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Abstract Because of the nature of the parsing problem, unification-based parsers are hard to parallelize. We present a parallelization technique designed to cope with these difficulties. 
Parallel parsing of natural language has been researched extensively. In [6] we can find an overview of parallel chart parsing. Most attempts, however, were not very successful [8, 3]. Only recently two NLP applications were successfully parallelized [7, 5]. However, the former focussed on Prolog and the latter exploits coarse-grained parallelism of the kind that proved unusable for our Deltra system 1 

or other systems [3]. We present a more widely applicable approach, not limited to Prolog. Most unification-based parsers have characteristics that make them particularly hard to parallelize. Typically, unifications account for the bulk of the processing time in unification-based parsing. How­ever, parallelizing this operation is difficult [1] and does not speed up the CF part. Therefore, most research has focussed on exploiting parallelism at the CF level, where the unification operations are atomic and distributed amongst processors . This approach has several problems as well. First, each item has a different impact on the derivation of new items. In addition, the computational cost of unifying the items in one parse can vary wildly. These irregularities make it hard to find a good distribution of work ( load balancing). Another characteristic is the lack of locality, causing excessive communication and ineffective cache utilization. Finally, because all intermediate results need to be recorded in a chart, there is a lot of synchronization between processors. This aspect is aggravated by the need of dynamic load balancing, which requires additional synchronization. The implementation is aimed at shared-memory architectures, mainly driven by the difficulties discussed before. The increasing availability of these systems further justifies this choice. Let us first consider the problem of load balancing. Experiments in [10] indicate that only dynamic load balancing of single unification operations can yield a scalable solution to parallel parsing. However ; putting each individual unification in a central queue will result in too much overhead. We solve this dilemma by taking a work stealing approach:2 each processor-or thread3-has its own work queue. However, whenever a processor runs out of work, it may steal work from other processors. This considerably decreases the amount of synchronization because now synchronization is only required when a processor is stealing work. We further limit the number of steals by allowing a thread to steal an amount of work proportional to the amount of work available at the victim. 1 The Deltra system comprises a medium sized grammar and dictionary for Dutch. 2The work-stealing approach is similar to the Cilk-5 system [2] , but differs in its optimization for chart parsers. 3There is one thread for each processor. Threads are automatically distributed amongst processors by the OS. 
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As mentioned before, synchronization is also required to store results in the chart . Letting threads wait unconditionally for exclusive access incurs too much contention . We solve this problem by splitting all tasks in distributed and sequential parts . Instead of contending for chart access, a thread simply queues the sequential work4 and proceeds with other work. The scheduler [9] ensures that at most one processor is processing sequential work, automatically providing synchronization . A final optimization improves on the locality. Our parser allows synchronization of the chart per grammar rule. By associating each grammar rule-and its data-with a single processor, we can improve caching behavior . This does not compromise on the ability to balance load, because assigned work may still be stolen . In general, the scheduler has been designed to move most overhead to the stealing side, leaving minimal overhead for normal operation . Experiments confirmed that work stealing indeed yields a well-balanced distribution of work. On a 4-thread setup, 6% of the total time was consumed by idling and 6% could be attributed to scheduling overhead .5 Work stealing proved to be necessary, as omitting it yielded 20% idling for a 2-thread setup (rapidly increasing for more processors) . The solution to reduce synchronization proved effective as well . Only 1/2000 to 1/5000 synchronizations per unification were required on a 2-processor run . The ratio of running time of the sequential version and the I-processor parallel version Ti/ //flwas 1 .03, yielding minimal overhead . Running a 2-processor version on a dual Pentium-II yielded a speedup of 1 .7  ( 1 .4 for a Pentium-Pro) . Experiments verified that the gap in speedup between this result and the load balancing simulation was caused by communication of the (hardware) cache coherency protocol . This indicates that the bottleneck is caused by ineffective cache usage. Currently our research is focusing on improving cache utilization to mitigate the usage of memory bandwidth . In conclusion, the speedup that can be obtained depends on the specific grammar being used . Nevertheless, the presented scheduling method allows for the finest possible grain of parallelism, with­out resorting to parallel unification . In addition, although originally designed for the parallelization of chart parsers, the presented technique can be applied to any tabulation programming technique. 
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