
// an ezample of the resulting representation is shown in figures 1 and 2
5 for all anchored c-c translations lhs < rhs in LHS + RHS:
6 begin
7 recursively compute an internal weight w;(lhs +» rhs) based on the internal weights of the
c-c translation(s) contained in lhs <+ rhs according to equation 2.

8 recursively compute an external weight we(lhs <+ rhs) based on the internal weights of the
c-c translations in which lhs <> rhs is contained, according to equation 3

9 set w(lhs © rhs) + = (wi(lhs & rhs) + we(lhs & rhs))/2

10  end

11 end

Generation of Translation Templates:

12 for all anchored c-c translations lhs +» rhs: compute c-c score s(lhs ++ rhs) according to equation 1

13 for all anchored c-c translations lhs ¢ rhs:

14  generate a set of translation templates tls > ¢rs by substituting the highest ranked c-c translations
which are contained in lhs ¢ rhs

15 set w(tls > trs) + = (wi(tls <> trs) + we(tls ¢ trs))/2

16 end

Filter a TG:

17 for all translation templates tls <> trs:  compute scores s(tls ++ trs) according to equation 1

18 for all bilingual alignments LHS < RHS:

19  find highest ranked and consistent translation template TLS <+ T RS which is a generalization of LHS + RHS
20  recursively print most compositional template TLS <+ TRS and most specific transfer rule LHS +» RHS.

21 end

Figure 5: Algorithm for inducing a Translation Grammar from bilingual alignments. #D(Lhs +
Rhs) stands for the number of daughters of the rule.



NPy 14 (the c-c translation “sniper training
+> instruction de tireur d’élite”) is a complex
anchor in NP,_4 < NP;_14 because it is an-
chored by the lexicon entry “sniper 4 tireur
d’élite” and NP;_4 and N Pj2_14 are substrings
in NP,_4 and N Py_14 respectively.

The internal weight of lexical anchors is the
Jaccard’s coefficient (Reijsbergen, 1979) shown
in equation 2 (upper). For instance, the bilin-
gual dictionary contains the translation “sniper
> tireur d’élite” which is assigned an internal
weight of 1.0 since “sniper” and “tireur d’élite”
occur only once in the dictionary. The trans-
lation “the <> le” has a weight of 2/3 because
“the” can translate into “le” or “un” but “le”
only translates into “the”. Note that anchors
are computed based on the string equality of the
lemma(s).

The internal weight of a c-c translation takes
into consideration its anchors (lexical and com-
plex) and the noise produced by those anchors
which connect to different chunks. For instance,
the English-French c-c translation NP3_s
NPi5_14 in Figure 2 has a lexical anchor “sniper
¢ tireur de élite” and a complex anchor NP;
NP;4. It has the ‘noisy anchors’ NPy <> NPy
and NP;_g & NPy4.

In order to re-distribute weights into c-c trans-
lations an external weight w, is calculated
for each c-c translation which is contained in a
larger anchored chunk. For instance, the trans-
lation “training <> instruction” in Figure 2 in-
herits proportional weights from all anchored c-c
translations which dominate “training” and “in-
struction”. The external weight is thus a way
to distribute—recursively from the sentence
level —weight mass over word translations, also
those which are not covered by the general dic-
tionary, therefore acting as a smoother.

2.2 Generation of Translation
Templates

In the second part of the algorithm, generaliza-
tions are induced from the detected c-c trans-
lations. First scores are calculated for each c-
c¢ translation as shown in line 12 of the algo-
rithm in Figure 5. Then a limited number of
translation templates is generated by substitut-

ing the most probable complex anchors in c-
c translations. Since non-overlapping complex
anchors are simultaneously substituted in LHS
and RHS of the cc-translations, both sides of
the resulting template have the same number of
linked variables. In this way homomorphy for
the translation grammar is generated.

