Incremental construction and maintenance of morphological
analysers based on augmented letter transducers

Alicia Garrido-Alenda, Mikel L. Forcada and Rafael C. Carrasco
www . interNOSTRUM . com
Departament de Llenguatges i Sistemes Informatics
Universitat d’Alacant, E-03071 Alacant, Spain.
{alicia,mlf,carrasco}@dlsi.ua.es

Abstract

We define deterministic augmented letter transducers (DALTS), a class of finite-
state transducers which provide an efficient way of implementing morphological
analysers which tokenize their input (i.e., divide texts in tokens or words) as they
analyse it, and show how these morphological analysers may be maintained (i.e.,
how surface form—lexical form transductions may be added or removed from them)
while keeping them minimal; efficient algorithms for both operations are given in
detail. The algorithms may also be applied to the incremental construction and
maintentance of other lexical modules in a machine translation system such as the
lexical transfer module or the morphological generator.

1 Introduction

intertNOSTRUM (Canals-Marote et al. 2001) is an online Spanish-Catalan machine
translation system (http://www.internostrum.com) that attains great speed through
the use of finite-state transducers (FSTs) in its lexical modules, for instance, in the
source-language morphological analyser. The final FSTs in interNOSTRUM are a spe-
cial class of letter transducers (Roche & Schabes 1997) that are obtained by compiling
linguistic specifications (such as morphological and bilingual dictionaries) given in a
linguist-readable language.

During the maintenance of the machine translation (MT) system, two operations
are very common: the addition of a set of transductions (corresponding, for example, to
the (surface form, lexical form) pairs' corresponding to a new word in the vocabulary),
and the removal of a set of transductions (for instance, when an error is detected in
the morphological analyser). Until now, these operations were performed by adding or
removing the entries from the dictionaries and recompiling them into minimal FSTs,
which was too slow to be convenient. More precisely, the complete dictionary was not
compiled; instead, dictionaries were divided in sections, compiled separately, and the
corresponding FSTs were merged into a single FST; addition or removal of an entry
involved only the recompilation of a particular dictionary section and the merging of
all FSTs; this was better but still too slow. In some situations, real-time addition

'The surface form is the (possibly inflected) form of the word as it appears in the text; the lexical
form gives the base form of the word, its part of speech, and grammatical information about its
inflection.

and removal of transductions may be crucial: for example, when debugging the lexical
modules of the MT system or when a user wants to add new words for immediate use.

In this paper, we show a simple and efficient method to modify a minimal FST so
that a single transduction is added to or removed from the language accepted by it.
The algorithms presented here are derived from those presented by Carrasco & For-
cada (2002) for finite-state acceptors (FSAs), which in turn extend the range of those
by Daciuk et al. (2000) to cyclic FSAs and to the removal of entries. The algorithms in
this paper are applicable to a particular class of FSTs called deterministic augmented
letter transducers (deterministic ALTs or DALTSs). Any FST may always be turned
into an equivalent letter transducer (Roche & Schabes 1997); as will be shown, aug-
mented letter transducers are a convenient way of implementing morphological analy-
sers: (1) they analyse text simultaneously to segmenting (tokenizing) it into contextual,
morphologically-motivated units (which may be composed of more than one word) by
using one-character lookahead; (2) they may be easily manipulated as customary finite-
state machines over an alphabet of input—output symbol pairs, and (3) these operations
do not alter the existing input—output alignments, which may capture the regularities
detected and explicitly coded in the dictionaries by a linguist as partial transductions
for morphemes or as paradigms containing sets of alternative partial transductions.

This paper has the following parts: section 2 defines the deterministic augmented
letter transducers that will be used in this paper; section 3 describes how to use them
as morphological analysers; single-transduction DALTSs are defined in section 4; the
minimal DALTSs resulting from adding or removing a transduction are described in
detail in section 5; section 6 describes the algorithms, and, finally, some closing remarks
are given in section 7.

