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Abstract 

The notion of "best of breed" among value-added machine translation 
technology providers is generally defined as providing access to the single 
best commercially available machine translation engine for each language 
pair. This paper describes the efforts of Amikai, Inc. to go beyond that defi- 
nition of best of breed. Rather than relying on a single engine for each pair, 
we have written a program that automatically selects the best translation from 
a set of candidate translations generated by multiple commercial machine 
translation engines. The program is implemented using a simple statistical 
language modelling technique, and relies on the simplifying assumption that 
the most fluent item in the set is the best translation. The program was able 
to produce the best translation in human ranked data up to 19% more often 
than the single best performing engine. 

1    Introduction 

Value-added machine translation technology providers do not create machine 
translation engines, but instead repackage and resell other companies' tech- 
nology – adding something of value in the process. Amikai, Inc. is one 
such business. Amikai differentiates itself from machine translation engine 
vendors by: 

• simplifying the process of integrating machine translation into existing 
code bases, and providing expert advice on how to do so 

 

* The author is now at University of Edinburgh, Division of Informatics, 2 Buccleuch Place, Ed- 
inburgh EH8 9LW, UK. E-mail: ccb@csli.stanford.edu 

 



• selling translation as a hosted service available over the internet 

• scaling the translation engines so that they can handle millions of re- 
quests per day 

• offering augmentations to the translation engines, such as customized 
dictionaries 

• providing more complete coverage of language pairs, or higher quality 
engines for particular pairs, than available from a single vendor 

There are a large number of machine translation engine vendors, some 
offering language pairs which others do not. Since machine translation re- 
sellers are not limited to engines from a single vendor, they are able to to as- 
semble an extensive set of language pairs by combining engines from differ- 
ent vendors. Amikai provides access to all of its constituent engines through 
a uniform software interface, which abstracts away from the software calls 
associated with any particular engine. This abstract interface is advantageous 
not only because customers can translate between any of the available lan- 
guages using a single interface, but also because it means that Amikai can 
essentially treat MT engines as modular components that can be easily re- 
placed. 

The modularity of MT engines has led to the use of the label "best of 
breed" among value-added machine translation technology providers. "Best 
of breed" is generally defined as providing access to the single best commer- 
cial machine translation engine on the market for each language pair. Since 
there are a number of translation engines for each language pair, Amikai does 
internal qualitative evaluations of the overall quality for each of the engines 
and licenses the engine which it deems the best for each pair.1 For example, 
Amikai evaluated more than half a dozen Japanese  English translation 
engines before settling on the engine that it currently uses to provide transla- 
tions between those languages. 

The following sections detail Amikai's bid to go beyond the standard 
definition of best of breed. Rather than relying on a single engine for each 
pair, we have written a program that runs a number of translation engines 
in parallel and produces a set of possible translations. The program then 
automatically selects the best translation from the candidate set, and provides 
that translation to the user. Rather than evaluating each of the translation 
engines available for a particular language pair and relying on the one that 
is best overall, this program allows us to utilize the best possible engine 
for every input. Provided that the program successfully in selects the best 
translation from a set generated, then our translation quality is guaranteed to 
be  at  least  as  good  as  that  of the best constituent engine.    Provided that one 

1 Translation quality is something that is notoriously difficult to evaluate, and the matter of choos- 
ing the "best" translation engine is additionally complicated by the fact that quality is not the only 
dimension upon which a company like Amikai evaluates an engine. Salability, stability, time for 
translation, and licensing issues also come into play. 



engine does not uniformly produce the best translation, then Amikai would 
in fact have better overall quality than any individual engine. That would 
be a clear value-add from our customers' perspectives, and would further 
distinguish Amikai's services. 

2   Dynamically Choosing the Best Translation 

The idea of building a program which dynamically selects the best translation 
from a set of translations begs the questions: Isn't being able to automatically 
distinguish the quality of translations essentially as difficult as building a 
machine translation engine? In that case, why use third party translation 
engines at all? 

At first blush, it seems like selecting the best translation for a particular 
input from a set should be nearly as difficult as translating that input. You 
might imagine a strategy wherein the input is analyzed in some manner to 
construct a semantic representation or logical form of some sort, and each 
of the candidate translations are analyzed in a similar fashion. The semantic 
representations could then be compared using some sort of metric to find 
the translation that most closely matches the meaning of the input. That 
strategy is nearly as elaborate as building a machine translation engine (it 
only neglects the generation component). Building a fully-fledged translation 
engine is an enormous task. We've simplified the problem of choosing the 
best translation by making one crucial assumption: that the most fluent output 
corresponds to the best translation. With that assumption, the problem of 
choosing the best translation can be divorced from me input, and the problem 
is reduced to choosing the most well-formed example of the target language. 

