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Abstract 
An approach to Example-Based Machine Translation is presented which operates by extracting translation patterns from a bilingual 
corpus aligned at the level of the sentence. This is carried out using a language-neutral recursive machine-learning algorithm based on 
the principle of similar distributions of strings. The translation patterns extracted represent generalisations of sentences that are 
translations of each other and, to some extent, resemble transfer rules but with fewer constraints. The strings and variables, of which 
translations patterns are composed, are aligned in order to provide a more refined bilingual knowledge source, necessary for the 
recombination phase. A non-structural approach based  on surface forms is error prone and liable to produce translation patterns that 
are false translations. Such errors are highlighted and solutions are proposed by the addition of external linguistic resources, namely 
morphological analysis and part-of-speech tagging. The amount of linguistic resources added has consequences for computational 
complexity and portability. 

Introduction 
A number of example-based machine translation (EBMT) 
systems operate by extracting and recombining translation 
patterns or templates from bilingual texts (Kaji et al, 
1992; Güvenir & Cicekli, 1998; Brown 1999; Carl 1999; 
McTait & Trujillo, 1999). Translation patterns represent 
generalisations of sentences that are translations of each 
other in that various sequences of one or more words are 
replaced by variables, possibly with the alignments 
between word sequences and/or variables made explicit. 

In this approach, which builds upon and improves 
that of McTait & Trujillo (1999), translation patterns are 
extracted from a bilingual corpus aligned at the level of 
the sentence. They are extracted by means of a language-
neutral recursive machine-learning algorithm based on the 
principle of similar distributions of strings: source 
language (SL) and target language (TL) strings that co-
occur in the same 2 (or more) sentence pairs of a bilingual 
corpus are likely to be translations of each other. The SL 
and TL strings that make up the translation patterns are 
aligned so that they provide not only sentential patterns of 
translation, but also a more refined bilingual knowledge 
source representing word / phrasal translations, necessary 
for the recombination phase, where TL translations are 
produced. Since the variables also represent strings, they 
too are aligned. Figure 1 is an example of a simple 
translation pattern indicating how a sentence in English 
containing give…up, may be translated by a sentence in 
French containing abandonner. 

 
 

Xs  give  Ys  up   ÅÆ  Xt  abandonner  Yt 

 

Figure 1: A Simple Translation Pattern 
 

The translation pattern in figure 1 contains not only 
simple bijective or 1:1 alignments between text fragments 
or variables, but also non-bijective alignment types, such 
as the 2:1 alignment between give…up and abandonner. 

The ability to efficiently compute bijective and non-
bijective alignments, as well as long distance 
dependencies, is conducive to more accurately describing 
translation phenomena. 

Translation patterns are extracted, and the text 
fragments of which they are composed aligned, when the 
data is sparse, since strings only need to co-occur in a 
minimum of 2 sentence pairs. Furthermore, language-
neutral techniques, such as cognates and bilingual lexical 
distribution, are used to align the strings or text fragments 
of which the patterns are composed. 

The translation patterns extracted resemble, to some 
extent, transfer rules within a Rule-Based Machine 
Translation (RBMT) system, but with fewer constraints. A 
linear approach based on the distributions of surface 
forms within a corpus is liable to the extraction of 
translation patterns that are false translations. Solutions to 
this phenomenon are proposed by the addition of external 
linguistic knowledge sources such as morphological 
analysis and part-of-speech (POS) tagging. Figure 2 
depicts the system architecture. The dotted lines indicate 
that the use of the knowledge sources is optional. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: System Architecture 

The addition of linguistic resources is intended to 
improve both accuracy and recall. However, their addition 
has consequences for portability and computational 



complexity. The more resources required, the less portable 
and the more complex the system. 

This paper outlines the translation pattern extraction 
algorithm along with the corresponding recombination 
step where, given SL input sentences, TL translations are 
produced. The problems associated with a non-structural 
language-neutral approach are highlighted with solutions 
proposed involving the addition of external linguistic 
knowledge sources. Three variants of this approach are 
then ready for comparison, each with varying amounts of 
linguistic knowledge incorporated: i) the language-neutral 
approach based on surface forms, ii) the approach 
augmented to include morphological analysis and iii) the 
approach augmented to include both morphological 
analysis and POS tagging. Their performance is evaluated 
and compared, as is their complexity. 

1 Existing Approaches 
The concept of EBMT based on the extraction and 
recombination of translation patterns can be placed 
somewhere between 'traditional' linear EBMT - where the 
TL equivalents of overlapping partial exact matches of the 
SL input are computed dynamically and recombined 
(Nirenburg et al, 1993; Somers et al, 1994) - and systems 
that extract patterns that bear more resemblance to 
structural transfer rules (Kaji et al, 1992; Maruyama & 
Watanabe, 1992; Watanabe, 1995). 

The extraction of translation patterns is typically 
reliant on the ability to generalise pairs of sentences in a 
corpus that are translations of each other. One method of 
classifying such systems is the method by which such 
generalisations are achieved and what constraints, if any, 
apply as a result. The broadest categorisation to make is 
those that use external linguistic resources and those that 
do not. However, distinctions may be made as to how and 
what external knowledge sources are used to generalise 
translation examples. 

An approach that makes use of significant resources 
is Kaji et al. (1992). They use an English-Japanese 
bilingual dictionary and parsers to find correspondences at 
the phrase-structure level between two sentences that are 
translations of each other. These structures are then 
replaced by variables to produce translation patterns, 
similar to that in figure 1, except that the variables contain 
syntactic and possibly semantic constraints, due to the use 
of a thesaurus. The translation patterns described in 
Watanabe (1993)  make use of a complex data structure 
involving a combination of lexical mappings and 
mappings between dependency structures, as is the case 
for the pattern-based context-free grammar rules found in 
Takeda (1996). Carl (1999) makes use of rich 
morphological analysis, enabling shallow parsing of the 
corpus to allow for the percolation of morpho-syntactic 
constraints in derivation trees. As Matsumoto & Kitamura 
(1995) show, it is also possible to generalise sentence 
pairs by replacing semantically similar words or 
dependency structures by means of a thesaurus. 

Brown (1999) replaces certain strings denoting 
numbers, weekdays, country names etc. by an 
equivalence-class name, as well as including linguistic 
information such as number and gender. As Brown 
successfully shows, the level of abstraction or 
generalisation has consequences for coverage and 
accuracy. 

Furuse & Iida (1992) describe three types of 
translation examples. The first type (2a) consists of literal 
examples, the second (2b) consists of a sentence pair with 
words replaced by variables and the third type (2c) are 
grammatical examples or context-sensitive rewrite rules, 
in effect, transfer rules of the kind found in traditional 
RBMT systems. The second type, despite its simplicity, 
most closely represents the translation patterns produced 
in this approach. 

(2a) Sochira ni okeru ÅÆ We will send it to you 
(2b) X o onegai shimasu ÅÆ may I speak to the X� 
(2c) N1 N2 N3 ÅÆ N2 N3 for N1 

N1 = sanka / participation, N2  PÀVKLNRPL �
application, N3  \ÀVKL � IRUP 

Language-neutral techniques of extracting translation 
patterns are based on analogical reasoning (Güvenir & 
Cicekli, 1998; Malavazos & Piperidis, 2000) or inductive 
learning with genetic algorithms (Echizen-ya et al, 2000). 
The general principle applied is that given two sentence 
pairs in a corpus, the orthographically similar parts of the 
two SL sentences correspond to the orthographically 
similar parts of the two TL sentences. Similarly, the 
differing parts of the two SL sentences correspond to the 
differing parts of the TL sentences. The differences are 
replaced by variables to generalise the sentence pair. 
Highly inflective, or worse agglutinative, languages 
require an amount of linguistic pre-processing. In the case 
of Turkish, Güvenir & Cicekli (1998) use morphological 
analysis to alleviate orthographical differences. 