2 Deterministic augmented letter transducers (DALT)

Any FST may always be turned into an equivalent letter transducer (Roche & Schabes
1997). The deterministic augmented letter transducers (DALT) used in our analysers
are T = (Q, L,0,q1,&s,&w), where @ is a finite set of states; L a set of transition labels
L=(2U{e}) xT)U (X x (' U{e})) where ¥ is the input alphabet, I' the output
alphabet, and € the empty symbol (see below); 0 : Q x L — @ the transition function;
qr € Q the initial state; & : Q@ — 25918} a function that assigns a strong validation
(or strong lookahead) set £,(q) to each state, &, : @ — 2°Y{8} a function that assigns
a weak validation (or weak lookahead) set &,(q) to each state, with $ the end-of-input
(end-of-file) marker, and with &5(¢) N &y(g) = 0 for all ¢ € @ (the use of validation
sets will become clearer in section 3). States such that &5(q) U &w(q) # 0 will be
called acceptance states. According to the definition of L, state transition labels may
therefore be of three kinds: (o : 7), meaning that symbol o € ¥ is read and symbol
v € I' is written; (o : €), meaning that a symbol is read but nothing is written; and
(€ :), meaning that nothing is read but a symbol is written. In morphological analysis,
the symbols in ¥ are those found in texts, and the symbols in I'" are those necessary
to form the lemmas and those representing morphological information. Lookahead is
only necessary for morphological analysis; the lexical transfer and the morphological
generators, which operate on delimited lexical forms, do not need lookahead conditions
and may be seen as DALTSs having either (q) = X U {$} or &(q) U &w(q) = 0, that

is, as letter transducers having only the classical acceptance and nonacceptance states
(Roche & Schabes 1997).

Even if DALTs are deterministic with respect to the alphabet L, they are in general
non-deterministic with respect to . Input nondeterminism is substantial to the coding
of many of the regularities found by linguists and represents ambiguity in a straightfor-
ward way, whereas FST's such as Mohri’s (1997) p-subsequential transducers, which are
made deterministic by realigning the transductions and therefore destroying the lin-
guistically motivated alignments, are forced to model ambiguity by producing different
output suffixes after reaching a final state. On the other hand, experiments with real
dictionaries and real corpora, show that the input nondeterminism (i.e., the average
number of alive transductions during the process) is very low and ranges around 2.

In this paper, we will define § to be a total mapping; the corresponding DALTSs
will be called complete. This involves no loss of generality, as any DALT may be made
complete by adding a new absorption state 1 to @, so that all undefined transitions
point to it and such that §(L,l) =L for all [€ L, and &(L) = &,(L) = 0. Using
complete DALT is convenient for the theoretical discussion in this paper; real imple-
mentations of automata and the corresponding algorithms need not contain an explicit
representation of the absorption state and its incoming and outgoing transitions.

For complete DALTS, the extended mapping 6* : @ x L* — @ (the extension of § to
transductions in L*) is defined simply such that §*(q, \) = ¢, with A the empty string
in L*, and 6*(q,) = 6(6*(¢,z),!1) for all [€ L and = € L*.

It is convenient to define the following languages for each transducer T and each
lookahead o € X U{$}: the language of transductions strongly accepted by T', L5(T') =
{t ©+ o € &(6*(q1,t))}, and the language of transductions weakly accepted by T,
LYT) = {t: o€ &(0*(qr,t))} (note that, for each lookahead o € X U {$}, L3(T) N
LY(T) = 0). The corresponding families of right languages for each state ¢, R5(T,q),
and RY¥ (T, q) are defined analogously but substituting ¢ for ¢;.

It is very easy to build a non-deterministic ALT from a morphological dictionary by
grafting the individual transductions corresponding to each (surface form, lexical form)
entry in the morphological dictionary, such as (tails,tailNP), which a linguist may
have chosen to align, e.g., as (t,t) (a,a) (i,1)(1,1) (¢,N) (s,P), into a single initial
state (for details, see Garrido et al. 1999). Since ALTSs are isomorph to finite-state
automata, they may therefore be determinized with respect to the alphabet L and
minimized using adapted versions of existing algorithms for finite automata (Hopcroft
& Ullman 1979).