Assuming that the most fluent translation is the best translation isn't nec- 
essarily a well-grounded assumption — it would reward systems which had 
better generation components over those which actually preserve the mean- 
ing of the input. However, when translation engines fail to do a complete 
analysis of the input, their recovery strategies for producing a translation of- 
ten result in "word salad". Therefore, if an engine produces a fluent transla- 
tion then it is likely that the engine had a successful analysis of the input, in- 
creasing the likelihood that the meaning will be successfully transferred. We 
conducted an experiment, testing people's judgments on fluency and transla- 
tion quality for machine translated sentences and found the two to be highly 
correlated as detailed in section 5. 

2.1    Statistical Language Models 

In order to automatically rank the translations that are produced by our col- 
lection of commercial translation engines, we assign a probability to each 
engine's output with a statistical language model of the target language. A 
language   model   judges   the   probability   that   each   output   is   a  sentence  in  the 

 



language that it models. The highest ranking output from the translation 
engines is deemed to be the most fluent, and therefore best translation. Sta- 
tistical language models are not new to natural language processing. They 
are fundamental to speech and optical character recognition, and are used in 
spelling correction, handwriting recognition and statistical machine transla- 
tion. For example, Hidden Markov Models have been applied with great suc- 
cess to speech recognition systems. Rather than relying on the raw speech 
signal to predict the next word, HMMs allow hypotheses to be generated 
about a series of words given the probabilities of the previous words. Word 
sequences are determined by finding the maximum probability path through 
the HMM (Ney 1998). 

We built a language model for English using a web crawler to gather 
the text of 800 articles from the Internet magazine Salon. This corpus was 
augmented with 7,000 English inputs from Amikai chat rooms, and 12,000 
English questions filtered from search data sent to a natural language search 
engine. The total size of the corpus was just over two million words. The 
statistical model that we generated was a simple trigram model with smooth- 
ing, following (Knight 1999). Other statistical models, such as a Hidden 
Markov Model, could have been used, but the trigram approach is simpler to 
implement and gives impressive results, as shown below. 

To assign a probability to a sentence, a table was created recording the 
number of occurrences of every word, bigram (ordered word pair), and tri- 
gram (ordered word triple) in our corpus. These counts were used to as- 
sign a probability to each of those units in the sentence being evaluated. 
The probability of a word x occurring is the number of occurrences of x 
divided by the total number of words seen. The probability of a bigram xy is 
p(y\x) = numOccurrences(xy)/numOccurrences(x). The probability 
of a trigram xyz is p(z|xy) = numOccurrences(xyz)/numOccurrences(xy). 
Our program assigns a probability to each English sentence generated by a 
translation engine by taking the product of the probability of each of the sen- 
tence's trigrams.2 

The result of using a trigram language model is that sentences with vo- 
cabulary and word ordering that are similar to the observed language are 
assigned a higher probability than sentences with strange word ordering or 
uncommon vocabulary. This corresponds fairly well to the intuitive meaning 
of fluency. 

2 The program actually smooths the trigram probabilities using the probabilities of the bigrams 
and words and a very small constant to counteract the effects of sparseness in the data, which would 
frequently cause a probability of zero for unobserved word sequences. See (Callison-Burch and 
Flournoy 2001) for details. 



2.2   A Concrete Example 

To illustrate this, let's say the Japanese input "ashita kara haruyasumi" is 
fed into the program. The program would then produce a candidate set of 
translations from four separate Japanese to English translation engines. The 
set of translations produced for this sentence is: 

"Spring it is a day off from tomorrow.",  
"It is the spring vacation from tomorrow.",  
"It will be haruyasumi from tomorrow.", 
"It is spring vacation from tomorrow."  

The probability of each of the sentences would then be calculated based on 
the produce of its trigrams: 
P(Spring it is a day off from tomorrow) = 

p(Spring   start-of-sentence start-of-sentence)* 
p(it | start-of-sentence Spring)* 
p(is | Spring it)* 
p(a | it is)* 
p(day | is a)* 
p(off | a day)* 
p(from | day off)* 
p(tomorrow | off from)* 
p(end-of-sentence | from tomorrow)* 
p(end-of-sentence | tomorrow end-of-sentence) 

The program then consults its frequency tables (which were precompiled 
from the corpus of English text) to calculate the value of each multiplicand, 
and assigns a probability to the sentence. It repeats this process for each of 
the other three sentences, and then ranks the sentences in order according to 
their probabilities. In this case the program ranked them in this order: 

1. "It is spring vacation from tomorrow." 

