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Abstract 

This paper presents ECOLE, a look-ahead 
text editor that supports authors writing 
seemingly informal specifications in 
PENG, a computer-processable controlled 
natural language. ECOLE communicates 
via a socket interface with the controlled 
language processor of the PENG system. 
After each word form entered the look-
ahead editor displays appropriate look-
ahead categories. These syntactic hints 
tell the author what kind of word or syn-
tactic structure can follow the current in-
put string and reduce thereby the cogni-
tive burden to learn and remember the 
controlled language. While the author 
types the text word by word and adds un-
known content words on the fly to the lex-
icon, a discourse representation structure 
and a paraphrase is built up dynamically 
for the text in a completely compositional 
manner. The arising specification can be 
checked automatically for consistency and 
informativity with the help of third-party 
reasoning services. 

1 Introduction 

Controlled natural languages are - more or less - 
well-defined subsets of natural languages that have 
been restricted with respect to their grammar and 
lexicon. Grammatical restrictions result in less 
complex and less ambiguous texts. Lexical restrict-
ions reduce the size of the vocabulary and the 
meaning of the lexical entries for a particular ap-

plication domain. In general, these restrictions im-
prove the readability and the processability of a 
document. However, different tasks need different 
types of controlled languages. For example, con-
trolled languages for technical documentation re-
quire good readability (AECMA, 2001), while con-
trolled languages for machine translation focus on 
processability and therefore have other restrictions 
(Mitamura and Nyberg, 2001). Controlled natural 
languages not only make life a lot easier with tech-
nical documents and machine translation, but they 
can also improve the whole knowledge acquisition 
process for any kind of intelligent system (Sowa, 
2002). 

It is well known that writing documents in a 
controlled natural language can be a slow and pain-
ful process, since it is hard to write documents that 
have to comply with the rules of a controlled lan-
guage (Goyvaerts, 1996; Huijsen, 1998). One of 
the deciding factors for the acceptability of a con-
trolled language is the availability of tools that 
check the compliance with the definition of a con-
trolled language and support the writing process 
(Wojcik and Hoard, 1996). Without such tools that 
help the author to stick to the defined vocabulary 
and to the grammar rules, it is nearly impossible to 
produce informative and consistent documents. 

To guarantee the painless and efficient use of 
our controlled natural language PENG (Process-
able ENGlish) (Schwitter, 2002), we have designed 
and implemented ECOLE, a look-ahead text editor 
that helps authors to write precise and seemingly 
informal specifications in controlled natural lan-
guage. ECOLE guides the writing process and 
guarantees well-formed syntactic structures that 
can be translated deterministically into first-order 
logic via discourse representation structures (Kamp 



and Reyle, 1993). The semantic interpretation of a 
specification is built up incrementally during pars-
ing and the systems’  interpretation is displayed as a 
paraphrase in controlled language. 

Authors can write specifications in PENG with-
out having to learn and remember the language 
since ECOLE handles all the approved structures 
and enforces the restrictions placed upon the lan-
guage as specified by the controlled grammar and 
the lexicon.  

Strictly speaking the arising specification is a 
logical theory that can be checked for its consis-
tency and informativity with the help of third-party 
reasoning services. Apart from checking a specifi-
cation for these acceptability constraints, an author 
can also query a PENG specification in order to 
find possible answers to questions in the text. 

The remainder of this paper is organized as fol-
lows: In Section 2, we briefly introduce the con-
trolled natural language PENG and discuss the 
most important lexical and grammatical restric-
tions of the language. In Section 3, we present 
ECOLE, the look-ahead text editor from an au-
thor’s point of view and explain its functionality. 
In Section 4, we take a look behind the curtain and 
explain how ECOLE is integrated into the PENG 
system and how the text editor interacts with the 
controlled language processor and the reasoning 
services (theorem prover and model builder). Fi-
nally, in Section 5, we summarize the advantages 
of the presented approach. 

2 PENG (Processable ENGlish) 

Similiar to Attempto Controlled English (Schwit-
ter, 1998; Fuchs et al., 1999), PENG is a computer-
processable controlled natural language specifi-
cally designed to write precise specifications 
(Schwitter, 2002). PENG consists of a strict subset 
of standard English. The restrictions of the lan-
guage are defined with the help of a controlled 
lexicon and a controlled grammar, and are en-
forced by ECOLE, the look-ahead editor. In the 
following section we will illustrate the coverage of 
the language with examples taken from the 
Dreadsbury Mansion Mystery, a logical puzzle that 
is usually used in the literature to test the capacity 
of automatic theorem provers (Pelletier, 1986).  