2.3 PFiltering a TG

First the scores of the translation templates are
computed (line 17 in Figure 5). Similar to sec-
tion 2.1, the loop runs over the set of align-
ments and not, as in section 2.2, over the set
of potential c-c translations. For each align-
ment LHS < RHS, the most likely transla-
tion template is retrieved (line 19 in Figure 5)
and the most compositional derivations as well
as their non-monotonic translations are filtered
and added to the TG. In Figure 4, transfer rule
1 is the least general (i.e. non-monotonic) trans-
fer rule that can be extracted from the alignment
while transfer rule 2 is the most compositional
rule which is consistent with the aligned text
and the extracted TG.

The TG in Figure 4 contains 12 transfer rules
which have been generated and filtered from
the alignment in Figure 1. Note that a variant,
the transfer rule 3a (below), was not extracted
as this would have implied the translation
template 4a. Translation templates 4a and 4b
are ambiguous since their left-hand sides are
identical but their right-hand sides are not. As
template 4b has a higher score than template 4a
in the reference alignments, the latter one was
suppressed in favor of the former, and template
4 was filtered.
instruction de tireur d’élite

reste de son NP!
autre N P!

3a  sniper training

4a other NP! &

4b other NP! &
Even though the translation “training < in-
struction” was not contained in the initial bilin-
gual dictionary, this entry is given quite a high
score due to its frequency and the explanatory
strength it has to support isomorphic transla-
tion. In the same way, the lexical anchor “sniper
+ tireur de élite” has an internal weight of 1, be-
cause it occurs only once in the dictionary. How-
ever, due to the variations in which the French



and English forms appear in the text, the filtered
translation has only a score of 0.65.

3 Experiments

This section reports a number of experiments
which are based on the algorithm described in
section 2. First we present an experiment to in-
duce a large-scale TG and discuss the resources
involved. Then we use the lexical transfer rules
of the induced grammar to translate a test text
from English into French. Further, we show
that the induction algorithm is scalable to dif-
ferent sizes of reference alignments. We compare
the translation quality produced when using am-
biguous and invertible TGs, we compare it with
a general purpose MT-system (BabelFish) and a
standard statistical machine translation (SMT)
engine. Finally we combine the SMT system
with the TGs. We conclude by summarizing the
major findings of the experiments.

3.1 Extraction of a TG

In this experiment, we gauge the potential of
generating a TG from large domain-specific
aligned text. We used 50,000 English < French
reference alignments taken from the Canadian
Hansard Corpus. This, we shall say is our set
RA;. The alignments had an average length of
18.8 and 19.9 words for the English and French
side respectively. Both texts were PoS tagged
and lemmatized while keeping the alignment in-
formation intact. The reference alignments con-
tain 13,629 and 13,278 different lemmas for En-
glish and French while the French text has 1.3
times more (different) surface forms than the
English text (see table 2). Clearly, lemmati-
zation reduces the number of different tokens,
makes the texts more comparable and thus bet-
ter suited for extracting homomorphic transla-
tion knowledge.

To detect lexical anchors in the alignments,
we used a bilingual English <> French dictionary
containing 77,016 entries with 49,341 and 45,695
different lemmas for the English and French side
respectively. Most of the entries are unique
while some words are highly ambiguous: the
French word “support”, for instance has 57 en-
tries while the English word “support” has 34.

The dictionary covered almost 3/4 of the
words in RA; using only 7,688 and 7,714 dif-
ferent lemmas for English and French respec-
tively. That is, only 15.6% and 16.9% of the lem-
mas contained in the dictionary also occurred in
RA;. In addition, 42.3% and 43.5% of the En-
glish and French words in the alignments were
anchored in the bilingual dictionary. That is,
more than 20% of the words in RA;, were only
in one language side of the dictionary but with-
out a lexical connection into the other language
side.

We used KURD (Carl et al., 2002) as a partial
parser, taking as input the PoS tagged and lem-
matized text. A set of 15 and 17 rules detected
simple and complex nominal expressions up to
a recursion depth of 6 for the two languages.
581,599 French chunks and 650,136 English ones
have been generated in RA;.

The algorithm described in section 2 had as an
output the TG, containing more then 3.6 trans-
fer rules on average for each alignment: 113,810
lexical transfer rules and 70,153 translation tem-
plates (see table 2).

