
TALN 2002, Nancy, 24–27 juin 2002

An Example-Based Semantic Parser for Natural Language

Michel Géńereux
Austrian Research Institute for Artificial Intelligence

Schottengasse 3, A-1030, Vienna, Austria
michel@oefai.at

Abstract

This paper presents a method for guiding semantic parsers based on a statistical model.
The parser isexampledriven, that is, it learns how to interpret a new utterance by look-
ing at some examples. It is mainly predicated on the idea that similarities exist between
contexts in which individual parsing actions take place. Those similarities are then used to
compute the degree of certainty of a particular parse. The treatment of word order and the
disambiguation of meanings can therefore be learned.

Mots-clefs – Keywords

Analyseur s´emantique, Corpus, Langue naturelle
Semantic parser, Corpus, Natural language

1 Introduction

In order to achieve better results inacquisition, coverage, robustnessandportability, corpus-
based methods have been recently applied with success in areas like speech recognition (Ra-
biber, 1989), part-of-speech tagging (Charniak, Hendrickson, Jacobson and Perkowitz,
1993) and syntactic parsing (Manning and Carpenter, 1997). InSemantic Parsing, the
process of mapping a natural language input to some structured meaning representation,
Collins and Miller (Collins, 1998) describe a statistical model for extraction ofevents;
Miller, Stallard, Bobrow and Schwartz describe an approach entirely based on a trained sta-
tistical model (Miller, Stallard, Robrow and Schwartz, 1996) and Thompson, Mooney and
Tang (Thompson, Mooney and Tang, 1997) propose a novel and very interesting approach
based on a bottom-up parser and a machine learning algorithm. I propose an approach in
which a bottom-up parser is combined with a statistical model. Figure 1 shows the overall
architecture of the system.

2 Overview of the Parsing Process

This section presents the various elements of the system. The parser used is a variant of
a Shift-Reduceparser (Marcus, 1980). It actually comprises three different manageable
actions that the parser uses to get to the final parse, which is a semantic interpretation
(in first-order logic) of a natural language utterance. This left to right parsing makes the
process relatively intuitive for humans.

Michel Généreux

Figure 1: The Parser Architecture

The Input String The input string is a list of words to give an interpretation for. When
no action is applicable and the input string is empty, then the parsing process is completed.
For example1:
(1) �Ich,suche,einen,Artikel,¨uber,Bush]

The Parse Stack Format:[concept1:[context1],concept2:[context2],. . .]
The parse stack is the actual parse state, the current interpretation of the input string

found so far. It is a list of binary elements, each element representing a combination of the
introduced predicate (or concept) with its context of introduction. Here is an example:
(2) �suche([],zeitung(),zeit()):[suche,einen,Artikel],start:[Ich]]

The sHIFT action Syntax:sHIFT(word to be shifted)
A sHIFTaction simply puts the first word from the input string at the end of the context

of the concept on the top of the parse stack. For example, the actionsHIFT(̈uber) on the
parse stack 2 would result in the following new parse stack:
(3) �suche([],zeitung(),zeit()):[suche,einen,Artikel,¨uber],start:[Ich]]

The iNTRODUCE action Syntax:iNTRODUCE(concept to be introduced)
The iNTRODUCE action takes a concept from the semantic lexicon and puts it on the

top of the parse stack, initializing its context of introduction to the word (or list of words)
that triggered this concept. For example, the actioniNTRODUCE(topic(1))on the parse
stack 2 would result in the following new parse stack:
(4) �topic(1):[topic(1)],suche([],zeitung(),zeit()):[suche,einen,Artikel],start:[Ich]]

The dROP action Syntax:dROP(sourceterm, target term)
The dROP action attempts to place a term from the parse stack as argument to another

term of the parse stack. For example, the actiondROP(topic(1),suche([],zeitung(),zeit()))
on the parse stack 4 would result in the following new parse stack:
(5) �suche([topic(1)],zeitung(),zeit()):[suche,einen,Artikel],start:[Ich]]

A Parse State Format:op(aCTION(arguments)#ParseStack#Input String)
It indicates in which context, i.e. how the Parse Stack and the Input String looked like,

when the action took place.Op is simply a container2 for all types of actions.

1Although not yet topicalized.
2A container is a term which embraces other terms.

An Example-Based Semantic Parser for Natural Language

A Final State Format:final(Parse Stack)
It indicates the final aspect of a parse, i.e. the meaning found for an input string.

Semantic Lexicon Format:lexicon(CONCEPT, [TRIGGERING PHRASE])
It comprises all the concepts and their triggering phrase(s) that we wish our parser

to process. For example,sucheor brauchewould trigger thesucheconcept. Here is an
example of a lexical entry:
(6) lexicon(suche([],zeitung(),zeit()),[suche]).