2.1 Controlled Lexicon 

The lexicon of PENG consists of predefined func-
tion words, a set of illegal words (especially inten-
sional words), and user-defined content words. 
Function words such as 

 
• determiners: each, a, the, no, who, … 
• prepositions: in, on, between, … 
• copula: is, are 
• negation: does not, is not, … 
• relative pronouns: who, that, which, … 
• coordinators: and, or 
• subordinators: if, before, after, while, … 
• constructors: there is/are, for every … 

 
build the structural scaffolding of the controlled 
language. User-defined content words such as 
 

• nouns: person, Agatha, butler, … 
• verbs: l ives, kills, is, … 
• adjectives: rich … 
• adverbs: slowly… 

 
can be added or modified by the author during the 
writing process with the help of a lexical editor 
that is part of the text editor ECOLE. Thus, by add-
ing content words, the author creates his own ap-
plication specific lexicon. In addition, the author 
can define synonyms for content words and acro-
nyms or abbreviations for nouns. 

2.2 Controlled Grammar 

The controlled grammar defines the structure of 
simple PENG sentences and states how simple sen-
tences can be joined into complex sentences by a 
set of coordinators and subordinators. Simple sen-
tences are: 

 
• Agatha hates a person. 
• A person lives in Dreadsbury Mansion. 
• A person A hates a person B. 
• Agatha is not the butler. 
• No person hates every person. 

 
Complex PENG sentences are composed of 

simpler sentences with the help of coordinators and 
subordinators: 
 



• Agatha, the butler, and Charles each live in 
Dreadsbury Mansion. 

• If a person lives in Dreadsbury Mansion 
then that person is Agatha or the butler or 
Charles. 

• If a person is not the butler then Agatha 
hates that person. 

 
The grammar of PENG also specifies that sim-

ple sentences have a linear temporal order by de-
fault and that sentences can be anaphorically inter-
related in a well-defined way to build coherent tex-
tual structures. 

2.3 An Example Specification 

The Dreadsbury Mansion Mystery is usually trans-
lated first by hand from unrestricted English into a 
formal language and the consequence of the puzzle 
is then proven by a theorem prover. Using PENG, 
the manual translation into a formal notation be-
comes unnecessary, since PENG specifications can 
be unambiguously translated into first-order logic 
via discourse representation structures. The follow-
ing paragraph is the Dreadsbury Mansion Mystery 
in PENG. It becomes obvious that it would be hard 
to write this text in PENG without intelligent writ-
ing assistance. 

 
1. A person who lives in Dreadsbury Mansion 

kills Agatha. 
2. Agatha, the butler, and Charles each live in 

Dreadsbury Mansion. 
3. If a person lives in Dreadsbury Mansion 

then that person is Agatha or the butler or 
Charles. 

