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Abstract 

We propose an algebraic method for the design of tabular parsing algorithms which uses parsing 
schemata [7] . The parsing strategy is expressed in a tree algebra. A parsing schema is derived from the 
tree algebra by means of algebraic operations such as homomorphic images, direct products, subalgebras 
and quotient algebras. The latter yields a tabular interpretation of the parsing strategy. The proposed 
method allows simpler and more elegant correctness proofs by using general theorems and is not limited to 
left-right parsing strategies, unlike current automaton-based approaches. Furthermore, it allows to derive 
parsing schemata for linear indexed grammars (LIG) from parsing schemata for context-free grammars 
by means of a correctness preserving algebraic transformation. A new bottom-up head corner parsing 
schema for LIG is constructed to demonstrate the method. 

1 Introduction 

Linear indexed grammars (LIG) (2] and tree adjoining grammars (TAG) [4] are weakly equivalent grammar formalisms that generate an important subclass of the so-called mildly context-sensitive languages (MCSL) . In recent publications (see for example [1, 5] and the papers cited there) the design of parsing algorithms for LIG and TAG is based on an operational model of (formal) language recognition. It consists of the construction of some nondeterministic push-down automaton from a grammar, depending on the parsing strategy, and a tabular interpretation of that automaton. This approach is modular because the tabulation of the automaton is independent of the parsing strategy. Besides its obvious advantages over a direct construction of parsing algorithms (as in [9] ) ,  this approach is still dissatisfying in two respects: First, the tabulation of a LIG automaton is motivated only informally, in terms of a certain non-contextuality of LIG derivations (i.e. , parts of LIG derivations do not depend on the bottom parts of the dependent stacks) or in terms. of an efficient representation of unbounded LIG stacks. Second, because the usual push-down automata read their input sequentially from left to right, this technique cannot be applied straightforwardly to head-corner strategies, which start the recognition of an input string in the middle. In this paper we present an algebraic approach to the design of parsing algorithms. By this we mean that a parsing algorithm is derived from an algebraic specification of a parsing strategy by means of algebraic operations such as homomorphic images, direct products, subalgebras and quotient algebras. A parsing strategy is expressed through the operations in an algebra where the objects are partial parse trees ( called a tree algebra) . A second algebra ( called yield algebra) describes how the input string is processed. 
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Following [7] we do not construct parsing algorithms but rather parsing schemata, i.e. , high-level descriptions of tabular parsing algorithms that can be implemented as tabular algorithms in a canonical way [8]. A parsing schema describes the items in the table and the steps that the algorithm performs in order to find all valid items , but leaves the order in which parsing steps are performed unspecified. Our approach picks up an idea originally proposed but not fully developed1 by Sikkel [7] whereupon a parsing schema could be regarded as the quotient (with respect to some congruence relation) of a tree-based parsing schema. A parse item is seen as a congruence class of a partial parse tree for some part of the input string. The problem is that items that do not denote a valid parse tree for some part of the input string cannot be described in this way because they would denote empty congruence classes. In our approach a parse item is seen as a pair (a� , �) where a� is a congruence c}ass of trees and � denotes a substring of the input string. In this way all items can be characterized algebraically. This allows us to lift the correctness proof from the level of items to the level of trees. In this paper we construct a new bottom-up head-corner (buHC) parsing schema for LIG to demon­strate the algebraic approach. The construction proceeds in two steps : In the first step we construct a buHC parsing schema for context-free grammars (CFG) algebraically and give a correctness proof. In the second step an algebraic , correctness preserving transformation is applied to the tree algebra of this parsing schema to obtain a buHC parsing schema for LIG. The transformed tree algebra imple­ments the non-contextuality of LIG derivations into the tree operations and thus makes this notion more precise. Our approach has a series of advantages over the automaton-based construction of parsing algo­rithms : It is not limited to parsing strategies that process the input string from left to right ; it provides a precise characterization of an item in terms of congruence classes ; it allows simpler and more elegant correctness proofs by means of general algebraic theorems ; it allows to derive parsing schemata for LIG from parsing schemata for CFG by means of algebraic transformations ; and finally, it provides a precise explanation for certain characteristics of LIG parsing algorithms. The paper may be outlined as follows: In Sect. 2 we define the basic algebraic concepts used in this paper. Sect. 3 presents a short introduction to parsing schemata and describes the general method of constructing parsing schemata algebraically. In Sect. 4 we show the algebraic construction of the buHC parsing schema for CFG,  and in Sect. 5 we define an algebraic transformation that yields a buHC parsing schema for LIG. Sect. 6 presents final conclusions. 
2 Nondeterministic Algebras 