Once generalisations of translation examples have 
been made, the SL and TL text fragments of which they 
are composed are generally aligned. In the case of the 
translation patterns of type (2b) in Furuse & Iida (1992) 
and also those of Carl (1999), there is no alignment 
problem to be solved since there are only single 1:1 or 
bijective mappings between strings or variables. In the 
case of Güvenir & Cicekli (1998), multiple 1:1 alignments 
in a translation template are solved by finding 
unambiguous or previously solved instances of the 
alignments in question from other translation templates.  
Few, if any, of the existing approaches cater for the fact 
that translation phenomena are not always bijective and 
that translation relations of a nature other than 1:1 exist 
i.e. the 2:1 relationship in figure 1. 

The statistical models of Brown et al. (1993) cater for 
such relationships. However, they are computationally 
expensive, require large amounts of training data, rule out 
effective treatment of low-frequency words and are 
limited to unidirectional word-to-word translation models, 
thus ignoring the natural structuring of sentences into 
phrases. Later approaches (Dagan et al 1993; Wang & 
Waibel, 1998) address some, but not all, of these issues. 
The problem of aligning text fragments in translation 
examples is related to the bilingual vocabulary alignment 
problem. This includes words, terms and collocations (see 
Fung & McKeown (1997) and also Somers (1998) for an 
overview and bibliography). Generally, language-neutral 
or statistical vocabulary alignment techniques, based on 
distributions of word forms, are limited to computing 1:1 
alignment patterns, again with large amounts of training 
data required. 

2 Extraction & Recombination 



(gave)[1,2] 

(gave)(up)[1,2] 

(abandonna)[1,2] 

2.1 Translation Patterns 
A translation pattern can be defined formally as a 4-tuple 
{S, T, Af, Av}. S (T) represents a sequence of SL (TL) 
subsentential text fragments, separated by SL (TL) 
variables which represent subsentential text fragments (a 
subsentential text fragment is a series of one or more 
lexical items or tokens). In S, there can be any number p 
(p>0) of SL text fragments (Fp) with p, p+1, p–1 SL 
variables (Vp). In T, there can also be any number q (q>0) 
of TL text fragments (Fq) with q, q+1, q–1 TL variables 
(Vq). One possible configuration is depicted in figure 3. 
 

qqpp VFVFVFVFVFVF ,...,,,,...,,, 22112211 ↔  

Figure 3: Possible Configuration of  S and T 

Af represents the global alignment of text fragments 
between S and T, while Av represents the global alignment 
of variables between S and T. The global alignment of the 
text fragments is represented as a set of local alignments 
{<A,B>1,<A,B>2…<A,B>k}, where each local alignment  
is represented as a pair <A,B>. A (B) represents pointers 
to zero or more SL (TL) text fragments according to the 
local alignment patterns stipulated by the sequence 
comparison algorithm (section 2.2.3). The global 
alignment of the variables Av is represented analogously. 

2.2 Extracting Translation Patterns 
The input to the translation-pattern extraction phase is a 
bilingual corpus aligned at the level of the sentence. The 
output is a set of translation patterns. The algorithm is 
language-neutral in nature and operates on the simple 
principles of string co-occurrence and frequency 
thresholds: possibly discontinuous pairs of SL and TL 
strings that co-occur in a minimum of 2 translation 
examples are likely to be translations of each other. Since 
strings are only required to co-occur a minimum of twice 
(frequency threshold), the algorithm is useful in instances 
of sparse data. However, the frequency threshold can be 
increased to improve the accuracy of the patterns (McTait 
& Trujillo, 1999). This section provides a highly 
simplified example, using the corpus in (3). 

(3) The commission gave the plan up ÅÆ 
       La commission abandonna le plan 

       Our government gave all laws up ÅÆ 
         Notre gouvernement abandonna toutes les lois 

2.2.1 Monolingual Phase 
This stage is applied independently to the SL and TL 
sentences of the corpus. Lexical items (tokens) that occur 
in a minimum of 2 sentences are retrieved, together with a 
record of the sentences in which they were found: (4a) for 
the SL and (4b) for the TL. 

(4a) (gave)[1,2], ( up)[1,2] 
(4b) (abandonna) [1,2] 

The lexical items are allowed to combine to form longer 
word combinations (or collocations) constrained only by 
the sentences from which they were retrieved. The lexical 
items combine recursively to form a tree-like data 
structure of collocations. Each lexical item is tested to see 
if it can combine with the daughters of the root node and 
if so, recursively with each subsequent daughter, as long 

as there is an intersection of at least 2 sentence IDs (this 
enforces string co-occurrence in 2 or more sentences). The 
result is a tree of collocations of increasing length but 
decreasing frequency. The leaves become the most 
informative parts of the tree and are collected at the end of 
this phase. The longest provide more context and hence 
there is less chance of ambiguity. 

As an example (figure 4), the SL lexical item gave is 
added to the root node (the integers denote the sentence 
IDs). The lexical item up is tested to see if it can combine 
with it since it is now a daughter of the root node. Since 
gave and up have an intersection of two sentence IDs, 
they are allowed to combine and form a new collocation 
node (gave/up). The TL lexical item is added to a separate 
tree and remains as in (4b) since there are no further TL 
lexical items with which it can combine. 

 
 
 
 
 
 
 
 
 

Figure 4: Collocation Trees 

2.2.2 Bilingual Phase 
SL and TL collocations are equated by simple co-
occurrence criteria to form translation patterns: SL 
collocations that have exactly the same sentence IDs as 
TL collocations are considered to be translations of each 
other. This ensures that the patterns contain lexical items 
retrieved from the same sentences. The leaf-node 
collocations in figure 4 are equated to form the translation 
pattern (5). A translation pattern is formed from lexical 
items in 2 (or more) sentences, therefore its word order is 
determined from either of those sentences in the corpus. 
The discontinuities between the strings in (5) are 
represented as ellipses and denote variables. 

(5)    (…) gave (…) up ÅÆ (…) abandonna (…) 
Translation patterns are not formed from inner leaves 

of the collocation trees since they would form patterns 
that are subsets of patterns from the leaf nodes. This 
would make them spurious. They also introduce 
ambiguity in that the effectiveness of EBMT lies in the 
retrieval of the longest possible matching segments. 
Furthermore, they would frequently be inaccurate. For 
example, if the node gave[1,2] were equated with 
abandonna[1,2] an incorrect pattern would be produced. 

It is intuitive that if the text fragments - F in figure 3 - 
that make up the translation patterns are translations of 
each other, then the discontinuities or variables - V in 
figure 3 - that occur between them must also be 
translations. Since translation patterns are made up of 
lexical items from at least two translation examples, at 
least two complement translation patterns (6a) and (6b) 
are formed. They are created simply as the inverse of 
regular translation patterns and may contain lexical items 
that occur only once in the corpus. 

The text fragments form the fundamental units of 
translation patterns such as (5) and (6a-b) and are not 



broken down further. The distinction into text fragments 
and variables, despite the formation of complement 
patterns, is a convenient representation for fragment 
alignment (2.2.3) and template matching (2.3). 