4. If a person A kills a person B then the per-
son A hates the person B. 

5. If a person A kills a person B then the per-
son A is not richer than the person B. 

6. If Agatha hates a person then Charles does 
not hate that person. 

7. If a person is not the butler then Agatha 
hates that person. 

8. If a person is not richer than Agatha then 
the butler hates that person. 

9. If Agatha hates a person then the butler 
hates that person. 

10. No person hates every person. 
11. Agatha is not the butler. 
12. Who kills Agatha? 

Sentence 1 is a complex sentence that consists 
of a simple PENG sentence A person kills Agatha 
and an embedded relative clause who lives in 
Dreadsbury Mansion. Prepositional modifiers such 
as in Dreadsbury Mansion always relate to the 
closest preceding verb phrase in PENG. Sentence 2 
contains a plural noun phrase Agatha, the butler, 
and Charles together with the floated quantifier 
each as a specific keyword. This keyword triggers 
a distributive reading of the plural noun phrase in 
PENG. Sentence 3 contains an anaphoric reference 
that person  a person and a verb phrase coordi-
nation is Agatha or the butler or Charles with a 
copula that has been elided in two conjuncts. Sen-
tences 4 and 5 contain two so-called dynamic 
names A and B that make the anaphoric reference 
explicit on the surface level. Additionally, sentence 
5 contains a negated verb phrase is not richer than 
... that subordinates a comparative construction. 
PENG distinguishes between verb phrase negation 
such as in sentences 5, 6, 7 and 8 and noun phrase 
negation such as in sentence 10. The scope of the 
negation extends by default to the end of a simple 
sentence. Sentence 10 consists of two quantifiers 
no and every. The relative scope of a quantifier 
corresponds to its surface position in PENG. Con-
structors such as for every and there is a allow 
quantified noun phrases to move to the sentence 
initial position to enforce an alternative reading - if 
necessary. With questions such as in sentence 12, 
authors can examine the content of a PENG spe-
cification and find the not so obvious answer auto-
matically that Agatha killed herself. 

3 ECOLE: User Interface 

ECOLE, the look-ahead editor for PENG consists 
of two parts: a text field where the author develops 
the specification and a response field where system 
messages are displayed. Figure 1 gives an over-
view of the options from which the author can 
choose. 

The most important option of ECOLE is the 
look-ahead functionality. If this option is selected, 
then the author is given a list of choices of how to 
continue the sentence after each word form en-
tered. These syntactic constraints ensure that the 
document remains unambiguous and precise.  

For example, when the author starts typing the 
sentence A person lives in Dreadsbury Mansion, 



ECOLE displays the following look-ahead catego-
ries as subscripts in angle brackets: 

 

A [  adjective | common noun  ]  

A person [  verb | negation | relative sentence  ]  

A person lives [  '.' |  prepositional phrase | adverb ]   
 

As this example shows, the editor makes use of 
graphical means to display these syntactic hints as 
a help to the author. Note that the author needs 
only minimal linguistic knowledge to choose from 
these restrictions. Each look-ahead category is im-
plemented as a hyperlink. If something is unclear, 
then the author can click on one of the displayed 
categories to obtain more information.  

 

 

Figure 1: Functionality of ECOLE 
 

The editor also handles compound nouns such 
as Dreadsbury Mansion. When the first noun 
Dreadsbury has been entered, then the editor dis-
plays the second part of the compound noun Man-
sion and all other suitable look-ahead categories.  

The look-ahead categories are generated while 
the text is written using the information produced 
by the chart parser of the controlled language proc-
essor. 

ECOLE comes with an integrated spelling 
checker and a lexical editor. If a content word is 
unknown and not misspelled, then the lexical edi-
tor pops up and allows the author to add the word 
to the lexicon. As soon as the word is available, the 
processing is resumed. If the author selects the cor-
responding options beforehand, then the system 
checks the text for its consistency and informativ-

ity after each new sentence. Whenever a new sen-
tence violates these acceptability constraints, then 
the author gets immediate feedback.  

Another option of ECOLE is the paraphrase 
that informs the author how the system interpreted 
the input. Below follows an example of an input 
sentence with a paraphrase generated by the con-
trolled language processor: 
 

Input: 
 
Agatha is not the butler. 
 
Paraphrase: 
 
Agatha is not [ identical to]  the butler. 
 
The paraphrase thus makes it clear to the author 

that the copula (is) followed by a definite noun 
phrase (the butler) is interpreted as identity. If the 
copula had been followed by an indefinite noun 
phrase such as (a lady), then the system would in-
terpret this as a property and introduce a state in 
the semantic representation instead of an identity. 

PENG allows only well-defined forms of ana-
phoric references (definite descriptions and names, 
but no personal pronouns). The paraphrase informs 
the author how anaphoric references are resolved 
during parsing: 

 
Input: 
 
If a rich person lives in Dreadsbury Mansion 
then that person is Agatha. 
 
Paraphrase: 
 
If a rich person lives in Dreadsbury Mansion 
then {that rich person} is [ identical to]  Agatha. 
 
An anaphoric expression is always replaced by 

the complete antecedent and the string is put within 
curly brackets. In PENG an anaphoric expression 
refers to the most recent accessible noun phrase 
that is suitable in terms of agreement, gender, and 
type, with respect to the nominal head and the pre- 
and postmodifiers. 