In this section we present generalized versions of standard concepts of Universal Algebra [3] for algebras with nondeterministic operations , called nondeterministic algebras, which provide the basis for the algebraic description of parsing schemata. The theorems in this section are given without proof, the proofs can be found in [6]. Although nondeterministic variants of algebras have been · defined previously, for example relational systems [3] , most concepts of Universal Algebra have been fully developed only for algebras with deterministic operations. An algebra A is a pair (A, F) where A is a nonvoid set (the carrier of A) and F is a family of finitary operations f :  An ➔ A. An n- ary nondeterministic operation is a set-valued function f :  An ➔ P(A) , where P(A) denotes the powerset of A. We use the notation f(a1 , • • •  , an ) I- a iff a E /(a1 , . . .  , an) .  If 
1 although it must be pointed out that Sikkel's book is not about the algebraic structure of parsing schemata in the 

first place, but about relations between different parsing schemata. 
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f is nullary we write f I- a instead of J() I- a. A nondeterministic algebra A is a pair (A, F) where A is a nonvoid set and F is a family of finitary nondeterministic operations. A partial algebra is a nonvoid set A together with a family of finitary partial operations on A, i .e . ,  partial functions f : An � A. The type of a (partial, nondeterministic) algebra is the function that assigns each operation its arity. We write A = (A, F) and B = (B, F) to indicate that A and B are algebras of the same type, although the operations can be defined differently in A and B. To indicate whether an operation f E F belongs to A or B we write JA and f 8, but we omit the superscripts if the algebra is understood. The restriction of a nondete�ministic operation f :  An ➔ P(A) to a subset B � A is the operation f' : Bn ➔ P(B) defined by J'(b1, . . .  , bn) = f(b1, . . .  , bn) n B. Let A =  (A, F) be a nondeterministic algebra. The smallest subset A' of A that is closed under the operations in F (i.e. , if a1 , . . • . , an E A' , n 2:'.: 0, and f(a1, . . .  , an) I- a then a E A') is denoted with [0]A - [0]A is nonempty only if A has nullary operations. The elements in [0]A are said to be generated (by A) . We now present some standard concepts of Universal Algebra for nondeterministic algebras. Let A = (A, F) and B = (B, F) be nondeterministic algebras of the same type. B is called a relative subalgebra of A if B � A and for every f E F, J8 is the restriction of JA to B. B is called a weak subalgebra of A if B � A, and for every f E F, for all b1, . . .  , bn, b  E B:  whenever J8( b1, . . .  , bn) I- b then JA(b1, . . .  , bn) I- b. If [0]A is nonempty then the relative subalgebra ( [0]A , F) is called the generated subalgebra of A. The direct product of A and B is the nondeterministic algebra A x B = (A x B, F), where JAxB((a1, b1), . . .  , (an, bn)) I- (a, b) iff JA(a1, . . .  , an) I- a and J8(b1, . . .  , bn) 1- b. A homomorphism of A into B is a function h : A ➔ B satisfying the condition: For all a1 , . . .  , an E A, if JA(a1, . . .  , an) I- a then J8( ha1, . . .  , han) I- ha. A homomorphism h of A into B is called strong if for all a1 , . . .  , an E A, for all b E B: whenever J8( ha1, . . .  , han) I- b, then there is some element a E A  such that JA(a1, . . .  , an) I- a and ha = b.  A strong congruence relation of a A is an equivalence relation -:::. on A satisfying the condition: if f (a1 , . . .  , an) I- a and ai -:::. a�, for i = 1 ,  . . .  , n, then there is some a' E A such that a -:::. a' and f(a�, . . .  , a�) I- a' . The set of all strong congruence relations of A is denoted with Cgr(A) .  Strong congruence relations and strong homomorphisms of nondeterministic algebras are related as follows [6] : The kernel of a strong homomorphism is a strong congruence relation, and every strong congruence relation is the kernel of some strong homomorphism. Let -:::. be a strong congruence relation of A. The quotient algebra A/-:::. is the nondeterministic algebra (A/-:::., F) where the operations are defined through JAfr::=(a1r::=, . . .  , anr::=) I- ar::= iff for some elements a�, . . . , a�, a' E A: a� -:::. ai (for all i) and a' -:::. a and JA(a�, . . .  , a�) I- a' . The following theorem describes the connection between homomorphisms and generated subalgebras of direct products: 
Theorem 1 . Let A be a nondeterministic algebra and B a partial algebra of the same type and h : A ➔ B a  homomorphism. Then [0]AxB  = {(a, b) E [0]A x [0]B I ha = b} . 