The shift-reduce parser I am now ready to present the variant of the shift-reduce
parser I am using. The algorithm of the parser is as follows:

1. Try to introducea new concept orshift a word.

2. If possible, make onedropaction.

3. If there are more words in the input string, go back to Step 1. Otherwise stop.

Topic extraction Typically, topic extraction replaces relevant noun phrases or preposi-
tional phrases in the input string by successivetopic() terms. For our running example 1,
after topicextraction, this is the following phrase which is passed on to the parser:

[Ich,suche,einen,Artikel,topic(1)]

3 Training

The training phase records successful actions (calledop), as well as the different final states.
For each of them uniquely defined, it assigns a frequency measure, defined as follows:

��������� �
��������� �� � 	��
������ ��
��� �� �
	������ ���
��

��
�� ������ �� ��������� ��
��
 ��
���
(7)

In the following are examples of sentences on which the parser was trained (a test set).

Written Korpus

Artikel über das Wiener Neujahrskonzert suche ich.
Etwasüber das Konzert als festen Bestandteil des kulturellen Lebens suche ich.

Spoken Korpus

Ich möchte jetzt eine neue Suche beginnen.
Die Kosovo-Krise un und Bill Clinton.

Artificial data

Bitte geben Sie mir einen Text zum Thema Kosovo-Krise.
Aber bitte nur in der Zeitung Salzburger Nachrichten von vor einer Woche.

Training file The training file is the file in which training examples are stored. These
examples have the following format:

training([topicalized phrase], meaning).

Meaningis in the form of first order logic expressions. A training file example could be3:

training([Ich,moechte,jetzt,eine,neue,Suche,beginnen],neue_suche).
training([Ich,suche,einen,Artikel,topic(1)],suche([topic(1)],zeitung(_),zeit(_))).

3oe stands for ¨o, ue stands for ¨u and ae stands for ¨a

Michel Généreux

Note that the examples for which we wish to train for should be topicalized for a changing
domain. The third example could be helpful in training for a sentence like:

Ich suche einen Artikel über Bush.

While training, anoverlyGeneralParseris used. It is overly general in the sense that it tries
any possible actions to get to the final parse, without considering any information (such as
statistics) that could be helpful to guide the parsing process. In training, atraining beam
can be specified. This means that only a certain number of parses will be recorded in the
statistical filefor each training example.

File used by the Specialized Parser: the Statistical FileThe overlyGeneralParser
parses thetraining file to generate thestatistical file. Every step needed to go from the
topicalizedphraseto the meaningis recorded, as well as final states themselves. Final
states are simply the states of the parse stack themselves at the end of the parse. Each of
them (actions and final states) are assigned a frequency measure as described previously.
Each line has either one of the following format (recall thatop is a container for any action):

op(ACTION#PARSE_STACK#INPUT_STRING#FREQUENCY).
final(FINAL_STATE#FREQUENCY).

Here is an example:

op(sHIFT(Ich)#[start:[]]#[Ich,suche,einen,Text,for,topic(1),topic(2),
bitte,bearbeiten,Sie,meinen,Suchauftrag]#0.3333).

These lines are used by thespecializedParserto compute the best parse.

4 Statistical Parsing

The actual parsing of the input phrase is done by aspecializedParser. It is specialized in the
sense that it uses a statistical model to process all the information available from the training
phase in order to get the best possible parse (the one with the highest probability). This
section presents a detailed description of the statistical model used. Weighting parameters
are presented but not discussed.

The Search space Like in the training phase, the most obvious way to influence the
parse is to tell the parser how many parses it should try before taking a decision. I call it
thesearch beamparameter.

Measure of similarity between lists This is a crucial aspect of the specialized parser.
When the parser tries to choose a suitable parse, it must compare list of words (to compare
Actions, Parse stacksor Input strings). A goodsimilarity measure between lists is essential,
but because computing similarity is very demanding on computer resources, one must find
a trade-off that preserves computational efficiency. At the top level, the similarity measure
is simply a measure of the number of identical elements in both lists, divided by the size of
the largest list. Therefore, we have:

�	
	���	
� �
������ �� ����
���� ������

���� ��
�� �����

 ��

(8)

For example, omitting case-sensitivity:

(9) similarity([Ich,suche,einen,Artikel],[Das,suche,ich]) = 2/4 = 0.5

An Example-Based Semantic Parser for Natural Language

Comparisons sometimes involves structures. Structures can be decomposed into list in
PROLOG4, and then compared by using equation 8:

��������������	 ����	

� � ����������	 ����	 ����	

� (10)

Therefore, we can now roughly compare structures as lists. Preliminary empirical results
tend to show that the approximation is sensible .

Parameterizing the model I introduce all the equations for the model, explaining their
context of use. The best parse� is found by taking the highest probability�� among the
possible parses (limited by the search beam) available:

� � ������ (11)

Each of these parses�� have a probability that amounts to combining the probability of
the individualop or actions together (

�
� ��) and adding the probability of the final state

(����� , see equation 15). These two components must be appropriately weighted by���

and����� . Multiplying by 100 gives a more readable value between 0 and 100.