As another option of ECOLE the discourse rep-
resentation structure (DRS) can be displayed, 
which may be of interest to anyone wishing to see 
how the semantics of the processed information is 



represented. Normally the author does not have to 
worry about the underlying semantic representa-
tion since he can simply rely on the paraphrase 
produced by the controlled language processor. 
However, the underlying representation may be 
used, for example, to teach students logic and com-
putational semantics.  

In general, a DRS captures the information in a 
multi-sentence discourse and forms a logical the-
ory that shows the relations between the entities, 
the states, and the events in the application domain. 
A DRS is represented as a term of the form 
drs(U,CON), where U is a list of discourse refer-
ents and CON is a list of conditions for these dis-
course referents. The discourse referents are quant-
ified variables that stand for entities in the spe-
cified application domain, while the conditions 
constitute constraints that these discourse referents 
must fulfil to make the DRS true. For the following 
input the controlled language processor generates a 
DRS and sends it to ECOLE (see also Figure 2 for 
another example). 

 
Input: 
 
A person who lives in Dreadsbury Mansion kills 
Agatha. 
 
DRS: 
 
[ A, B, C, D, E, F]  
per son( A)  
event ( B, l i ve( A) )  
l ocat i on( C, i n( B, D) )  
named( D, dr eadsbur y_mansi on)  
event ( E, ki l l ( A, F) )  
named( F, agat ha)  
 
The first part of the DRS consists of six dis-

course referents in square brackets. The discourse 
referents A, D, and F stand for individuals and have 
been derived from the noun phrases. The discourse 
referent B and D stand for events and have been 
derived from the verbs. The discourse referent C 
reifies a location and has been derived from the 
prepositional phrase. These discourse referents are 
used in the second part of the DRS, which consists 
of conditions for the discourse referents.  

When a noun phrase is found to be anaphoric 
during parsing (such as the noun phrase the person 
in the example below), then the anaphoric refer-

ence is directly resolved and not represented in the 
DRS. 

 
Input: 
 
A person who lives in Dreadsbury Mansion kills 
Agatha. The person has a knife. 
 
DRS: 
 
[ A, B, C, D, E, F, G,H]  
per son( A)  
event ( B, l i ve( A) )  
l ocat i on( C, i n( B, D) )  
named( D, dr eadsbur y_mansi on)  
event ( E, k i l l ( A, F) )  
named( F, agat ha)  
state(G,have(F,H) 
knife(H) 

 
Paraphrase: 
 
A person who lives in Dreadsbury Mansion kills 
Agatha. {The person } has a knife. 

 
As we will see in the next section, such dis-

course representation structures are first translated 
into equivalent first-order formulas before they can 
be processed by off-the-shelf reasoning services. 

 

 

Figure 2: ECOLE in Action 
 
The task of the reasoning services is to check 

the consistency and informativity of a specification 
as it is being built up. 



4 How ECOLE Works 

The top-level architecture of the PENG system 
consists of five main components: ECOLE, the 
look-ahead text editor, a controlled language (CL) 
processor, a server, a theorem prover, and a model 
builder (Figure 3). 

 

 

Figure 3: Architecture of PENG 
 

ECOLE communicates with the CL processor 
via a socket interface. The CL processor is running 
as a client and is connected via a server with a 
theorem prover and a model builder. The theorem 
prover and the model builder are both running 
separate client processes. The server implements a 
blackboard on which the CL processor writes a 
(partial) specification for which the theorem prover 
searches a proof and the model builder looks for a 
countermodel. These two reasoning services are 
used to check whether a specification is consistent 
and informative, and to answer questions.  

4.1 The CL Processor 

When the author types a word form into ECOLE, 
then the current (partial) sentence is sent to the 
chart parser. The chart parser processes the input in 
the context of the previous sentences using a unifi-
cation-based grammar. The grammar is written in a 
format similar to a definite clause grammar but the 
chart parser is implemented as a meta-interpreter 
that reads the grammar as data. This approach al-
lows us to generate the look-ahead categories, re-
solve anaphoric references and produce the se-
mantic representation and the paraphrase during 
parsing.  