(6a) The commission (…) the plan (…) ÅÆ 
La commission (…) le plan 

(6b) Our government (…) all laws (…) ÅÆ 
Notre gouvernement (…) toutes les lois 

2.2.3 Alignment of Text Fragments and Variables 
Aligning the text fragments and variables of which 
translation patterns are composed produces translation 
patterns that are flexible enough for the recombination 
phase. In so doing, a more refined bilingual knowledge 
source (bilingual lexicon or “phrasicon”) is produced. 
Aligning text fragments and variables is analogous to 
aligning words, phrases, terms or even sentences as in 
conventional bilingual alignment and involves similar 
problems. 

Given that a translation pattern contains a SL and a 
TL sequence of one or more subsentential text fragments 
(separated by variables which also represent a separate 
series of subsentential text fragments), the problem may 
be viewed as bilingual sequence alignment or computing 
the optimal or most probable alignment between two 
sequences of text fragments in two languages. The two 
sequences of variables are aligned analogously by 
considering the text fragments that the variables represent, 
as defined by the corpus, as a separate series of text 
fragments. The solution to the alignment problem 
involves a sequence-comparison algorithm and a bilingual 
similarity (distance) metric. 

The bilingual similarity metric is language-neutral in 
nature and is a combined score based on bilingual lexical 
distribution of the text fragments (BLD) and the number 
of cognates the text fragments share (7). The bilingual 
lexical distribution score (a real value between zero and 1) 
is computed by Dice’s co-efficient (Dice, 1945) and 
cognates are determined by computing the Levenshtein 
Distance (Levenshtein, 1966) between SL and TL strings. 
The Levenshtein Distance is normalised over the 
maximum distance between the two strings, returning a 
similarity score or probability that the two strings are 
cognates. If the similarity score is above an 
experimentally determined threshold, the two strings are 
considered to be cognates. Bilingual lexical distribution 
suffers from well-known problems such as data 
sparseness, the identification of translingual collocates as 
opposed to true translations and the varying distributions 
of morphological variants of words. The inclusion of 
cognates into the distance metric addresses, to some 
extent, the problem of low frequency words and provides 
an alternative score. 

 
(7) 
 
 
The alignment of closed class words is particularly 

problematic. They are of such high frequency that they are 
unable to be aligned by lexical distribution. They are also 
not subject to cognate matching. Solutions to this problem 
include the non-alignment of text fragments composed 
uniquely of closed class words. An additional method is to 
‘fill in’ the variable positions between text fragments 

where the variable is uniquely composed of closed class 
words. For instance independent states (…) former Soviet 
Union becomes independent states of the former Soviet 
Union. However, neither provides a complete solution. 

The sequence-comparison algorithm needs to be able 
to compute alignments denoting translation relations of a 
more complex variety than simple 1:1 relationships, i.e 
2:1, 1:0, etc. It must also compute alignments between 
adjacent and non-adjacent text fragments (long-distance 
dependencies) to allow for structural divergences between 
languages (figure 5). Finally, it needs to execute in a 
practicable asymptotic running time, therefore excluding 
an exhaustive search algorithm. 
 

Ethiopia was supplied regularly with aid by France 
 
 

L’aide était fournit régulièrement à l’Ethiopie par la France 
 

Figure 5. Pattern with Non-Adjacent Alignments1 

One solution to the problem of sequence alignment is 
the Dynamic Programming (DP) framework (8). While 
the problem of sentence alignment is suited to the DP 
algorithm in that the order of sentences between 
languages is often similar (Gale & Church, 1993), 
subsentential fragment alignment must include a search 
for non-adjacent alignments or long-distance 
dependencies – a crucial task which DP is inherently 
unable to perform. 

 
 
 
 
 
(8) 
 
 
 

 
 

An algorithm is proposed that performs the alignment 
in two passes:  the first pass, for which DP is ideally 
suited, takes into account substitutions (1:1), insertions 
(0:1), deletions (1:0), compression (2:1, 3:1), expansion 
(1:2, 1:3) and swaps of adjacent  fragments (Lowrance & 
Wagner, 1975), assuming all local alignments are 
adjacent. The second-pass algorithm computes the 
(possibly empty) set of non-adjacent alignments of a 1:1 
nature. If any are found that improve the initial global 
alignment computed by DP, they are recorded and 
removed from the two sequences, while the remaining text 
fragments are re-fed into the DP algorithm. The final 
global alignment is then a concatenation of the non-
adjacent alignments and the results of the second 
application of the DP algorithm. The same bilingual 
similarity metric is used for both passes. 

The second-pass algorithm is summarised as follows: 
given two sequences x and y of lengths m and n 
respectively, each element xi for 1 ≤ i ≤ m is compared 

                                                      
1 The text between the boxed text would appear in the 
translation patterns as variables. It is included here to 
make sense of the example. 

( )

( ) { }( )
( ) { }( )

( ) ( )
{ }( )

{ }( )


















+−−
+−−

++−−
+−−

+−−
+−−

+−
+−

=

−−

−−

−−

−

−

jiii

jjji

jiji

jii

jji

ji

i

j

yxxxdjiD

yyyxdjiD

yxdyxdjiD

yxxdjiD

yyxdjiD

yxdjiD

xdjiD

ydjiD

jiD

,,,)1,3(

,,,)3,1(

,,)2,2(

,,1,2

,,2,1

),()1,1(

)0,(),1(

),0(1,

min),(

12

12

11

1

1

Cognates

CognatesBLD

+
+

1



with each element yj for 1 ≤ j ≤ n. For each potential 
alignment <xi,yj>, the similarity score Score(xi,yj) is 
computed. If Score(xi,yj) satisfies two conditions, the text 
fragments xi and yj along with Score(xi,yj) are recorded as 
a triple and added to the list of candidate non-adjacent 
alignments (figure 6). The first condition states that the 
alignment must be high-scoring (above a threshold) and 
the second states that the alignment must be non-adjacent 
i.e. the absolute difference between i and j must be greater 
than 1. 

for i = 1 to m 
 for j = 1 to n 
  if Score(xi,yj) > Threshold & abs(i-j) > 1 

add {xi,yj, Score(xi,yj)} to list of candidate 
non-adjacent alignments 

Figure 6. Finding Candidate Non-Adjacent Alignments 

Once a list of triples representing candidate non-
adjacent alignments has been collected {(α,β, 
Score(α,β)),...}, for each triple, three conditions are 
applied before the alignment is declared a valid non-
adjacent alignment. First, if the SL (TL) text fragment α 
(β) of the proposed alignment <α,β> has been used 
elsewhere in a non-adjacent alignment, it cannot be used 
to form a subsequent one. Second, if the alignment <α,β> 
is a subset of an alignment <A,B> that has previously been 
computed by DP (where A and B represent a series of SL 
and TL text fragments respectively and where α∈A and 
β∈B), they cannot be considered further. The reason for 
this is simply that the DP algorithm has found that an 
alignment other than a 1:1 type is more probable, thus the 
proposed alignment is not likely to improve the likelihood 
of the final global alignment.  

 
 
(9) 
 

 
 
Finally, the score of the proposed non-adjacent 

alignment <α,β> is tested to see whether it is greater than 
both the two individual scores of the two alignments 
computed by DP of which α and β are a member. In more 
detail, each adjacent alignment computed by DP is 
represented as a pair <A,B>, where A and B represent a 
series of SL and TL fragments according to the alignment 
patterns stipulated by the DP equation. The initial global 
alignment computed solely by DP is a set containing one 
or more of these alignments, {<A,B>1,…,<A,B>k}. The 
proposed non-adjacent alignment can also be represented 
by a pair <α,β> where α and β represent one SL and TL 
text fragment respectively. This condition is summarised 
in (9)2, which stipulates that the score of the non-adjacent 
alignment must be better than both of the two adjacent 
alignments which subsume it, which means that the 
addition of the proposed non-adjacent alignment would 
improve the overall global alignment. 