The next theorem shows that generated subalgebras and quotient algebras commute: 
Theorem 2. If -:::. is a strong congruence relation of A then [ 0]Ajr::= = [0]Af-:::.. 

As a corollary, we also get the following 
Theorem 3.  If h :  A ➔ B is a strong homomorphism then [0]B = { ha I a E [0]A} , 

The last theorem can be interpreted thus: Under a strong homomorphism, computations in a homomorphic algebra are homomorphic images of computations in the original algebra. 
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3 Algebraic Construction of Parsing Schemata 

In this section we present a formal definition of parsing schemata and describe the general scheme of the algebraic construction of parsing schemata. This scheme is completely independent of a particular grammar formalism or parsing strategy. Parsing schemata were proposed by Sikkel as a well-defined level of abstraction for the description and comparison of tabular parsing algorithms [7] .  A parsing schema2 i s  a deduction system (I, D )  consisting of a finite set of (parse) items I and a finite set D of deduction steps written in the form x1 , . . .  , Xn I- x (meaning x is deducible from X1, . . .  , Xn) where n � 0 and x1, . • . , Xn , x E J. The inference relation I- is defined by X I- x iff for some x1, . . .  , Xn E X :  x1, . . .  , Xn I- x E D. The reflexive and transitive inference relation I-* is defined by X I-* x iff x E X  or there are items y1 , . . .  , Ym such that for all i, X U  {y1 , . . .  , Yi - i} I- Yi E D and x = Ym . If X I-* x we say that x is deducible from X.  If x is deducible from the void set 0 then x is called valid. Let (I, D) be a parsing schema for a grammar G and an input string w. Every item x E J represents a G-derivation of a particular form of some substring of w. If such a derivation actually exists then x is called correct. (I, D) is called correct if valid and correct items coincide. If (I, D) is correct then a string w is in the language of G iff an item representing a G_-derivation of w from the start symbol of G is valid. Let G be a grammar. An (augmented) tree algebra for G is a nondeterministic algebra Aa = (A, F) where A is a set of partial derivation trees augmented with some state information (that depends on the parsing strategy) and F is a family of (possibly nondeterministic) tree operations that depend on the grammar G as well as the parsing strategy. We assume that F contains at least one nu�lary operation. In the sequel we will assume that G is understood and write A instead of Aa. Let :E be an input alphabet. An (augmented) yield algebra is a partial algebra B = (B, F) where B is a set of strings from :E* augmented with some state information. A homomorphism g : A ➔ B ( where A is an augmented tree algebra and B is an augmented yield algebra) that assigns each augmented tree the augmented string of terminal symbols at its leaves is called a yield homomorphism. Let A be an augmented tree algebra and B an augmented yield algebra and g : A ➔ B a  yield homomorphism. Let '.::::'. be a strong congruence relation of A. For any string w E :E* let B ( w) � B be the set of all augmented substrings of w ( the exact definition of substring depends on the parsing strategy). Let B(w) = (B(w) , F) be the relative subalgebra of B with carrier B(w) . The nondeterministic algebra A/:::'. xB(w) , that is, the direct product of the quotient algebra of A and the relative subalgebra of B with augmented substrings of w, is called a parsing algebra for G, w. The elements of a parsing algebra are pairs (a� , b) where a� is  a congruence class of an augmented derivation tree and b is an augmented substring of w. By Theorems 1 and 2, (a� , b) is generated in the parsing algebra iff there is some generated derivation tree a' in A such that a� = a� and ga' = b. Let w E :E* be an input string. An augmented substring of w may be given by a tuple l E N71 of positions in w. T wo different tuples l, ( may determine the same augmented substring of w. A parse item is a pair (a� , l) where a� is an equivalence class of augmented derivation trees and � is a tuple of positions. A parse item algebra is a nondeterministic algebra I, = (I, F) where J is a set of parse items . A parse item homomorphism is a strong homomorphism cp from a parse item algebra into a parsing algebra, such that cp(a� , �) = (a� , b) , i.e., cp maps the second component of a parse item to an augmented substring of w. If cp : I, ➔  A/:::'. xB(w) is a parse item homomorphism, then 2We use a slightly different notation and terminology than that in [7]. 
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by Theorem 3, a parse item (a� , e) is generated in I iff for some b E B(w) , cp(a� , e) = (a� , b) and 
(a� , b) is generated in the parsing algebra. 