Here comes a simplified example of a grammar 
rule that is used by the chart parser: 

 
n2( Agr , I ndex, Quant , Dr s, Scope,  
   Par aI n- Par aOut , [ n2, T1, T2] ,  
   Gap- Gap, Ana)   
   - - - >    
 det ( Agr , I ndex, Quant , Dr s,  

Rest , Scope, Par aI n-    
Par a, T1) ,  

 n1(  cat : cn, Agr , I ndex, Quant ,  
       Rest , Par a- Par aOut , T2,  
       Gap- Gap, Ana) .  

 
The chart parser processes such grammar rules 

top-down and produces edges according to the 
rules of chart parsing (Gazdar and Mellish, 1989). 
The edges have the following general form: 

 
edge(START,END,HEAD,BODY) 
 

Such edges simply tell us, what categories of a 
grammar rule (HEAD  → BODY) can span the sub-
string of words found between the START point 
and the END point. We can distinguish two types 
of edges: active and inactive edges. An active edge 
is a hypothesis about a structure and an inactive 
edge is a result. For example, if the author types 
the determiner the into the editor, then the chart 
parser produces the following edges (simplified 
here): 
 

edge( 0, 1, [ det ] , [ ] )  
edge( 0, 0, [ s] , [ n2, v2] )  
edge( 0, 0, [ n2] , [ det , a2, n1] )  
edge( 0, 1, [ n2] , [ a2, n1] )  
edge( 1, 1, [ a2] , [ a1] )  
edge( 1, 1, [ a1] , [ a0] )  
edge( 0, 0, [ n2] , [ det , n1] )  
edge( 0, 1, [ n2] , [ n1] )  
edge( 1, 1, [ n1] , [ n0] )  

 
The first edge at the beginning of the chart is an 

inactive edge which contains an empty list []. It 
represents a confirmed hypothesis and shows that a 
determiner has been parsed successfully between 
the nodes 0 and 1. All other edges are active. That 
means that the chart is maintaining hypotheses 
about other structures that might follow. 

The look-ahead categories are generated in the 
following way: during chart initialization the 
length L of the input string is calculated and as 
soon as active edges are added to the chart that end 



at L then the leftmost category on the right hand 
side of a rule is collected. This process results in 
one or more look-ahead trees from which the lexi-
cal categories can be easily extracted as leafs. In 
our case chart parsing is incremental. If another 
word is added to the input string, chart parsing is 
resumed and additional look-ahead categories are 
collected for active edges at L+1. 

The look-ahead categories are then sent back to 
ECOLE together with a paraphrase, a (partial) syn-
tax tree, the updated discourse representation struc-
ture, and a first-order representation of the current 
input. As we will see in the next section, the first-
order representation is not generated directly by 
the chart parser but derived from the discourse rep-
resentation structure. 

4.2 Reasoning Services 

Standard reasoning services are not able to process 
discourse representation structures directly. There-
fore, we translate the discourse representation 
structure into a set of first-order formulas with the 
help of an efficient compiler that behaves linearly 
on the size of the input (Blackburn and Bos, 1999). 
These first-order formulas build a logical theory 
that can be investigated by a theorem prover and a 
model builder. We are especially interested to 
check whether a theory is consistent and informa-
tive after new information has been added to that 
theory. For example, if the author writes: 

 
Agatha is a woman who lives in Dreadsbury 
Mansion. 
 

and later accidentally adds the information 
 
Agatha does not reside in Dreadsbury. 
 

then the consistency of the theory is violated.  
As we will see below, the PENG system can 

detect such inconsistencies provided that live and 
reside are stored as synonyms in the lexicon and 
that Dreadsbury is known as an abbreviation of 
Dreadsbury Mansion. 

In a similar way, if the author writes 
    

Agatha lives in Dreadsbury Mansion. 
 

and later adds the information 

Agatha resides in Dreadsbury. 

then the informativity constraint is violated since 
the second sentence does not add any new informa-
tion. Here we would end up with a theory that con-
tains redundant information. 

To detect the inconsistency of a theory , we 
can use a theorem prover and give it the negation 
of the theory ¬ . If a proof is found for the ne-
gated theory, then the original theory is inconsis-
tent (or unsatisfiable). To detect the consistency of 
a theory , we can use a model builder. A model 
builder is a program that takes a theory and tries to 
build a model 

�
 for that theory. This is done with 

an interpretation function �  that systematically 
maps predicates and constants of the language to 
members of a domain D. A theory  is consistent 
(or satisfiable) if the model builder can find at least 
one model 

�
 that satisfies all the formulas in the 

theory. In general, model builders are only able to 
construct finite models and require a parameter 
that constrains the domain size of the model. 