To illustrate the 2nd pass algorithm, the translation 
pattern in figure 7 is first aligned using the DP algorithm. 
The alignment of the text fragments (boxed text) is 
incorrect. After the application of the 2nd pass algorithm, a 

                                                      
2 The notation Ap is shorthand for “the A in <A,B>p”. 

non-adjacent alignment (project-projet) is computed. 
Subsequent application of the DP algorithm produces the 
correspondences maternal-maternelle, and neonatal-
néonatals. 

 
Maternal  and  neonatal  health care  project 
 
 
Projet  de soins de santé  maternelle  et  néonatals 

 
 
Maternal  and  neonatal  health care  project 
 
 
Projet  de soins de santé  maternelle  et  néonatals 

 
Figure 7: Before and After 2nd Pass Algorithm 

Only non-adjacent alignments of a 1:1 nature are 
considered to ensure that the alignment process executes 
in a practical asymptotic running time. The second-pass 
algorithm therefore runs with a worst-case complexity of 
2(mn), as does DP. 

2.3 Recombination 
In the case of EBMT systems where examples are stored 
as tree structures with the correspondences between the 
fragments explicitly labelled, the recombination problem 
is a matter of tree traversal (Sato, 1995; Watanabe, 1995). 
In this approach, the input to the recombination phase is 
an SL input sentence and a set of translation patterns with 
their constituent text fragments and variables aligned. The 
output is one or more TL translations which can be ranked 
best first according to confidence. 

Given an SL input sentence, translation patterns that 
share lexical items with the SL input and partially (or 
fully) cover it are retrieved in a pattern-matching process. 
From these, the patterns whose SL side cover the SL input 
to the greatest extent (longest cover) are selected. They 
are termed base patterns, as they provide sentential 
context in the translation process. It is intuitive that the 
greater the extent of the cover of the base pattern, the 
more context and hence the less ambiguity and 
complexity in the translation process. If the SL side of the 
base pattern does not fully cover the SL input, any 
unmatched parts of the SL input are bound to the variables 
on the SL side of the base pattern. Translation patterns 
from the remaining set, containing SL text fragments that 
match the string value of the instantiated variables on the 
SL side of the base pattern, are retrieved. Since the text 
fragments and variables in translation patterns are aligned, 
their TL equivalents are easily retrieved and bound to the 
relevant TL variables in the TL side of the base pattern. 

The following is a simple example: given the SL input 
in (10), suppose the longest covering base pattern is (11). 
To complete the match between (10) and the SL side of 
(11), a translation pattern containing the text fragment 
Ethiopia is required (12). The TL translation (13) is 
generated by recombining the text fragments: Ethiopia 
and Etiopía are aligned in (12) as are the variables in the 
base pattern (11). Since Ethiopia and Etiopía are aligned 
on a 1:1 basis and so are the variables in the base pattern 
(11), the TL text fragment Etiopía is bound to the variable 
on the TL side of (11) to produce (13). It is clearer to 
think of the algorithm proceeding in terms of matching 
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successive alignments of the variables in the base pattern, 
rather than successive variables on the SL side of the base 
pattern. This is because it is not only text fragments that 
are matched but also the alignment type. As pointed out in 
2.2.3, alignments may be non-bijective. 

(10) AIDS control programme for Ethiopia 
(11) AIDS control programme for (…) ÅÆ 

programa contra el SIDA para (…) 
(12) (…) Ethiopia ÅÆ (…) Etiopía 
(13) programa contra el SIDA para Etiopía 

2.3.1 Translation Confidence 
On account of translation ambiguity, there may be more 
than one translation per SL input. The list of competing 
translations is ranked best-first according to a score of 
translation confidence (14). The score is based on three 
components. The first is a score based on a bigram model 
of the TL formed from the TL side of the corpus (BG). 
The model is used as a test of the “grammaticality” of the 
TL sentence. The second is a score that checks the extent 
of the overlap of the inserted TL text fragments (OV) in an 
attempt to reduce boundary friction. The third is a score 
reflecting the bilingual distance between translated text 
fragments (BD). Finally a penalty p is applied if any TL 
variables in the base pattern remain unfilled. 
 

(14)  ( ) ( ) ( )( )( )p1BDOVBG −++ 321 ωωω  
 

The TL bigram model is computed from the TL side 
of the corpus. It is easily improved by adding more TL 
text. The strength of association between the words in the 
bigrams is computed by Dice’s co-efficient. For each TL 
sentence produced of length n, BG in (14) is computed by 
taking the average score of each bigram within it, or each 
word pair <wi, wi+1>. This is summarised in (15): For 
each bigram in the TL sentence, its frequency in the TL 
corpus is divided by the sum of the frequencies of either 
word in the corpus and multiplied by 2. This score is 
added to a running total. The total is then divided by the 
number of bigrams in the sentence or n-1. 

 
 
(15) 
 
 
 
The overlap term (OV) in (14) makes use of the fact 

that the text fragments have been extracted from real texts 
and so there is information about the contexts in which the 
fragments are known to have occurred. The idea is 
borrowed from Somers et al. (1994) who use the image of 
hooks being attached before and after the text fragment, 
indicating the words (and POS tags) that can occur before 
and after it. A window of five words before and after the 
text fragment bound to each TL variable of the base 
pattern is considered. If the same sequence of 5 words or 
less preceding or subsequent to the text fragment is found 
in the TL side of the corpus, a score reflecting the extent 
of the overlap between the two sequences is returned. 
Where multiple match sequences are found, the maximum 
overlap value is returned. As an example, when the TL 
text fragment Etiopía is inserted into the TL base variable 
in (11),  the word sequence [programa, contra, el, SIDA, 

para] is looked for in the corpus preceding Etiopía. 
Starting from Etiopía, the extent of the overlap is 
determined. If only para appears before Etiopía in the 
corpus, the overlap score returned would be 1/5 = 0.2. If 
there were a match sequence subsequent to Etiopía, the 
average of the previous and the subsequent overlap would 
be returned. The formula is given in (16): For each base 
pattern with n (n>0) TL variable positions, the overlap 
score for each variable Vi, is the average of the sum of the 
previous and subsequent overlaps. The final overlap score 
is the average overlap score for each Vi. If a Vi occurs at a 
sentence boundary, only the previous or subsequent 
overlap score is considered. 
 
 

(16) 
 
 
 
For each variable alignment, the bilingual distance 

score is calculated between the SL text fragments bound 
to the SL variables of the base pattern and their TL 
equivalents using equation (7) in the alignment process 
(section 2.2.3). The average score for each alignment is 
returned to become BD in equation (14). 

Finally a penalty p is applied if there are any 
variables on the TL side of the base pattern that have not 
been instantiated on account of partial matches between 
the SL input and the SL side of the base pattern. Partial 
matches occur when not all variables on the SL side of the 
base pattern can be matched by SL text fragments in the 
remaining set of translation patterns. For example, if there 
were no translation pattern containing the text fragment 
Ethiopia, the TL variable would not be instantiated, 
resulting in the partial translation: programa contra el 
SIDA para (…).  The penalty p is simply the number of 
unfilled variables on the TL side of the base pattern over 
the total number of variables on the TL side of the base 
pattern. In the case where p = 1 i.e. when all TL variables 
remain unfilled, p is scaled by 0.9 to avoid (1-p) 
becoming zero. 