3.2 Translating a Test Text (TT)

In this experiment we evaluate the TG by trans-
lating (from English into French) a test text
(TT) of 500 sentences taken from the Canadian
Hansard Corpus, but from a different period
than the alighments from which we have gener-
ated the grammar?. We compare over a trans-
lation reference the coverage and the accuracy
of two translations; one produced by only look-
ing up a general-purpose dictionary (the same
lexicon used for anchoring during subsentential
alignment), and the other one obtained by look-
ing up the automatically induced lexical transfer
rule.

Comparing the translations produced using
TG; and the bilingual dictionary (DIC), no sig-
nificant progress can be observed with respect to
the coverage of the source text. Both the dictio-
nary and TG, cover around 67% of the English
words, as shown in table 1.

>The average sentence length of the test alignments is
similar to that of RA;.



Table 1: Coverage of TG; and a Dictionary
(DIC)

TGy DIC
#words 8,665 9,806
#covered words 5,752 5,796
%covered words 66.38 66.99
BLEU 0.1421 0.0573
WER 68.89% 81.68%
SER 93.2%  99.6%
chunks len > 2
#chunks 966 146
#covered words 2,652 325
%covered words  30.61 3.75

A different picture emerges if we examine the
translation quality in Table 1, in terms of fully
automatic computed scores, BLEU (Papineni et
al., 2002), WER (for Word Error Rate, com-
puted as a classical edit-distance) and SER (for
Sentence Error Rate, which is the ratio of trans-
lations that are not verbatim the gold-standard
translation). Clearly an increase in translation
quality can be observed for TG;. More inter-
estingly, the coverage of chunks with length > 2
increases from 3.75% as for the general purpose
dictionary, to more than 30% in TG;, which
suggests a correlation between the length of the
matching chunks and the translation quality.

3.3 Scalability of Grammar Induction

In this experiment we wanted to know whether
the induction algorithm is scalable to different
number of reference alignments.

We extracted a set RAg containing 10,000
alignments and a set RAy containing 100,000
alignments from the Canadian Hansards. The
maximum length of these alignments was lim-
ited to 30 words, while in RA; no such lim-
itation existed and the longest alignment had
more than 80 words?. In all three sets of refer-
ence alignments, the ratio of words per lemma
is around 1.30 for English and between 1.64 and
1.78 words/lemma for French. The number of
words in the three sets and their distribution is
shown in table 2. The table compares also the

3The length of an alignment is the maximum number
of words in LHS or RHS.

Table 2: Scalability to different size of reference

alignments

English ++ French Reference Alignments

RAo RA» RA,
Falignments 10,000 100,000 50,000
#words in E 151,954 1,437,450 938,078
#words in F 163,113 1,503,196 997,194
#diff. words E 7,343 22,501 17,915
#diff. words F 9,528 29,559 23,675
#diff. lemma E 5,663 17,260 13,629
#diff. lemma F 5,796 16,736 13,278
Invertible Lexical Transfer Rules

TGo TG2 TG,
#transfer rules 23,214 180,745 113,810
Ftrules used for TT 3,581 4,685 4,405
#covered words in TT 4,611 6,146 5,752
Quality of Translated Test Text (TT)

TGo TGz TG
WER 71.91% 66.93% 68.89%
BLEU 0.1365 0.1704 0.1421

three generated translation grammars TGy .

The average number of extracted lexical
transfer rules decreases slightly as the num-
ber of reference alignments increases, from 2.3
rules per alighment in RAy to 1.8 rules per
alignment for RA;. The average length of
the extracted transfer rules increases from 8.8
and 9.5 words/entry in TGp to 10.3 and 11.1
words/entriy in TG, for English and French re-
spectively.