Theorem prover and model builder can com-
plement each other (Bos, 2001a; Bos, 2001b; 
Fuchs and Schwertel, 2002). If a theory is unsatis-
fiable, then the theorem prover will find a proof 
while the model builder has to do an expensive 
search that possibly does not terminate. If the the-
ory is satisfiable for a finite domain, then the 
model builder will find a model while the theorem 
prover has to do an expensive search that possibly 
does not end. Finally, if the problem is satisfiable 
for an infinite domain, then the theorem prover 
will never be able to find a proof and the model 
builder will never succeed to find a model. To deal 
with this unpleasant case, the theorem prover and 
the model builder have to stop searching for a solu-
tion after a specific runtime. 

Apart from helping each other out and checking 
for inconsistency and satisfiability, the theorem 
prover and the model builder can also be used to 
check a theory for its informativity and to construct 
answers to questions. 

Testing whether a piece of information  is 
new and informative with respect to its previous 
context  can be done by giving the theorem 
prover   . If it finds a proof, then  is not 
informative. The model builder can do a similar 
test, provided that we give it  ∧  and then  ∧ 
¬ ; if the model builder finds a model 

�
 in both 

cases, then  is informative. 
A variation of the basic proof procedure can be 

used to answer questions formulated in PENG.  



During a proof variables are bound to values by 
substitutions. These bindings can be interpreted as 
a question answering process.  

Interestingly, the structures generated by the 
model builder can also be used for the question 
answering process. Since the model builder con-
structs flat structures with no explicit quantifica-
tion or boolean operators, answers to questions can 
be easily extracted from these structures (Black-
burn and Bos, 1999). 

4.3 The Theorem Prover in Action 

The PENG system uses OTTER (McCune, 1995), 
a resolution style theorem prover for first-order 
logic with equality. The theorem prover client of 
PENG accepts a theory via ECOLE and the CL 
processor and transforms the formulas into first-
order equivalent OTTER-syntax. 

For example for the simple input 
 
Agatha is a human. 
Every human is a mortal. 
 

we arrive at the OTTER input file below. The flag 
name auto stands for OTTER's autonomous 
mode, max_seconds for the maximal search 
time, and prolog_style_variables for the 
format of the variables that start here with A 
through H. 
 

set ( aut o) .   
assi gn( max_seconds, 3) .  
set ( pr ol og_st y l e_var i abl es) .  
f or mul a_l i s t ( usabl e) .  

 
( exi s t s  A ( ex i st s  B ( ex i s t s C  

( - ( ex i st s  G ( ex i s t s H 
  ( s t at e( G)  & be( G, C, H)  &   
   eq( C, H)  &  mor t al ( H) ) ) )  &   

  ( ( al l  D ( human( D)  → ( exi s t s  E  
 ( ex i s t s F ( s t at e( E)  & 
   be( E, D, F)  & eq( D, F)  &  

      mor t al ( F) ) ) ) ) )  &  
  ( s t at e( A)  & be( A, C, B)  &   
   eq( C, B)  & human( B)  &  
   eq( C, agat ha) ) ) ) ) ) ) .  
 

   end_of _l i st .  
 
This means that the client calls OTTER in the 

autonomous mode placing a time limit on the 
search. In the autonomous mode OTTER decides 

on inference rules and strategies. OTTER operates 
on clauses and therefore translates the first-order 
input immediately into clauses. OTTER uses a 
number of inference rules (binary resolution, hy-
perresolution, UR-resolution, and binary para-
modulation). These inference rules take a small set 
of clauses and infer a clause. If the inferred clause 
is new and useful, then it is stored and used by 
OTTER for subsequent inferences. When OTTER 
stops running, it returns with an exit code that 
gives the reason for termination. For our simple 
example above, OTTER confirms that it found a 
proof.  