The three terms BG, OV and BD return a real value 
between 0 and 1.0. To ensure that the sum of the three 
WHUPV UHPDLQV EHWZHHQ � DQG ���� &1 � &2 � &3= 1.0. In 
the exSHULPHQWV XQGHUWDNHQ� &1  &2  &2 = 1/3, thus 
providing equal weighting to all terms. The term 
containing the penalty (1-p), returns a value between 0.1 
and 1.0, ensuring that the entire score remains a real value 
no greater than 1.0. 

3 Adding Linguistic Knowledge 
An approach based on the distributions of surface forms is 
error prone and liable to the production of translation 
patterns that are false translations. Linguistic knowledge, 
in the form of morphological analysis and POS tagging, is 
added in an attempt to increase the accuracy of the 
translation patterns and coverage. This results in three 
variants of this approach to EBMT: The first variant, 
outlined in section 2, is based on surface forms and 
requires no significant external linguistic knowledge, 
apart from the sentence-aligned parallel corpus. However, 
in order to remove obvious errors a very small amount of 
(optional) minor linguistic information is added in the 
form of stop lists of closed-class words and information 
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for tokenisation, which compromises, to a certain extent, 
language-neutrality and portability. We believe this 
information to be obtainable in a few person-hours. The 
second variant is augmented with morphological 
information in the form of a set of two-level 
morphological rules (Koskenniemi, 1983), a list of 
lemmas and a finite state transducer (PC-Kimmo). The 
corpus is lemmatised so that translation patterns 
composed of lemmas and translation patterns on the 
morphological level are extracted. Furthermore, clitics 
such as the French des, du etc are expanded in an effort to 
increase coverage and reduce boundary friction. TL 
surface forms are generated by reversing the direction of 
the transducer, combing TL lemmas with TL tags. Since 
no POS information nor word grammar is used, the 
surface forms are validated  by means of a list of TL 
surface forms (a spelling dictionary in this case). The third 
variant is extended even further to include POS 
annotation, using TreeTagger (Schmid, 1994). 

As more linguistic knowledge sources are added to a 
system, portability generally decreases. In this case, the 
linguistic knowledge added is deliberately kept to a 
minimum and to the sort of knowledge sources that are 
reasonably widely available, at least for European 
languages. Even if they are not, it is not too difficult nor 
time-consuming to produce a list of stems and a set of 
two-level spelling rules. POS taggers such as TreeTagger 
and Brill’s tagger (Brill, 1992) are also easily trained for 
new languages if they do not already exist. 

3.1 Morphological Analysis 
The principle source of errors is the phenomenon where 
SL words that are orthographically identical (homographs, 
polysemes, orthographically identical variants of the same 
lemma) have different TL equivalents. This can be 
corrected, to a certain extent, by the addition of 
morphological analysis and POS tagging to distinguish 
them. Consider the example corpus in (17) where the 
morphological variants of give are orthographically 
identical, but their TL equivalents are not. This results in a 
translation pattern with an empty TL side and is 
consequently a false translation (18). 

(17)    He gave the plans up ÅÆ 
Il abandonna les projets 
They gave the suggestion up ÅÆ 
Ils abandonnèrent la suggestion 

(18)     (…) gave the (…) up ÅÆ 

Lemmatising the corpus (19) produces a more accurate, if 
more general, translation pattern (20) composed of 
lemmas. Furthermore, abstracting all morphological 
variants to their root form increases the chance of string 
co-occurrence and collocation formation, resulting in a 
greater number of translation patterns with the potential to 
increase coverage. 

(19) he give the plan up ÅÆ 
il abandonner le projet 
they give the suggestion up ÅÆ 

 ils abandonner le suggestion 

(20) (…) give the (…) up ÅÆ 
 (…) abandonner le (…) 

3.2 Part-of-Speech Tagging 
A further case is SL homographs that are of different 
parts-of-speech and are consequently different ‘words’ 
relating to different concepts. It is very likely that in such 
cases each individual homograph will have a different TL 
translation. Consider wave as a noun and a verb in the 
corpus (21) and the resulting erroneous translation pattern 
(22).  

(21) She waves goodbye ÅÆ 
 Elle agite la main et dit au revoir 

 The waves are enormous ÅÆ 
 Les vagues sont énormes 

(22) (…) waves (…) ÅÆ 

Lemmatisation is not a solution since both forms of wave 
abstract to the (orthographically) same root. The solution 
lies in POS tagging the corpus and modifying the string 
co-occurrence algorithm for extracting patterns to include 
the POS tag as a feature. In such a case, the two forms of 
wave would not ‘co-occur’ to form a collocation, since 
their respective POS tags would distinguish one form of 
wave from the other and consider them as different words. 

3.2 Semantic Tagging 
The solution to the false translation problem in this 
approach appears to lie in being able to distinguish 
different ‘words’ from each other, on criteria than just 
their orthography. Distinguishing different ‘words’ i.e. 
strings of characters that relate to different concepts is not 
entirely possible by morphological analysis and POS 
tagging alone. Consider the corpus in (23) where the two 
senses of the polysemous verb mark occur with identical 
orthographies and POS tag, but different translations, to 
produce (24). While the two meanings of mark may or not 
have been historically related, they are clearly separate 
and consequently have different translations. The solution 
appears to lie in effective semantic tagging, if it were 
feasible, and including that tag as part of a feature 
structure in the co-occurrence algorithm. Again this would 
enable the different semantic forms of a verb such as mark 
to be distinguished and prevented from forming 
collocations. 

(23) She marked the papers ÅÆ 
 Elle corrigea les examens 

 He marked the table ÅÆ 
 Il tâcha la table 

(24) (…) marked the (…) ÅÆ 

3.3 Other Sources of Error 
The fact that translation patterns are formed using an 
algorithm based on the distribution of strings in a corpus 
means that there are fewer constraints than in a traditional 
rule-based system or system that generalizes translation 
examples by morphological, syntactic or even semantic 
means. The patterns do not contain any restrictions on the 
morphology, number, gender or syntactic category of the 
text fragment that binds to the variables in the base 
pattern. Furthermore, adding external knowledge sources 
is no guarantee of increasing the accuracy (or coverage) of 
a system. Taggers, parsers and other analysers are prone 
to a certain degree of error themselves. 



4 Complexity Issues 

4.1 Translation Pattern Extraction 
The translation pattern extraction algorithm, in particular 
the construction of the collocation trees (section 2.2.1) is a 
notable source of complexity. As each lexical item 
occurring in two or more sentences is added, the tree 
increases in size. Since each lexical item may be added to 
the daughter(s) of the root node and any subsequent node, 
the trees grow to become very much larger than the 
corpus itself. On account of their high frequency, closed 
class words are particularly problematic in that they 
dramatically increase the size of the trees. 

