
TREE-STRUCTURED CHART PARSING
Paul W. Placeway

Language Technologies Institute, School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 USA
pwpCcs . cmu . edu

Abstract We investigate a method of improving the memory efficiency of a chart parser. Specifically, we propose a technique to reduce the number of active arcs created in the process of parsing. We sketch the differences in the chart algorithm, and provide empirical results that demonstrate the effectiveness of this technique.
One basic shortcoming of a classic chart parser (6, 1 , 10] is that it does not make efficient use of

its grammar. In grammars used to parse natural languages, there is quite often a substantial amount
of redundancy in the prefixes of the rule right-hand-sides. A nai"ve implementation of a chart parser
will not take advantage of this redundancy. In contrast t a shift-reduce parser (4, 9, 2, 10] will often
use a grammar that has been optimized to eliminate this redundancy (4] . Since chart parsing and
shift-reduce parsing are substantially similar (10] , many techniques used in_ shift-reduce parsing can
be applied to a chart parser, including this particular optimization.

Tree-Structured Grammar

Consider a context-free grammar represented as follows: we will refer to a sequence of children (the
"right-hand-side" of a rule) as a sequence of shifts, and the parent (or "left-hand-side") as the reduce
operation. We write the rules with the children on the left leading �o the parent reduction on the
right. Finally, a child symbol can have multiple shifts and multiple reductions to its right.

standard representation
S -<= NP VP
NP -<= NP PP

tree representation
NP VP ⇒ s

� PP ⇒ NP

The tree grammar is then constructed in the straight-forward way, compressing the left prefixes of
the right-hand-sides as much as possible.

Using the Tree-Structured Grammar

Parsing with the tree grammar is quite straightforward. The principle difference between this algo­
rithm and the classic chart algorithm [1] is that in the classic implementation, extending an active arc
results in one new arc, whereas when using the tree-grammar, extending an arc may result in several
new arcs. Finally, since one active arc could spawn multiple arcs, if we must keep track of of children
used to create an arc (e.g. to resolve unifications) , we must do so using an up-tree [3] . The resulting
inner loop remains quite straight-forward:

317

while the agenda is not empty , do :
let e = next entry from agenda

add e to chart .
foreach arc in continued by e , do :

foreach tnode in arc . tnode . shiftlist , do :

new-arc = make-arc (e . end , tnode , traceback = (cons (e , arc . traceback))
arc-add (nev-arc)

foreach rule in arc . tnode . reducelist

let new-children = reverse (cons (e , arc . traceback))
new = make-entry (first (new-children) . start ,

e . end , rule . LBS , children = list (new-children))

agenda-add (new) This technique was evaluated in a chart parser with unification, left-corner and look-ahead con­straints, among other features. We used a large-scale English grammar for machine-translation of heavy equipment manuals [7, 51 , and a test-set of 2524 sentences (22,558 words) . Without any spe­cial restrictions, when compared to the na'ive implementation, the tree-structured grammar reduced the number of active arcs created by 23%, and when employing full left-corner and look-ahead con­straints [1 1 , 8, 4] on the parser, the tree-grammar gave a 40% reduction.
Acknowledgements This work was supported by the CMU Language Technologies Institute. The author wishes to thank Dr. Eric Nyberg, Dr. Alon Lavie, Dr. Carolyn Rose, and the anonymous reviewers for comments that improved this paper. A full version of this paper is available as technical report from: http : //www . cs . cmu . edu/-pwp/papers/tree_parse_tr . ps
References [l] James Allen. Natural Language Understanding. Benjamin/Cummings, Redwood City, CA, second edition, 1995 . [2] John Andrew Carroll. Practical Unification-based Parsing of Natural Language. PhD thesis, University of Cambridge, Computer Laboratory, September 1993. [3] Thomas H. Carmen, Charles E. Leiserson, and Ronald L Rivest. Introduction to Algorithms. McGraw-Hill and MIT Press, Cambridge, MA, 1990.
[4] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading, MA, 1979.
[5] Kamprath, Adolphson, Mitamura, and Nyberg. Controlled Language for Multilingual Document Pro­duction: Experience with Caterpillar Technical English. In Proc. Second Int. Workshop on Controlled Language Applications (CLA W '98}, 1998. [6] Martin Kay. Algorithm schemata and data structures in syntactic processing. In Readings in Natural Language Processing. Morgan Kaufmann, San Mateo, CA, 1986 (1980) . [7] T. Mitamura, E. Nyberg, and J . Carbonell. An efficient interlingua translation system for multi-lingual document production. In Proc. 3rd Machine Translation Summit, 1991 . [8] Carolyn P. Rose and Alon Lavie. LCFLEX: An efficient robust left-corner parser, 1999. [9] Masaru Tomita. Efficient Parsing for Natural Language. Kluwer, Boston, 1986. [10] G. van Noord, M-J . Nederhof, R. Koeling, and G. Bouma. Conventional Natural Language Processing in the NWO Priority Programme on Language and Speech Technology. Technical report, Rijksuniversiteit Groningen, Vakgroep Alfa-informatica & BCN, March 1996. [1 1] Gertjan van Noord. An efficient implementation of the head-corner parser. Computational Linguistics, 23(3) :425-456, March 1997.

318