A minimal DALT is one in which no two states are equivalent. Analogously to
deterministic finite automata, equivalent states are those having the same sets of right
transduction languages. Note that DALT minimization does not change the alignments
originally given between surface forms and lexical forms; this is because, unlike in
minimization algorithms for regular FSTs (Mohri 1997), minimization operates at the
level of the pair alphabet L.

3 Using DALTSs as morphological analysers

A string w’ € T* is considered to be a strong (resp. weak) transduction of an input
string w € X* if there is at least one path from the initial state ¢y to a state g such that
the input symbol following w is in the validation set &5(q) (resp. &u(q)). In general,
there may be more than a valid transduction for a string w (in analysis, this would
correspond to the lexical ambiguity shown by homographs, surface forms having two or
more lexical forms, i.e., two or more morphological analyses).

“Tokenize as you analyse”: The validation sets defined in DALTs through func-
tions &5 and &, enable morphological analysers to both tokenize the input (segment it
into surface forms suitable for analysis) and analyse it at the same time (much in a
similar manner as the lexical scanners generated by the Unix utility lex, Lesk 1975).
Input is buffered for convenience. The DALT analyses the input by maintaining the
following sets:

e An SPO (set of partial outputs). The SPO initially contains the pair (¢,qr); a
fresh SPO is built from the previous SPO after each input symbol and contains
all the (output string, state) pairs (z,q) formed by the last states ¢ reached and
their associated partial output strings z € I'*.

e Two SVO (sets of validated outputs), the strong SVO and the weak SVO, which
are initially empty and contain (output string, state) pairs formed by the most
recently strongly and weakly validated acceptance states and their associated
output strings.

The input position p of the symbol with which the sets of acceptance states in each
SVO were reached is also stored. After reading each input symbol o,

e anew SPO is built from the previous SPO (the new SPO contains (z7, ¢') if (v, q)
was in the previous SPO and there is a v € I' U {e} such that §*(q, (o,7) = ¢);
and

e pairs (z,q) in the previous SPO such that o € &(q) (resp. o € &,(q)) are used to
overwrite the strong (resp. weak) SVO and its position p (if no such pair occurs,
the SVO and p are left intact).

Input is read until all elements of the current SPO contain the absorption state L;
then, output strings corresponding to the strong SVO are written, and, if empty, output
strings corresponding to the weak SVO are written; finally, the DALT restarts at the
initial state and the character immediately after the position p of the last SVO. If the
SVOs are empty at that point, the DALT writes the symbol read immediately after
the initial state as an “unanalysed symbol”, and restarts at the next symbol and at the
initial state.

Strongly validated acceptance states (q : £5(q) # 0) are used, for example, to identify
regular words using a validation set with all non-word symbols (so that the analyser does
not stop at bar when input is barber); in particular, unconditional strong acceptance
states (q : €5(q) = X U {$}) are used to identify tokens such as punctuation marks (:,

-), whitespace, or apostrophated forms (d’, 1’). On the other hand, weakly validated
acceptance states (¢ : &,(q) # () are used to clip “unknown words” (such as barnwazz)
and produce some kind of guessed (weak) transductions. As has been said, if a strong
transduction is present, weak transductions are ignored.

This left-to-right, longest-match way of functioning makes it very easy to treat
(variable or invariable) multi-word units (MWUs), for input: if a MWU is not complete,
the acceptance state reached will correspond to a smaller unit, which will be clipped and
whose transduction will be output (for example, if the dictionary contains “George”
and the MWU “George Washington”, when reading “George W. Bush” the MWU
“George Washington” will abort at the “.”, the transduction of “George” will be
output and the analyser will be ready to process the remaining text, “ W. Bush”).

4 Single-transduction DALT

In most cases, the morphological dictionary will grow through the addition of a trans-
duction t € L* —corresponding to a new (surface form, lexical form) pair— which has
to be strongly accepted, but conditionally to a lookahead set S* C ¥ U {$}. We find it
therefore convenient to define the (complete) single-transduction DALT for transduc-
tion ¢ strongly accepted with lookahead set S?, denoted T* = (Q, L, &, ¢t, €%, €L), such
that £3(T") = {t} for 0 € S'.2 This DALT has Q' = Pr(t) U {L'}, where Pr(t) is
the set of all prefixes of transduction ¢ and L denotes the absorption state, ¢t = X,
& (x) =0 for all z € QF, and & such that &L(t) = S* and &i(x) = () for & # t. The
next-state function is defined as follows: if zl € Pr(t) then §(z,1) = wl; else 6(z,1) =1t
Note that the single-transduction DALT for a transduction ¢ has |Qf| = |t| + 2 states.