In this instance, space becomes an issue. As the size 
of the corpus increases, the collocation trees become very 
large, in effect, placing a restriction on extensibility. 
Graph 1 shows how the size of the collocation trees for a 
corpus of French (measured in megabytes) increases in 
relation to the size of the corpus (measured in sentence 
pairs). The dark line indicates the extrapolation of the 
data. Although the relationship appears to be linear, the 
trees take a substantial portion of memory and the limit on 
corpus size is dictated by the memory of a particular 
machine (unless hard-drive space is efficiently utilised). 
The size of the collocation trees is the greatest obstacle to 
scaling up this approach. The solution lies in reducing the 
space required by the trees, in particular, reducing the 
number of levels. This may be achieved by adding the 
longest substrings that appear in 2 or more sentence pairs 
to the trees instead of individual word tokens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph 1: Corpus Size vs. Size of Collocation Trees 

The polynomial two-pass alignment algorithm 
outlined in 2.2.3 is also a notable source of complexity. In 
fact it is the part of the extraction algorithm that incurs the 
largest time processing overhead The well-known DP 
algorithm consists of two embedded loops and is clearly 
of a time and space complexity of 2(mn), where m and n 
are the lengths of the two sequences to be aligned. DP is 
practical in terms of time and space, but not fast. In this 
application, the values of m and n are rarely large. 

The grain-size of the local alignment types is also 
pertinent. Further text fragment alignment patterns such as 
2:3, 3:2 and even 2:4 could easily be included as terms in 
the DP equation. More terms entails a larger processing 
overhead, but as grain-size increases, the problem of long 

distance dependencies becomes less of an issue as their 
likelihood diminishes. Moreover, the granularity of the 
alignment types involves the classic trade-off between 
accuracy and flexibility. While matches with longer 
fragments reduce ambiguity, flexibility suffers since there 
is a lower probability of a match. Matches with shorter 
segments involve a greater amount of translation 
ambiguity, passage and boundary friction (Nirenburg et al. 
1993: 48). Fine as opposed to coarse-grained local 
alignment types have been favoured in this approach in 
order to maintain flexibility and recall. 

4.2 Recombination 
The core recombination algorithm is an area where the 
amount of entropy incurred by translation ambiguity and 
the lack of constraints in the translation patterns produce 
the most notable source of computational complexity. 
Since any one SL fragment can have more than one TL 
equivalent and there is no information present to favour 
one fragment over another, all possible TL fragments are 
considered. This results in (possibly) numerous 
translations per base pattern which are ranked by the 
translation confidence score (14). 

This complexity is increased if recursive matches are 
incorporated. In the examples (10)-(13), the string values 
bound to the variables on the SL side of the base pattern 
are matched against single SL text fragments in the 
remaining translation patterns (direct matches). If no 
direct matches are found, a recursive matching algorithm 
is invoked. The algorithm matches a text fragment by 
attempting to recursively match successively shorter 
portions of it against the SL text fragments in the 
translation patterns. The TL equivalents are concatenated 
naively according to the order of the matches with the SL 
fragments. Increased complexity comes about since each 
SL fragment that forms a subpart of the entire match can 
have more than one TL equivalent, each of which has to 
be taken into account. 

The addition of knowledge sources has consequence 
for the complexity of the recombination phase. The 
second variant of this approach, which is augmented to 
included morphological analysis includes the extraction of 
not only translation patterns composed of lemmas, but 
translation patterns composed of morphological tags or 
morphological patterns. They are analogous to regular 
translation patterns (see 2.1) except that they are 
composed of morphological tags instead of lexical items. 

Morphological patterns are formed trivially by the 
replacement of lemmas in regular translation patterns 
extracted with the corresponding morphological tags 
computed during lemmatisation of the corpus. The tags 
represent (inflectional) morphological change from the 
root lexical form. The alignment between the sequences of 
fragments (composed of tags) and variables in a 
morphological pattern is carried out trivially by 
transposing the alignments from the regular translation 
pattern from which it was formed. 

(25) The telephones worked ÅÆ 
Les téléphones fonctionnaient 

 The telephone failed ÅÆ 
 Le téléphone échouait 

(26) The telephone+s work+ed ÅÆ 
Le+s téléphone+s fonctionner+aient 
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 The telephone fail+ed ÅÆ 
 Le téléphone échouer+ait 

The corpus (25) is lemmatised to form (26), from which 
translation pattern (27a) is extracted (among others). By 
replacing the lemmas with the corresponding 
morphological tags from (26), the morphological patterns 
(27b) and (27c) are formed. The empty parentheses denote 
cases of no morphological change from the root lexical 
form. The fragments and variables in (27b) and (27c) are 
aligned according to alignment of the fragments in (27a). 

(27a)  The telephone (…) ÅÆ Le téléphone (…) 
(27b) [] +s (…) ÅÆ +s +s (…) 
(27c) [] []  (…) ÅÆ [] [] (…) 

The recombination algorithm is updated to operate 
with translation patterns composed of lemmas and 
morphological patterns. First, the SL input is lemmatised 
and recombination proceeds in exactly the same manner 
as described in 2.3, except that matching takes place on 
the lexical level and the result is a set of one or more 
sequences of TL lemmas. Morphological patterns are 
retrieved and recombined analogously to cover the 
sequence of SL morphological tags computed when the 
SL input is lemmatised. This results in a set of one or 
more sequences of TL morphological tags.  TL sentences 
are produced by laying the sequences of TL lemmas and 
tags, generating sequences of surface forms. As an 
example, the sequence of lemmas (28a) is layered with the 
sequence of tags (28b) to produce (28c). It is clear that 
recombination that takes place on more than one level 
(here the lexical and morphological) increases the 
processing overhead.  

(28a) <Programme, contre, le, maladie, diarrhéique> 
(28b) <[], [], +s, +s, +s> 
(28c) Programme contre les maladies diarrhéiques 

One further complexity issue is ambiguity of analysis. 
When a surface form is lemmatised using just a list of 
lemmas and a set of two-level spelling rules, there may be 
ambiguity about the lemma to which it belongs and 
consequently ambiguity of the tag. The layering algorithm 
takes into account all alternatives thus adding a further 
parameter, increasing the complexity of the algorithm. 
The third variant of this approach takes this factor into 
account. The TreeTagger, which incorporates a 
lemmatiser, is used to analyse the corpus and resolve 
ambiguous analyses. This has the effect of removing this 
extra parameter and reducing the complexity of the 
layering algorithm. 

5 Experiments 
Using the first of the three variants - the one based on 
surface forms - translation patterns were extracted from a 
3,000-sentence-pair sample of the World Health 
Organisation AFI corpus of 4,858 French and English 
titles.3 From the remaining set of 1,858 sentence pairs, 
1,000 were randomly selected and used as a test set of 
unseen SL input. 36 SL sentences in the test set occurred 
in the training set. Furthermore, 728 SL sentences in the 
test set were entirely composed of lexical items found in 
the training set, leaving 272 that contained one or more 

                                                      
3 http://www.who.int/pll/cat/cat_resources.html 

unseen words. 10,767 patterns were extracted and the 
most frequent values of p and q (figure 3) were 2 or 3. 
 
 

(29) 
 

For each SL input, one ore more translation solutions 
were produced. The best translation among this set (TR) 
was selected according to the translation confidence score 
(14). The correctness of the translation was determined 
automatically by comparing it with the reference 
translation given in the corpus (RT). The Levenshtein 
Distance (LD) between the translation (TR) and the 
reference translation (RT) was normalised to account for 
the maximum distance between the two strings (maximum 
string length), returning a “percentage of similarity” score 
(29). 