According to the scores BLEU and WER,
higher quality translations is obtained as more
reference translations are available for gener-
ating the grammar. Also the coverage of the
source text increases from 53% (4,611 words) for
TGy to 71% (6,146 words) for TG, with 3,581
and 4,685 chunks matched respectively. While
around 50% of the translated English source
words are covered by chunks of length 1 the
number of words covered by chunks of length
> 2 climbs from 22% for TGq to 33% for TGo.
Here, again, we see a correlation between length
of matching chunk and translation quality.



3.4 Comparing Invertible/Ambiguous
TGs

In this experiment we examine the impact of am-
biguous TG on the translation quality. While
the translation grammars TGy ;2 in the previ-
ous experiments were invertible in the sense de-
fined in section 2, in this experiment we induce
ambiguous ftranslation grammars TGj, , from
the three sets of reference alignments RAg 2.
To generate ambiguous T'Gs, we set a threshold
in lines 19 and 20 of the algorithm in Figure 5
such that ambiguous transfer rules are extracted
if their score is higher than or equal to 10% of the
most probable and consistent translation tem-
plate. In this way we allow ambiguous transfer
rules as shown in Table 3.

Table 3: Ambiguous Transfer Rules
the commission < la commission

the commission < le conseil
the commission < une commission

an dernier
année derniére

last year <«
last year <«

As expected, the number of entries in TG{ ; -
increases compared to the invertible TGo2;
and this by around 12%. Since almost all differ-
ent words (and lemmas) of the reference align-
ments were already contained in the invertible
TGs the ambiguous versions do not contain sig-
nificantly more different tokens. Nevertheless,
the coverage of the test text increases, specially
considering chunks of length > 2.

Table 4: Ambiguous Translation Grammars

TG§ TGS TGS
#transfer rules 28,393 220,248 146,684
WER 71.88% 67.22% 69.75%
BLEU 0.1398  0.1706 0.1519

However, comparing the results in table 4 and
2, there is no clear indication as to whether the
translation quality produced by the ambiguous
TGs is better than the quality of the invert-
ible TGs. For instance, TG{ obtains a better
(i.e. higher) BLEU score than TGy, but a lower
WER value. We thus conclude that, adding am-

biguities into a T'G does not lead to better trans-
lation quality —at least not if the ambiguities
cannot be resolved during translation.

3.5 Comparison with SMT and
BabelFish

This experiment is designed to compare the
translation quality of the TGs with the qual-
ity of a statistical MT system (SMT) and with
Systran’s BabelFish (BF).

Table 5: Comparing TG with SMT and BF

System BLEU WER SER
BF 0.1578 66.03% 97.87%
SMT, 0.1156 74.72% 95.04%
SMT; 0.1231 73.54% 96.69%
SMT, 0.1378 71.52% 94.80%
SMT3 0.2061 61.66% 93.38%

We trained the SMT system* with the tree
reference alignments RAg ;o discussed in sec-
tion 3.1 and 3.3. In addition, we used a 15
times bigger reference set RAj3, containing 1,6
million alignments from the Canadian Hansards.
We then translated the test text (T'T) based on
these four models. The outcome is shown in Ta-
ble 5. A clear increase in quality can be observed
as the number of reference alignments increases.
However, a direct comparison of the Tables 5
and 2, shows that TGy ; 2 alone get better BLEU
scores and a lower WERSs than the SMT system
when trained on the same reference alignments.
This result was to be expected, since many more
resources are used for the induction of TGo,2
than for estimating a standard IBM translation
model.

On the other hand, we were surprised by
the observation that Systran’s Babelfish yields
scores inferior to SMT3; and even inferior to
TGs,. One reason for this seems to be due to the
fact that Babelfish is a general purpose transla-
tion system which lacks the typical translation
knowledge contained in and extracted from the
Canadian Hansards. Translations such as “the
speaker/le président” or “some hon. members:

“a noisy channel engine relying on IBM2 model, a

trigram language model and a DP decoder, see (Langlais
and Simard, 2002) for more details.



oh, oh !/des voix: oh, oh” are typical for the
Canadian Hansards and could be produced by
the trained systems but have not be produced
by BF. Despite this, we had the impression that
BF translation were of better quality than ei-
ther of the other systems. This, on the other
hand, indicates that automatic evaluation met-
rics might been appropriate for learning systems
but not necessarily so for general purpose rule-
based MT systems.®