2. "It is the spring vacation from tomorrow." 

3. "Spring it is a day off from tomorrow." 

4. "It will be haruyasumi from tomorrow." 

And thus would return "It is spring vacation from tomorrow." as the transla- 
tion of the Japanese input, discarding the other translations. 

3   Evaluation 

The performance of the program was evaluated against a set of hand-ranked 
data. Sets of machine-translated English sentences were produced from Japanese 
and French sentences using multiple translation engines. For each Japanese 
sentence, a set of four English sentences was produced. For each French sen- 
tence,  a  set  of  two  English  sentences  was  produced.    Each  of  the  translated 

 



sentences was assigned a fluency rating by a monolingual English speaker 
using the following scale: 

1. Nearly Perfect - the sentence is a fluent English sentence. 

2. Understandable - the sentence is understandable but may have (slightly) 
strange word choice, or contain some minor grammatical errors, such 
as an incorrect preposition or determiner. 

3. Barely Understandable - the sentence contains several grammar and/or 
vocabulary errors and can only be understood with great effort on the 
part of the reader. 

4. Incomprehensible - the meaning of the sentence cannot be derived. 

The program was run on each of the sets of translations. The program 
assigned probabilities to each sentence in a set, and returned the sentence 
that it found to have the highest probability, as described in section 2.2. The 
program's performance is given in the following tables as a percentage that is 
calculated by dividing the number of sets that were considered by the number 
of times that the program successfully picked out the highest human ranked 
sentence in a set (or, in the case of ties, one of the sentences which received 
the highest rank), 

In comparing the model performance to the human rankings, we consid- 
ered the baseline measure to be the single engine which received the most top 
ranks from the human subjects. If our program did not perform better than 
this baseline then there would be no point in integrating it into our transla- 
tion architecture - the baseline essentially measures the current best of breed 
translation technology. 

4   Results 

The results are separated based on the types of inputs that the candidate sets 
were generated from. For the translations into English, 100 Japanese sen- 
tences were gathered from Amikai's chat rooms, 154 French sentences were 
taken from web pages, and 84 French sentences were taken from the chat 
rooms. Table 1 shows the performance of our program and each of the four 
translation engines that were used to generate the candidate sets of transla- 
tions for the Japanese chat sentences. In this case the baseline engine was 
Engine B,3 which produced the highest ranked candidate translation 70% of 
the time overall. Our program outperformed the baseline engine, choosing 
the highest ranked translation 4% more often. 

We note that the performance of our program is most important when 
the candidate translations are understandable or nearly perfect, because dis- 
tinguishing  between  the  better  of  barely  understandable  sentences  does  not 

3 The translation engine names have been removed because Amikai treats evaluation information 
as proprietary. 



All   Inputs At Least   Under-  Nearly   Perfect 
                          (100 sets)    standable (86 sets)  (57 sets) 
Multi-engine     74%   73%   77% 
comparison 
Engine A 58%   54%   61% 
Engine B 70%   69%   66% 
Engine C 27%   21%   19% 
Engine D 40%                35%                              39% 

Table 1: Japanese to English Chat Sentences 

                          All   Inputs    At Least   Under-      Nearly   Perfect 
                          (154 sets)        standable (118)        (38 sets) 

Multi-engine     84%      81%      87% 
comparison 
Engine E  76%     70%     68% 
Engine F          58%        52%.                      45% 

Table 2: French to English Web Page Sentences 

increase the usability of our products as much. Therefore, we refined the per- 
formance results by grouping the sets according to their highest ranked trans- 
lation. Performance values are given for all sets, for those sets which con- 
tained a sentence rated Understandable or higher, and for those sets which 
contained a sentence rated Nearly Perfect. In this case, the relative perfor- 
mance of our program was higher than the baseline engine on those sets than 
it was for all sets. For the 57 sets which contained at least one sentence which 
had been ranked Nearly Perfect, the baseline engine got the rank 66% of the 
time, whereas our program was able to select the best sentence 77% of the 
time – a 11% increase over the baseline as opposed to the 4% overall. 