Graph 2 shows the distributions of the results. Only 
full translations were considered. The line depicted by 
‘Surface’ indicates the results for the test set of 1,000 SL 
sentences. 340 SL sentences were successfully translated. 
Recall - the number of SL sentences translated divided by 
the number of sentences in the test set - stands at 
340/1000 = 34%. Maximal recall is obtained by dividing 
340 by 728 (47%) i.e. the number of SL sentences in the 
test set uniquely composed of lexical items found in the 
training set. 82 of the 340 translations (24%) were 90-
100% accurate. Moreover, 73 translations (21.5%) were 
100% correct. Accurate translations were largely 
produced by base patterns whose SL side substantially 
covered the SL input. Moreover, such patterns, of which 
(11) is typical, represent extremely frequent phenomena in 
the corpus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph 2: Distribution of Results 
 
The line depicted by ‘NoOverlap’ shows the results 

for the test set with the 36 sentences which occur in the 
training set removed. Although no direct matches between 
the SL inputs and the SL sentences in the training set are 
sought (only the EBMT mechanism is evaluated), 10 of 
the 100% accurate translations are no longer present and 
there are less high-scoring translations generally. The line 
depicted by ‘Upper’ represents the theoretical upper 
bound of the system. For each SL input, the best possible 
translation solution – the one which returns the highest 
percentage of similarity score (29) among the set of all 
translation solutions – is selected, irrespective of its 
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translation confidence score (14). This line shows that less 
low-scoring translations and more high-scoring 
translations are produced. The upper bound is not reached 
due to the inefficacy of the translation confidence score 
i.e. it does not always assign the best translation with the 
highest score. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph 3: Word Error Rate 
 
Graph 3 shows, for the same test set of 1,000 

sentences, the distribution of word errors. For each 
translation solution, the error rate is calculated as the plain 
Levenshtein distance, as opposed to normalised 
Levenshtein Distance (29). In this case, the Levenshtein 
Distance represents the number of insertions, deletions or 
substitutions required to transform the translation string 
into the reference translation given in the corpus. The line 
‘Surface’ represents the errors of the translation solutions 
selected according to (14) and the line ‘Upper’ represents 
the errors of the upper bound translations. In each case, 
the number of translations with zero errors is equal to the 
number of translations that were 100% accurate . 

 
Graph 4: Recall vs. Corpus Size 

 

Graph 4 shows increasing rates of recall as corpus 
size, measured in sentence pairs, increases. A test set of 
500 unseen SL input sentences was used in each case. The 
line ‘Full’ represents recall calculated by dividing the 
number of SL sentences fully translated by the number of 
SL sentences in the test set. The line ‘Full+Partial’ 
represents not only SL sentences that were fully 
translated, but includes those that were only partially 
matched against the translation patterns. The line 
‘Full(Maximal)’ represents recall calculated by dividing 
the number of SL sentences fully translated by the number 
of SL sentences in the test set that are uniquely composed 
of lexical items found in the training set. The rates of 
recall rise fairly slowly if only full matches are 
considered, indicating the need for larger training sets. 
However, high rates of recall are rapidly achieved if 
incomplete or partial translations are considered. 
Including partial translations results in many more low-
scoring than high-scoring translations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Graph 5: Comparison with Babel Fish 
 
In order to compare this approach with a commercial 

MT system, the same test set of 1,000 SL input sentences 
was translated using the BabelFish/Systran translation 
facility on http://www.alta-vista.com. BabelFish is 
robust enough to achieve 100% recall for the test set of SL 
input sentences, far outperforming this approach. 
However, in order to compare the rates of precision, graph 
5 only depicts the distributions of results for the sentences 
that this approach was able to translate fully. To make the 
test fairer, the 36 SL sentences in the test  set that occur in 
the training set were removed. The graph clearly shows 
that for that test set, this approach outperformed 
BabelFish. This is to be expected since this approach is 
tuned to the text type. 

In order to test the hypothesis that adding linguistic 
knowledge improves accuracy and coverage (section 3), a 
comparison of the distributions of results of each of the 
three variants of this approach is shown in graph 6. For 
each variant, translation patterns were extracted from the 
same 2,500-sentence-pair sample in order to make a fair 
test. Complexity issues (as outlined in section 4) 
prevented the use of a larger training set. The variant 
based on surface forms extracted 9,327 patterns, the 
variant including morphological information extracted 
9,610 while the variant augmented further with POS 
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information extracted only 7,237 patterns. The same test 
set of 1,000 unseen input sentences from the previous 
experiments was used. Only full translations were 
considered. The results are summarised in table 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Graph 6: Comparison of Distributions of each Variant 

The distributions of the three variants are largely 
similar. The salient differences between them are 
established in terms of recall and the number of high-
scoring translations. The morphological variant translated 
more SL sentences than the variant based on surface 
forms. Furthermore, it produced a greater number of 
accurate (defined as 90-100% correct) or 100% correct 
translations. The variant including POS information 
performed less well than the variant based on surface 
forms. Fewer translation patterns were produced, resulting 
in a lower number of SL sentences translated and a lower 
number of high-scoring translations. The reasons for the 
poor performance of this variant include tagger errors and 
the fact that more constraints operate in the translation 
pattern extraction phase (section 3.2), resulting in fewer 
translation patterns. 
 

 Surface Morph Tagged 
Patterns 9,327 9,610 7,237 
Translations 322 339 272 
Recall 32.2% 33.9% 27.2% 
Max recall 44.2% 46.5% 37.3% 
Accurate 71 78 64 
100% correct 61 68 53 

 
Table 1: Comparison of the Three Variants 

 
Since the evaluation method utilised in these 

experiments is automatic, it is possible that some of the 
lower scoring translations may be “correct” or useful by 
some other criteria i.e. acceptability to a post-editor as raw 
MT output. Its usefulness could be evaluated by the 
amount of time or effort required to revise it to the 
required standard, as in (Minnis, 1994; Whyman & 
Somers, 1999). Alternatively, one could use any of the 
various methodologies in the MT evaluation literature 
based on human observations and scales of correctness. 

Discussion 
The addition of morphological information to the 
approach based on surface forms increased recall, if only 
slightly,  and returned a slightly higher number of 
translations that are 100% accurate or very nearly so. 
There are numerous possibilities as to why there is only a 
slight improvement: first, only a relatively small amount 
of linguistic information is added. Second, the nature of 
the corpus (titles) is such that there are few morphological 
variants per root form. There tends to be a higher density 
of root forms in titles than in ‘ordinary’ texts. Third, the 
recursive matching algorithm in recombination (section 
4.2) adds an amount of noise to an already noisy channel. 
This has the effect of blurring the improvements made by 
adding morphological information. Finally, and more 
importantly,  more training data is required. 

The results of the variant where POS information is 
included are disappointing and do not improve upon the 
variant based on surface forms. Given the results as they 
stand, the variant augmented uniquely with morphological 
information performs only slightly better than the variant 
based on surface forms. Therefore, the effort or cost 
(financial and computational) of adding linguistic 
knowledge sources may not be justified, since they affect 
portability to new language pairs and domains. 

The rates of recall are currently low. This can only be 
attributed to the fact that there is simply not enough data 
in the corpus of the size reported. The approach must be 
scaled up to include corpora of millions of words. 
However, this requirement is in contrast to the 
observations in graph 1 where the size of the collocation 
trees severely limits corpus size (unless hard-drive space 
is efficiently utilised). Therefore, scalability is 
problematic. On the other hand, if one considers the 
satisfactory rates of recall when partial matches are 
included (graph 4), one has to consider whether this 
methodology is of more use as a flexible translation 
memory system (Langé et al. 1997; Planas & Furuse, 
1999; McTait et al. 1999) where information from more 
than one translation example can be used to create new 
TL suggestions.  

References 
Brill, E. (1992) A Simple Rule-based Part-of-Speech 

Tagger. Proceedings of the Third Conference on 
Applied Natural Language Processing, Trento, Italy, 
152-155. 