3.6 Integrating TG and SMT

In this experiment we wanted to see whether
SMT and TG could be integrated and whether
an integration would add to the translation qual-
ity. The integration of the TG and SMT was
based on the approach described in (Langlais
and Simard, 2002): the SMT is constrained to
use the translation contained in the TG, if a
sequence in the source language string matches
the entry in the TG. For instance, if the TG
contains the lexical transfer rule “the commis-
sion +> la commission” and a sequence in the
English source sentence matches the LHS ex-
pression then the French translation generated
by the SMT system has to contain the target
expression “la commission”.

As can be seen in Table 6, with this integra-
tion, the translation quality improves in every
case where the same set of reference alignments
are used in SMT and TG. From this we con-
clude that both techniques cover complementary
properties which can be fruitfully integrated for
translation.

Table 6: Integrating TG and SMT

BLEU WER  SER
SMT,-TGo 0.1495 71.19% 93.61%
SMT;-TG: 0.1684 70.32% 91.73%
SMT,-TGs 0.1789 68.94% 92.20%
SMT5-TG, 0.1928 67.99% 90.93%
SMTs-TG; >2 0.2096 64.51% 90.93%

However, when integrating the much larger
statistical translation model SMT3 with the lex-

5The validation of this hypothesis is far beyond the
scope of the present study.

ical transfer rules of TGy, we observe a decrease
in quality. We therefore investigated a second
integration version: forcing SMTj3 to use trans-
lation proposals from TG; only if their length
> 2, but whether or not this yields a bet-
ter translation quality is unclear (better BLEU
score, but worse WER).

The reason why TG; does not enhance the
translation quality when linked with SMT;
seems to to be that most of the translations for
the collocations captured in chunks of length > 2
were also produced by the SMTj3 system. For
instance both the SMT3 and the TG were pro-
ducing “le chef de I'opposition” as a translation
of “the leader of the opposition”. Therefore the
TG did not provide additional knowledge to the
SMT3 engine. However, this must be balanced
by the fact that the SMT3 system was trained
on a training corpus 30 times bigger than TG;.

Finally, we wanted to see whether the integra-
tion of ambiguous translation proposals from the
TG§ 1 » would still enhance the translation qual-
ity. From the ambiguous proposals, the SMT3
system would have to choose one translation
which it considers best suited in the context
of the generated target language string. Pro-
vided with the choice of generating one of “la
commission”, le conseil” or “une commission”
as in Table 3, and given that the SMTjs sys-
tem’s French target language model was trained
on a huge text, the idea was to let it work as a
disambiguation module. The translation quality
(as measured by BLEU and WER) was however
lower than the one produced by the invertible
grammars.

4 Conclusions

We have presented a “knowledge-rich” algo-
rithm which allows to generate a translation
grammar (TG) from an aligned text. We have
shown that a TG extracted from different cor-
pora (10,000 to 100,000 alignments) exceeds and
refines by far the translation knowledge con-
tained in a general purpose dictionary.

We have shown that the induction algorithm
is scalable to different reference alignment sizes
and that an ambiguous TG does not have an



advantage over an invertible one, if no mecha-
nism is provided to resolve ambiguities at run-
time. We also observed that our grammar induc-
tion procedure produces higher quality trans-
lations than a “knowledge-poor” approach (i.e.
a standard statistical machine translation sys-
tem) when both systems are fed with the same
amount of reference alignments.

To our surprise, we have also observed that
a general purpose MT-system (BabelFish) lags
behind the measured translation quality of the
trained systems. We found two main reasons
for that: the domain-specific jargon which Ba-
belFish did not have the chance to adapt to, and
the automatic metrics that we used to evaluate
the quality of the translation.

Last but not least, we have also shown that
the combination of both approaches yields bet-
ter translations. We conclude that the method-
ology offers a way to acquire domain specific
translation knowledge which could be fruitfully
applied in an MT system.
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