Table 2 shows the performance for two translation engines which trans- 
lated sentences gathered from French web pages, and for our program select- 
ing between the candidate translations generated by those two engines. Our 
multi-engine comparison program again outperformed the baseline engine, 
scoring 8% better overall, 11% better on the 118 sets which contained un- 
derstandable translations, and 19% higher for the 38 sets which contained a 
nearly perfect translation. 

Interestingly, the baseline engine changed from Engine E to Engine F for 
translations of French chat room sentences, as shown in Table 3. This is ev- 
idence that some MT systems perform better for certain types of language 
usage   than   other   systems   do,   and   perform   worse  than  those  systems  do  for 



All   Inputs    At Least   Under-      Nearly   Perfect 
                         (84 sets)         standable (61 sets)     (34 sets) 
Multi-engine     94%    92%      100% 
comparison 
Engine E 71%    66%       68% 
Engine F         86%      80%                              85% 

Table 3: French to English Chat Sentences 

other types of language usage, which was a motivating factor for creating 
our program. For the relatively informal constructions found in chat, Engine 
F received the highest rating 86% of the time overall, and 85% of the time 
(compare to Engine E's 68%) for sets which contained at least one nearly 
perfect translation. The multi-engine comparison program yielded high re- 
sults (probably due in part to the large number of ties between the fluency 
ratings of the two candidate translations in each set). The program choose 
the best translation more than 90% of the time for all sets, and 100% of the 
time for the 34 sets containing a nearly perfect translation. 

4.1    A Non-English Model 

In order to test that the statistical language modelling technique employed 
by our program would also be effective for languages other than English, 
we built a language model for French using a corpus containing 1.1 million 
words. Using English sentences gathered from web pages and chat rooms, 
we created candidate translation sets using five translation engines (Engines 
E, F, and three others labeled G-I). The machine generated French sentences 
were then ranked by a French speaker using the same scale as for the En- 
glish sentences. Table 4 shows the results for the program using the French 
language model. 

The multi-engine comparison tool again performed better than the base- 
line engine - though to a lesser extent than in previous tests - but still enough 
to suggest that the technique has the potential to transfer to other languages. 
Because the French language model was built from a corpus only about half 
the size of the English corpus, and because French has a richer morphology 
than English (leading to a higher number of word forms), there is a decreased 
likelihood than a word in a candidate translation would have been observed 
in the training corpus. The fact that the program did outperform the baseline 
even given these constraints bodes well for the method. Its performance may 
well increase to the same levels as for the English, given an increased corpus 
size. 



                            All   Inputs At Least   Under-    Nearly   Perfect 
                          (51 sets)         standable (44 sets)     (34 sets) 
Multi-engine      67%    61%    64% 
comparison 
Engine E 53%    48%    47% 
Engine F 49%    41%    47% 
Engine G 45%    36%    32% 
Engine H 51%    45%    44% 
Engine I            63%      57%                           62% 

Table 4: English to French Sentences (Chat and Web Page) 

5    Verification of the Assumption 

In order to test the assumption that the most fluent output of the machine 
translation engines corresponds to the best translation, we designed an ex- 
periment to compare how people rate fluency to how they rank translation 
quality. 

For the experiment we had a group of nine bilingual subjects rate a sub- 
set of the data that we used to determine the program's performance. The 
experiment was divided into two parts. For the first part the translations were 
displayed in random order without showing the source text. The subjects 
were asked to rate the fluency of each of the sentences according to the pre- 
viously mentioned scale. For the second part, the subjects, who were fluent 
in either French or Japanese, were shown sets of translations paired with the 
original sentence. They were asked to rank the sentences in each set based 
on the quality of the translation. 

A within-subject comparison was done between each subject's fluency 
rating and his or her translation quality rankings for each sentence. The rel- 
ative ordering for each pair of translations in a set was compared. If the 
subject assigned the same relative ranking to a pair of translations for both 
the fluency and the translation quality tests, then we counted that as a match. 
For cases where one of the tests was judged a tie, we used either a strict or 
loose method for comparison. In the loose method for comparison, if the rat- 
ings were tied for one test but not the other, we counted a match. In the strict 
method, we counted a tie as a match only if the scores were also tied in the 
other test. The similarity was calculated by dividing the number of matches 
by the total number of comparisons. 

Using the strict comparison method the subjects had an average of 90.7% 
similarity between their fluency and translation quality scores. Using the 
loose method for comparison that number increased to 99.39%. We took this 
to be strong evidence that our simplifying assumption was well founded. 
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