A parsing schema (I, D) is obtained from a finite parse item algebra (I, F) by defining D = 
{x1 , . . .  , Xn r X 1 3/ E F : f(x1 , . . .  , xn) r x} .  Then by the previous equivalences, (a� , e) is de­
ducible in the parsing schema iff for some a' E A, a' is generated in A and a� = a� and ga' E B(w) 
and cp( a� , e) = (a� , ga') . Note that if cp is a parse item homomorphism of a finite parse item algebra 
into a parsing algebra, then there are only finitely many congruence classes of generated augmented 
derivation trees. 

A nondeterministic algebra A is called sound (resp. complete) w.r.t . a set Ao � A iff [0]A � Ao 
(resp. [0]A 2 A0 ) .  A nondeterministic algebra is called correct iff it is sound and complete .(w.r.t. a set A0) .  The grammar G defines a subset Ao � A of admissible augmented derivation trees. Note that Ao 
depends on the parsing strategy but not on F. If a parsing schema (I, D) for G, w is constructed as 
above and the tree algebra is correct w.r.t. admissible derivation trees of G, then a parse item (a� , e) 
is deducible in (I, D) iff a� is the congruence class of some admissible derivation tree a' and ga' is 
the augmented substring of w denoted by e; that is, (I, D) is correct. 

By definition, w E L( G) iff there is a derivation of w from some start symbol of G. An element in A 
that represents a derivation of a string w E :E* from a start symbol is called a complete ( augmented} derivation tree. An equivalence relation ::: on A is called regular if there are no mixed equivalence 
classes; that is , if the condition holds: whenever a is complete and a :::  a' then a' is complete, too. If 
::: is regular then a� is called complete iff a is complete. A parse item (a� , e) where a� is complete is 
called a final item. If (I,  D) is correct for G, w then w E L(G) iff there is some final item (a�, e) such 
that (a� , e) is deducible in (J, D) and e denotes w. 

4 Context-Free Bottom-Up Head-Corner Parsing 

In this section we present an algebraic description of the bottom-up head-corner (buHC) parsing 
schema for CFG [7, Schema 1 1 .13] , according to the construction scheme described in the previous 
section. A buHC parser starts the recognition of the right-hand side of a production at a predefined 
position (the head of the production) rather than at the left edge, and proceeds in both directions. 
In the sequel we will denote terminal symbols with a, a1 , a2 , . . .  , nonterminal symbols with A, B, . . .  , 
strings of terminal symbols with u, w and strings of terminal and nonterminal symbols with /3, ,, 8. 

l/3 1 denotes the length of (3. We borrow a practical notation for trees from [7] : (A ""4 /3) denotes an 
arbitrary tree with root symbol A and yield (i.e . ,  sequence of labels on the leaves, from left to right) 
f3 (possibly of height 0, in which case f3 = A) . (A ➔ /3) denotes the unique tree of height 1 with 
root symbol A and yield /3. A tree of height 1 is called a local tree. Expressions of this form can be 
nested, thus specifying subtrees of larger trees. We also write (/3 -v-+ ,) for a sequence of trees with 
root symbols f3 (from left to right) and concatenated yields ,. 

A headed context-free grammar G is a tuple (N, �,  P, S, h) such that (N, :E,  P, S) is a CFG without €­
productions, where N, �, P are finite sets of nonterminal symbols, terminal symbols and productions, 
respectively, S is a start symbol and h : P ➔ N is a function that assigns each production p = A ➔ f3 
a position 1 � h(p) � 1/3 1 - The h(p)-th symbol in f3 is called the head of p (for simplicity it is assumed 
that the same production cannot occur twice with different heads) .  The pair (p, h(p)) is called a headed production. If p = A ➔ f3X 8 and h(p) = lf3X I then we write A ➔ f3X 8 for (p, h(p)) . 