5 Adding and removing a transduction
5.1 Adding a transduction

Given a DALT T, it is easy to build a new complete DALT 7" such that it accepts all
the strong and weak transductions accepted by T plus a new transduction ¢ strongly
accepted with a validation set S!; that is:

o {t} ifoest
Vo e XU{S}, L3(T") = 'CU(T)U{ ¢ otherwise

{t} ifoesSt
@ otherwise

(1)
Yo e SU{$}, LY(T") = L¥T)- {

Full details of how T” is derived are not given here; however, the construct described
here (based on Carrasco & Forcada’s (2002) construct for finite-state automata, and
described there in more detail) builds upon the classical Cartesian-product construction
of a deterministic finite automaton accepting the intersection of two regular languages
found in formal language theory textbooks (Hopcroft & Ullman 1979:p. 59), applied to
T and the single-transduction automaton T but with a special assignment of acceptance
states to ensure the above conditions.

2Single-transduction DALTs may analogously be defined for weak acceptance.

The new DALT, 7" = (Q', L,d,q},£.,&,) has Q' = Q x QF, &' such that for all
(¢,¢") € @ and for all | € L, §((q,q"),1) = (6(q,1),8'(q",1)) and ¢} = (qs,¢}). Before
discussing functions &/, and &, it is convenient to realize that states may be seen as
belonging to four groups (the nomenclature is inspired in that used by Daciuk et al.
2000).

e States of the form (g, L), with ¢ € Q — { L}, equivalent to those non-absorption
states of T which are not reached by any prefix of ¢; they will be called intact states
because they have the same transition structure as their counterparts in 7'; that
is, if 6(q,1) = r, then &'((¢q, L%),1) = (r, L*). For large DALTSs (dictionaries) T,
these are the great majority of states (the number of intact states ranges between
|Q| — [t| — 1 and |Q)]); therefore, it will be convenient in practice to consider 7" as
a modified version of T" and will be treated as such in the algorithms presented
in this paper.

e States of the form (¢, z) with ¢ € Q—{L} and = € Pr(¢), and such that 6*(qr,z) =
¢; they will be called cloned states; in particular, the new start state, ¢; = (qr, A)
is also a cloned state. The remaining states in (Q — {L}) x Pr(t) —most of
the states in @ x Q'— may be discarded because they are unreachable from the
new start state ¢;. Cloned states are modified versions of the original states
q € Q — {L}: all of their outgoing transitions point to the corresponding intact
states in @', (6(q,1), L), except for the transition with symbol [: zl € Pr(t),
which now points to the corresponding cloned state ((q,l),zl). There are at
most |t| + 1 cloned states.

e States of the form (L, z), with € Pr(¢). These states will be called queue states;
states of this form appear only if in the original automaton §*(q7, z) =L for some
x € Pr(t). There are at most |t| queue states.

e An absorption state 1'= (L, L), with &(L") =&, (L") =0.

The new DALT 7", which for most large dictionaries is only slightly larger than T has
the following lookahead sets:

¢ | INTACT ((¢, 1) | CLONED ((¢,z)) | QUEUE ((L,2))
LN &(qQuUSt ifx=t Stoifx=t
&(d) = &(a) &(q) otherwise () otherwise
1o fw(Q)_St ifz=t
Suld) = Swl4) ¢w(Q) otherwise v

It is straightforward to show that the right languages for intact states in 7" are the same
as their counterparts in T: R:(T", (q, L)) = R:(T,q), and R¥(T", (q, L)) = R¥(T, q),
for all 0 € ¥ U{$}; since the original DALT was minimal, this means that minimization
will not affect intact states, which are usually most of the states in 7”. This is the main
reason for the efficiency of the algorithms presented in this paper: minimization may
be accomplished in a small number of operations. It is not difficult to show that
minimization may be performed by initializing a register R with all of the intact states
and then testing, one by one, queue and cloned states against states in R (starting

with the last queue state (L,¢) or, if it does not exist, the last cloned state (q,t),
and descending in Pr(t)) and adding them to the register if they are not found to be
equivalent to a state in R (performing this check backwards avoids having to test the
equivalence of states by visiting their descendants recursively). This is the most costly
part of the algorithms and has an asymptotic complexity of O(|Q||t|), since |R| is of
the order of |@|. Minimization (including the elimination of unreachable states in T")
appears in section 6 as part of the transduction addition and removal algorithms.