In the case of a wh-question such as 
 
Who is a human? 

 
an answer literal of the form $ans(C) is auto-
matically added to the query: 

 
( - ( exi s t s  G ( ex i st s  H  

( st at e( G)  & be( G, C, H)  &  
eq( C, H)  & mor t al ( H) ) ) )  &  
$ans(C) & … 

 
Answer literals make it possible to record in-

stantiations for variables in input clauses during a 
search for refutation. For example, OTTER pro-
duces the following skolemized terms during a 
proof: 
 

eq( $c1, $c2) .  
human( $c2) .  
eq( $c1, agat ha) .  
…  
$ans( $c1)  
 
This makes question answering possible and al-

lows us to display the answer as a string in con-
trolled natural language. 

4.4 The Model Builder in Action 

The PENG system uses MACE (McCune, 
2001), a model builder for first-order logic with 
equality to search for finite models. The model-
builder client of PENG accepts a theory from the 
CL processor and transforms the formulas into 
OTTER-syntax. OTTER and MACE accept nearly 
the same input but since MACE attempts to find 
minimal models and does not distinguish between 
constants, we need to add extra constraints to the 



theory to guarantee that constants in the input are 
assigned unique elements of the domain. This is 
not a big problem since these constraints can be 
generated automatically and be specified in a spe-
cial list in the input file. The client then calls 
MACE using that input file with a given finite do-
main size for the search. MACE transforms the 
first-order input into an equivalent propositional 
problem in conjunctive normal form. The proposi-
tional problem is then given to a propositional de-
cision procedure. If the decision procedure finds a 
model that satisfies the set of propositional clauses, 
then the model is transformed into a first-order 
model of the original problem. MACE can print 
models in an easily parsable form that can be read 
by most Prolog systems. For the two example sen-
tences: 
 

Agatha is a human. 
Every human is a mortal. 

 
MACE builds the following kind of model (pretty 
printed): 

 
f ( 1, human, [ d2] )   
f ( 1, s t at e, [ d1] )   
f ( 3, be, [ ( d2, d2) ] )   
f ( 1, mor t al , [ d2] )   
f ( 0, c3, d2)   
f ( 0, c1, d2)   
f ( 0, c2, d2)   
f ( 0, agat ha, d2)   

  
The answers to the questions 
 

Is Agatha a mortal? 
Who is a mortal? 
 

can now be extracted from these flat structures and 
an answer string can be generated in controlled 
natural language. 

5 Conclusions 

In this paper we presented ECOLE, a sophisticated 
look-ahead editor and discussed how this editor is 
embedded and used in the PENG system. ECOLE 
guides the author during the writing process. For 
each word form entered, ECOLE displays look-
ahead categories and indicates what syntactic cate-
gory can follow next. Writing PENG puts no big 
demands on the author when it comes to learning 

and remembering the rules of the controlled lan-
guage as they are efficiently taken care of by the 
look-ahead editor. The use of the look-ahead cate-
gories guarantees well-formed expressions and 
provides the necessary structural basis for the se-
mantic interpretation of the controlled language in 
a completely compositional manner. While the au-
thor is writing a sentence, a paraphrase is dynami-
cally generated in PENG that explains how the 
system interprets the current input. PENG texts are 
deterministically translated into first-order logic 
via discourse representation structures and can be 
automatically checked for consistency and infor-
mativity with the help of off-the-shelf reasoning 
services. 

Such a computer-processable controlled natural 
language that is automatically translatable into a 
formal language has an immense potential and can 
lead to practical solutions in various application 
domains: 
 
• Software engineering is one of the first appli-

cation domains that can benefit from a con-
trolled natural language. Using a controlled 
language will make it possible to write unam-
biguous and precise software specifications 
and to develop taxonomies of domain concepts 
in a familiar and intuitive notation. Beyond 
that, it will become possible to check the re-
sulting specification automatically for its con-
sistency and to derive a formal specification 
automatically. 

 
• The Semantic Web is another application do-

main that might profit from a controlled natu-
ral language. For example, a controlled natural 
language might be used to model human-
readable Web structures and to exploit the un-
derlying reasoning capabilities for the man-
agement of information. Instead of struggling 
with RDF or Notation3, non-specialists could 
work with a layer of a controlled language that 
is equivalent to a version of description logic. 

 
These are only two obvious examples of possi-

ble application domains. Other domains are busi-
ness process modeling, database modeling, and 
legal reasoning. 

Besides that we are planning to use the PENG 
system for teaching students logic and concepts in 
language technology. 
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