A buHC tree is a triple (r, k, l) where r = (A ➔  /3(, -v-+ u)8) (for some A, /3, ,, 8, u) is a finite, 

246 



/3B, A, 8 
D ,  

/3, A, 8  
� I 

lScana 
c, B, c 

� 

lGompl 

/3, A, 8  c, B, c I 
I\ � A � � 

iff A ➔ fJBli E P  
buHGA 

/3, A, a8 /3, A, 8 
D � /Sa rScana 

c, B, c 

rGompl 
Figure 1 :  Bottom-up head-corner tree operations. 

ordered tree with k = 1/31 and l = l/3,I - k and l are state information; they mark the beginning and end of the recognized part 'Y of a production. An equivalent representation for ( r, k ,  l) is the triple (r' , /3, 8) where r' = (A ➔  ('Y ""'7 u)) and the subtrees specified by (, ""'7 u) are the same in r and r' . We use the second form in graphical representations of buHC trees and write /3 and 8 to the left and right of the root label, respectively. The buHG tree operations are shown in Fig. 1 (the yields of the trees are omitted for simplicity) .  c denotes the empty string. The nullary operation buHGaA-+f3g_o is indexed with a headed production in order to ensure that the corresponding operation in the yield algebra is a partial function. For the same reason, the operations lScana and rScana are indexed with the symbol a being scanned. The tree rooted by B in lGompl and rGompl is called side tree. We denote the buHC tree algebra with AbuHC· A local tree (A ➔ /3) is called admissible w.r.t . G iff A ➔ f3 is a production of G. A buHC tree (r, k, l) where r = (A ➔ /3(, ""'7 u)<S") is admissible w.r.t. G iff each local tree in r is admissible w.r.t. G and there is some headed production (p, h(p)) with p = A ➔ (3,8 and k < h(p) � l .  
Proposition 1 .  AbuHC is correct w. r. t. admissible buHG trees. 
Proof. Soundness is proved by induction on the basis of individual operations . To this end, observe that each operation computes only admissible trees provided that its arguments are admissible. In particular, buHGaA-+f3g_"f is an admissible tree. Completeness is proved by induction on the length of computations .  Define the function A : (r, k, l) H- ( lr l ,  l - k) for any buHC tree (r, k, l) where lrl denotes the number of nodes in r, and define the relation <r on N2 by (m, n) <r (m' , n') iff m < m' or (m = m' and n < n') .  <r is a well-founded, strict ordering on the A-values of all buHC trees. Now observe that if ( r, k, l) is an admissible buHC tree then ( r, k, l) is computed by buHGaA-+f3g_"f or we find admissible buHC trees (ri , ki , li ) for 1 � i � j such that (r, k, l) is computed from (ri , ki , li ) by some j-ary buHC tree oper­ation and A(ri , ki , li) <r A(r, k, l) for all i . Then completeness follows by induction on the values of A. □ 
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huHG = { [A --+ ,B. ,. 8, i , j] I A --+ ,8,8 E P, 0 ::;  i < j ::;  lw l}  
D buHGa = {I- [A --+ .B• ai. 8, i - 1 ,  i ]  I A --+ ,Bai8 E P} 
D buHGA = { [B --+ •r• , i, j] I- [A --+ ,B. B.8, i , j] } I A -+ ,BB8 E P} 

DlScan = {[A ➔ ,Bai •r• c>, i , j] I- [A ➔ ,B- an- 8, i - 1 , j] } 
nrScan = {[A ➔ ,a. ,.aj+1 8, i , j] I- [A ➔ .B• ,aj+i • c>, i , j + 1] } 

D lGompl = {[A ➔ f3B.,. 8, i , j] , [B ➔ .,'. , k , i] I- [A ➔ ,B. B,. 8, k, j] } 
nrGompl = { [A ➔ ,B. ,.B8, i , j] , [B ➔ .,' . , j, k] I- [A ➔ ,B.,B. 8, i , k] } 