5.2 Removing a transduction

Again, given a DALT T, it is easy to build a new complete DALT T” such that it
accepts all the strong and weak transductions accepted by 7" minus transduction ¢
strongly accepted with validation set S?; that is:

(T)_{ {t} ifoest

Vo e SU{S}, L3(T) = L} ® otherwise (2)

[

Vo € SU{S$}, £Y(T) = L¥(T)

The resulting DALT has the same set of reachable states in Q' as the one in section 5.1,
and therefore the same close-to-minimality properties; however, since ¢ is supposed to
be in L&(T) for all o € S*, no queue states will be formed (in fact, if t ¢ L5(T), a
nonaccepting queue with all states eventually equivalent to (L, L') may be formed).
The lookahead sets are:

q INTACT ((q, L)) CLONED ((q,x)) QUEUE ((L,x))

.y &(g)— St o=t
£s(d') &s(q) &(q) otherwise

0
§uld) = §w(q) w(q) 0

Note that if transduction ¢ with validation set S? is removed from the DALT, it may
still be possible that ¢ is still strongly accepted with a smaller validation set (which is
unlikely in usual dictionary maintenance). Minimization may be performed analogously
to the transduction addition case.

6 Algorithms
6.1 Adding a transduction

Figure 1 shows the algorithm that may be used to add a transduction to an existing
DALT, which follows the construction in section 5.1. The resulting DALT is viewed
as a modification of the original one: therefore, intact states are not created; instead,
unreachable intact states are eliminated later. The register R of states not needing
minimization is initialized with Q. The algorithm has three parts:

e First, the cloned and queue states are built and added to () by using function
clone() for all prefixes of t. The function returns a cloned state (with all transitions
created) if the argument is a nonabsorption state in @ — { L} or a queue state
if it operates on the absorption state 1€ @Q; in both cases, it updates lookahead
sets according to the table in section 5.1.

e Second, those intact states which have become unreachable as a result of desig-
nating the cloned state ¢} as the new start state are removed from @ and R and
the start state is replaced by its clone (unreachable states are simply those states
having no incoming transitions as constructed by the algorithm as a consequence
of the removal of other unreachable intact states). Note that only intact states
in (g, x) for some x € Pr(¢t) may become unreachable as a result of having
been cloned; therefore, if states are visited in ascending length of x, function
unreachable() simply has to check for the absence of incoming transitions.

e And third, the queue and cloned states are checked (starting with the last state)
against the register R using function replace_or_register(), which is an adaptation
of the non-recursive version found in algorithm 2 of (Daciuk et al. 2000): basically,
if the argument state is found to be equivalent to a state in R, it is replaced by
its equivalent in R; if not, it is added to R.

Finally, the new (minimal) DALT is returned. In real implementations, absorption
states are not explicitly stored; this results in small differences in the implementations
of the functions clone() and replace_or_register().

6.2 Removing a transduction

The algorithm for removing a strong transduction from the languages accepted by a
DALT T only differs from the previous algorithm in that the clone() function uses the
table in section 5.2 instead of that in section 5.1. Since the string removal algorithm
will usually be asked to remove a string which was in £ (7') for some o, function clone()
will usually generate only cloned states and no queue states.