�� � ���� � �
�

�

��� � ����� � ����� � � ��� (12)

The way eachop �� is assigned a probability is by taking into account its similarity with
one of theops in the statistical file (see equation 14) as well as the frequency of thisop
(���������). These two components are also weighted by��� �	
 and��� ���.

�� � �������� �	
 � �� � ��� ��� � ���������� (13)

While looking for a suitableop in the statistical file, the parser looks for similarity. The
similarity of anop �� with one in the statistical file is measured by multiplying together
the similarity of theop as such, the similarity of theparse stackand the similarity of the
input string(t stands fortraining).

� � ������� ���������� 	 ���� � ��� ������� 	 ���� � ��� 	 ��� ����� 	 ������ �� (14)

Computing the probability of a final parse state is similar to computing the one for
actions. A final state probability����� is the weighted sum of the most similar final state
in the statistical file�� (see 16) and the frequency of this final state��������� :

����� � ���� ������ �	
 � �� � ����� ��� � ���������� (15)

�� � ������	
�

 �� �� (16)

When needed, smoothing is carried out in a very conservative manner.

5 Results
I have conducted an experiment to test the performance of the parser. After training with
only 80 examples, the parser averages 62% correctness while parsing a new sentence.Re-
call is therefore slightly lower than the other approaches mentioned at the beginning of the
paper. I believe there are mainly four reasons to that:

1. The very low number (80) of training examples, compare to 560, 225 and 4000 sentences of
other approaches.

2. The lack of extensive testing on what would be the best setting for default values of weighting
parameters. Only a set of rather intuitive values were used.

3. The assimilation of natural language utterances to sets instead of lists.

4. A measure of similarity that sacrifices precision for computational efficiency.

4The programming language used.

Michel Généreux

6 Conclusion

In this paper, a new probabilistic framework for semantic parsing is presented. The com-
bination of ashift-reduceparser and a purely statistical model makes it unique. More pre-
cisely, the parser learns efficient ways of parsing new sentences by collecting statistics on
the context in which each parsing action takes place. It computes probabilities on the basis
of the similarities of those contexts and their frequencies. The result is a simple and robust
parser. Its configuration can be change in many ways, to fit different types of corpus or do-
mains. At this point, the system has not yet been fully tested on very large corpora, to see
if the statistical model remains as efficient. It does not include the treatment of variables,
which means that there is no treatment of questions. However, testing with few examples,
the parser shows promising results.
Compare to similar systems using some machine-learning techniques, ours offers an ap-
proach in which linguistics can play a decisive role; we have a more direct influence on the
role of contexts in evaluating the probability of a parse. One crucial aspect of the parser,
the computation of similarities between context, relies on a good interpretation of linguis-
tic patterns found in phrases, and how those configurations may determine the particular
meaning of a word or group of words. This is essential to interpret, and maybeunderstand,
natural language utterances.

Acknowledgments

This work has been sponsored by the Fonds zur F¨orderung der wissenschaftlichen Forschung
(FWF), Grant No. P13704. The Austrian Research Institute for Artificial Intelligence
(ÖFAI) is supported by the Austrian Federal Ministry of Education, Science and Culture.

References

E. Charniak, C. Hendrickson, C. Jacobson and M. Perkowitz (1993),Equations for part-
of-speech tagging, Proceedings of the 11th National Conference on AI, 784-789.

M. Collins and S. Miller (1998),Semantic Tagging using a Probalistic Context Free Gram-
mar, In Proceedings of the Sixth Workshop on Very Large Corpora.

M.J. Collins (1997),Three generative, lexicalised models for statistical parsing, Proceed-
ings of the 35th Annual Meeting of the Association for Computational Linguistics, 16-23.

S. Miller, D. Stallard, R. Bobrow and R. Schwartz (1996),A Fully Statistical Approach
to Natural Language Interfaces, Proceedings of the 34th Annual Meeting of the ACL,
Morgan Kaufmann Publishers, San Francisco, Arivind Joshi and Martha Palmer, 55-61.

L.R. Rabiner (1989),A tutorial on hidden Markov models and selected applications in
speech recognition, Proceedings of the IEEE, Vol. 77, No. 2, 257-286.

C. A. Thompson, R. J. Mooney and L. R.Tang (1997),Learning to Parse Natural Lan-
guage Database Queries into Logical Form, Proceedings of the ML-97 Workshop on
Automata Induction, Grammatical Inference, and Language Acquisition.

C.D. Manning and B. Carpenter (1997),Three generative, lexicalised models for statisti-
cal parsing, Proceedings of the 5th Int. Workshop on Parsing Technologies, 147-158.

M.P. Marcus (1980),A Theory of Syntactic Recognition for Natural Language, MIT Press.

Ulf Hermjakob and Raymond J. Mooney (1997),Learning Parse and Translation Deci-
sions from Examples with Rich Context, Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, 482–489.