Brown, P.F, S.A. Della Pietra, V.J. Della Pietra & R.L. 
Mercer (1993) The Mathematics of Statistical Machine 
Translation: Parameter Estimation. Computational 
Linguistics 19: 263–311. 

Brown, R.D. (1999) Adding Linguistic Knowledge to a 
Lexical Example-based Translation System. 
Proceedings of the 8th International Conference on 
Theoretical and Methodological Issues in Machine 
Translation (TMI 99), Chester, England, 22–32. 

Carl, M. (1999) Inducing Translation Templates for 
Example-Based Machine Translation. Machine 
Translation Summit VII, Singapore, 617–624. 

Dagan, I., K.W. Church & W.A. Gale (1993) Robust 
Bilingual Word Alignment for Machine Aided 
Translation. Proceedings of the Workshop on Very 
Large Corpora: Academic and Industrial Perspectives, 
Columbus, Ohio, 1–8. 

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

0 .. 1 0 .. 2 0 .. 3 0 .. 4 0 .. 5 0 .. 6 0 .. 7 0 .. 8 0 .. 9 0 ..

Nor mal i s ed L D  S cor e

S ur f ace M orph
T agged



Dice, L.R. (1945) Measures of the Amount of Ecological 
Association Between Species. Geology 26: 297-302. 

Echizen-ya, H., K. Araki, Y. Momouchi & K. Tochinai 
(2000) Effectiveness of Layering Translation Rules 
based on Transition Networks in Machine Translation 
using Inductive Learning with Genetic Algorithms. MT 
2000, Machine Translation and Multilingual 
Applications in the New Millennium, Exeter, England, 
5-1-8. 

Fung, P. & K. McKeown (1997) A Technical Word- and 
Term-Translation Aid Using Noisy Parallel Corpora 
Across Language Groups. Machine Translation 12: 53–
87. 

Furuse, O. & H. Iida (1992) An Example-Based Method 
for Transfer-Driven Machine Translation. Proceedings 
of the Fourth International Conference on Theoretical 
and Methodological Issues in Machine Translation. 
Empiricist v. Rationalist Methods in MT. TMI-92, 
Montréal, Québec, 139-150. 

Gale, W.A. & K.W. Church  (1993) A Program for 
Aligning Sentences in Bilingual Corpora. 
Computational Linguistics 19: 75-102. 

Güvenir, H.A. & I. Cicekli (1998) Learning Translation 
Templates from Examples. Information Systems 23: 
353–363. 

Kaji, H., Y. Kida & Y. Morimoto (1992) Learning 
Translation Templates from Bilingual Text. 
Proceedings of the fifteenth [sic] International 
Conference on Computational Linguistics: COLING-
92, Nantes, France, 672–678. 

Koskenniemi, K. (1983) Two-Level Model for 
Morphological Analysis.  Proceedings of the 8th 
International Joint Conference on Artificial 
Intelligence, Karlsruhe, Germany, 683-685. 

Langé, J-M, E. Gaussier & B. Daille (1997) Bricks and 
Skeletons: Some Ideas for the Near Future of MAHT. 
Machine Translation 12: 75-102. 

Levenshtein, V.I. (1966) Binary Codes Capable of 
Correcting Deletions, Insertions, and Reversals. 
Cybernetics and Control Theory 10: 707-710. 

Lowrance, R. & R.A. Wagner (1975) An Extension of the 
String-to-String Correction Problem. Journal of the 
Association for Computing Machinery 22: 177-183. 

McTait, K. & A. Trujillo (1999) A Language-Neutral 
Sparse-Data Algorithm for Extracting Translation 
Patterns. Proceedings of the 8th International 
Conference on Theoretical and Methodological Issues 
in Machine Translation (TMI-99), Chester, England, 
98–108. 

McTait, K, M. Olohan & A. Trujillo (1999) A Building 
Blocks Approach to Translation Memory. Proceedings 
of the 21st Aslib International Conference on 
Translating and the Computer, London, England. 

Malavazos, C. & S. Piperidis (2000) Application of 
Analogical Modelling to Example Based Machine 
Translation. The 18th International Conference on 
Computational Linguistics: COLING 2000 in Europe, 
Saarbrücken, Germany, 516–522. 

Maruyama, H. & H. Watanabe (1992) Tree Cover Search 
Algorithm for Example-Based Translation. Fourth 
International Conference on Theoretical and 
Methodological Issues in Machine Translation (TMI-
92), Montréal, Québec, 173–184. 

Matsumoto, Y.  & M. Kitamura (1995) Acquisition of 
Translation Rules from Parallel Corpora, in Mitkov & 
Nikolov (1997), pp. 405-416. 

Minnis, S. (1994) A Simple and Practical Method for 
Evaluating Machine Translation Quality. Machine 
Translation 9: 133-149. 

Mitkov, R. & N. Nicolov (eds) (1997) Recent Advances in 
Natural Language Processing: Selected Papers from 
RANLP ’95, Amsterdam: John Benjamins. 

Planas, E. & O. Furuse (1999) Formalizing Translation 
Memories. Machine Translation Summit VII, 
Singapore, 331-339. 

Nirenburg, S., C. Domashnev & D.J. Grannes (1993) Two 
Approaches to Matching in Example-Based Machine 
Translation. Proceedings of the Fifth International 
Conference on Theoretical and Methodological Issues 
in Machine Translation, Leuven, Belgium, 47–57. 

Sato, S. (1995) MBT2: A Method for Combining 
Fragments of Examples in Example Based Machine 
Translation. Artificial Intelligence 75: 31–49. 

Schmid, H. (1994) Probabilistic Part-of-Speech Tagging 
Using Decision Trees. Proceedings of the International 
Conference on New Methods in Language Processing, 
Manchester, UK, 44-49. 

Somers, H.L., I. McLean & D. Jones (1994) Experiments 
in Multilingual Example-Based Generation. CSNLP 
1994: Third Conference on the Cognitive Science of 
Natural Language Processing, Dublin, Ireland. 

Somers, H. L. (1998) Further Experiments in Bilingual 
Text Alignment. International Journal of Corpus 
Linguistics 3: 115-150. 

Takeda, K. (1996) Pattern-Based Context-Free Grammars 
for Machine Translation. Proceedings of the 34th 
Meeting of the Association for Computational 
Linguistics, Santa Cruz, CA, 144-151. 

Wang, Y-Y. & A. Waibel (1998) Modeling with 
Structures in Statistical Machine Translation. 36th 
Annual Meeting of the Association for Computational 
Linguistics and 17th International Conference on 
Computational Linguistics, Montreal, Quebec, 1357–
1363. 

Watanabe, H. (1992) A Similarity-Driven Transfer 
System. Proceedings of the fifteenth [sic] International 
Conference on Computational Linguistics: COLING-
92, Nantes, France, 770-776. 

Watanabe, H. (1993) A Method For Extracting 
Translation Patterns from Translation Examples. 
Proceedings of the 5th International Conference on 
Theoretical and Methodological Issues in Machine 
Translation (TMI-93), MT in the Next Generation, 
Kyoto, Japan, 292-301. 

Watanabe, H. (1995) A Model of a Bi-Directional 
Transfer Mechanism Using Rule Combinations. 
Machine Translation 10: 269–291. 

Whyman, E.K. & H.L. Somers (1999) Evaluation Metrics 
for a Translation Memory System. Software-Practice 
and Experience 29: 1265-1284. 

 