7 Concluding remarks

Deterministic augmented letter transducers (DALTS), a class of letter transducers
(Roche & Schabes 1997) defined in this paper, are an efficient way of implementing mor-
phological analysers which tokenize their input (i.e., divide texts in tokens or words) as
they analyse it, and have been used in a machine translation system (Garrido et al. 1999;
Canals-Marote et al. 2001). They may also be used, without the lookahead mechanism
to build lexical transfer and morphological generation modules. This paper shows how
DALTSs may be maintained (i.e., how input-output pairs or transductions may be added
or removed from them) while keeping them minimal; algorithms for both operations are
described. The algorithms here bear some resemblance to those described in (Daciuk
et al. 2000) for acyclic deterministic finite automata; however, the algorithms here apply
to transducers, allow for the removal of transductions, and are not restricted to acyclic
transducers. The time complexity of the algorithms is in O(|Q||¢|) (as in Daciuk et al.
2000).

Acknowledgements: Supported by the Caja de Ahorros del Mediterraneo, by the
Vice-rectorate for Information Technologies of the Universitat d’Alacant and by the
Spanish Comision Interministerial de Ciencia y Tecnologia through grant TIC2000-
1599-C02-02.

algorithm addtrans
Input: T = (Q, L,0,qr1,&s,&w) (minimal, complete),
t € L*, with strong lookahead set S*
Output: 7" = (Q', L,¢,q},&,,€,) minimal, complete,
and such that conditions (1) hold
R «— @ [initialize register]
q7 < clone(qr) [clone initial state; update validation sets]
Qlast < q,[
for i =1 to |t
q < clone(6*(qr,t1 -+ - t;)) [create cloned and queue states; update validation sets]
O(Qrast; ti) < q
Qlast < 4
end_for
71— 1
Gcurrent < 41
while(i < |t| and unreachable(geurrent))
Gnext < 5(QCurrenta ti)
Q@ — Q — {qeurrent } [remove unreachable state from @
and update transitions in ¢]
R — R — {qcurrent } [remove also from register]
Gcurrent <~ (next
1+— 1+ 1
end_while
if unreachable(gcurrent)
Q—Q— {QCurrent}
R—R— {QCurrent}
end_if
qr < ¢y [replace start state]
for i = |t| downto 1
replace_or_register(d* (g, t1 - - - t;)) [check queue and cloned states one by one]
end _for
return T = (Q, L, 0, qr1, s, Ew)

end_algorithm

Figure 1: Algorithm to add a transduction ¢ with strong validation set S* to a DALT while
keeping it minimal.

References

Canals-Marote, Raiil, Anna Esteve-Guillén, Alicia Garrido-Alenda, Maria I. Guardiola-Savall,
Amaia Tturraspe-Bellver, Sandra Montserrat-Buendia, Sergio Ortiz-Rojas, Herminia
Pastor-Pina, Pedro M. Pérez-Antén & Mikel L. Forcada: 2001, ‘The Spanish—Catalan
machine translation system interNOSTRUM’, in Proceedings of MT Summit VIII, Santi-
ago de Compostela, Spain.

Carrasco, Rafael C. & Mikel L. Forcada: 2002, ‘Incremental construction and maintenance of
minimal finite-state automata’, Computational Linguistics, in press.

Daciuk, Jan, Stoyan Mihov, Bruce W. Watson & Richard E. Watson: 2000, ‘Incremental con-
struction of minimal acyclic finite-state automata’, Computational Linguistics, 26(1): 3—
16.

Garrido, A., A. Tturraspe, S. Montserrat, H. Pastor & M.L. Forcada: 1999, ‘A compiler for
morphological analysers and generators based on finite-state transducers’, Procesamiento
del Lenguaje Natural, (25): 93-98.

Hopcroft, J. E. & J. D. Ullman: 1979, Introduction to automata theory, languages, and compu-
tation, Reading, MA: Addison—Wesley.

Lesk, M.E.: 1975, ‘Lex — a lexical analyzer generator’, Tech. Rep. Technical Report 39, AT&T
Bell Laboratories, Murray Hill, N.J.

Mobhri, Mehryar: 1997, ‘Finite-state transducers in language and speech processing’, Computa-
tional Linguistics, 23(2): 269-311.

Roche, E. & Y. Schabes: 1997, ‘Introduction’, in E. Roche & Y. Schabes, eds., Finite-State
Language Processing, Cambridge, Mass.: MIT Press, pp. 1-65.