DbuHc(w) = D buHGa u D buHGA u DlScan u nrScan u D lGompl u nrGompl 

Figure 2: The buHC parsing schema. 
A buHC yield is a string in E* . The buHC yield homomorphism is defined as follows: For ( r, k, l) = (r' , /3, 8) ,  where r' = (A ➔ (, �  u) ) ,  let YbuHc (r, k, l) = u. The buHC yield operations are defined as follows: buHCaA-+/3gJ = a, buHCA(u) = u, lScana (u) = au, rScana (u) = ua, lCompl(u, v) = vu, rCompl(u, v) = uv. We denote the buHC yield algebra with BbuHG• Clearly, YbuHC is a homomorphism of AbuHG into BbuHG· Let '.::=buHC be the equivalence relation defined by (r1 , k1 , li )  '.::=buHC (r2 , k2 , l2 ) iff (for some A, ,B, ,, 8, u1 , u2 ) ri = (A ➔ ,B(, � ui)c>) (i = 1 , 2) and k1 = k2 = I.B I and li = l2 = I.B,1 - Then '.::=buHC is a strong congruence relation of AbuHG· We denote the congruence class of (r,ki , li) with [A ➔ (3. ,. 8] .  It is obvious that '.::=buHC partitions the set of admissible buHC trees into finitely many congruence classes, for any headed CFG G. For any w E E* let sub( w) be the set of strings u such that for some v, v' : w = vuv' (substrings of w) ,  and let BbuHc(w) be the relative subalgebra of BbuHG with carrier sub(w) . Clearly, BbuHc(w) is finite for any w. Now fix some input string w = a1 . . .  an . A buHC item for G, w is a triple ( (r, k , lbbuttc , i , j) ,  written as [A ➔ ,B.,. 8, i , j] ,  where (r, k, lbbuHc = [A ➔  ,B. ,.8] and A ➔  ,B,8 E P and O ::;  i < j ::;  n .  A pair (i , j) denotes the nonempty substring of w from position i through j .  Let lbuHc(w) be  the set of all buHC items for G, w. Let 'PhuHC be the function [A ➔ ,B.,. 8, i , j] � ( [A ➔ ,B.,. 8] , ai+I . . .  aj ) ­The buHC operations can be defined straightforwardly on huHc(w) such that 'PbuHC is a strong homomorphism from huHc(w) into AbuHc/'.'.:=buHC xBbuHc(w) . Finally, the buHC parsing schema for 

G, w is obtained by defining the deduction steps as described in Sect . 3. It is shown in Fig. 2 .  A buHC tree (r, k ,  l) i s  complete iff r is  of the form (S ➔ (, � u) ) and k = 0 and l = 1, 1 - Thus 
(r, k, l) is complete iff (r, k, lbbuHc = [S ➔ • ,• ] .  The following corollary follows directly from the construction: 
Corollary 1 .  1. I-* [A ➔ ,a.,. 8, i , j] iff there is some admissible buHC tree (r, k, l) with r = (,8(, � ai+I . . .  ai )8) and k = I.B I and l = I.B,1 -

2. w E L(G) iff for some ,, I-* [S ➔ .,. , O, n] . 

5 Bottom-Up Head-Corner Parsing of LIG 

A linear indexed grammar (LIG) [2] is an extension of a headed CFG in which the productions are associated with stack operations and where the nonterminal symbols in a derivation are associated 
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,B, AQ, c5 
� I 

,B, A[w'], c5 

/\ �  
*

] 

� iff p = A ➔  f)B6 E P, o(p)(w') = w 
buHCA 

Figure 3: buHC-LIG tree operations. 
with stacks of symbols. The stacks associated with the head and the left-hand side of a production are related by the stack operation associated with that production while all other descendants have a stack of bounded length. We consider a normal form of LIG where a stack operation either pushes or pops a single symbol, and where the stacks of non-head descendants must be empty. A LIG in normal form can be represented as a tuple (N, "E,  Q, P, S, h, o) where (N, "E, P, S, h) is a headed CFG, Q is a finite stack alphabet and o is a function that assigns each production p E P a stack operation pushq or popq (where q E Q) if the head of p is a nonterminal symbol, and nop otherwise. Let q E Q* be a finite stack. The stack operations are defined as follows: pushq (w) = wq, popq (w) = w' if w = w'q, else undefined, nop(w) = w. A headed tree is a tree such that for each node v that is not a leaf, exactly one child of v is marked and the others are unmarked. The marked child is called the dependent descendant of v. A buHC-LIG tree is a tuple (T, k, l) such that T is a  headed tree labeled with pairs (X, w) E (N U "E) x Q* , written as X[w] , and T has the form (A[w] ➔ A(r � u)�) , and k = IA I  and l = IArj , where A, r, � denote (finite) sequences of labels in (N U "E) x Q* , and if X E "E then w is empty. Instead of XO we can write X. Let G be a LIG. A local tree (A[w] ➔ r) is admissible w.r.t. G iff there is a production p = A ➔  7X7' E P such that r = 7X[w'h' and w' = o(p)(w) and the h(p)-th child of A[w] is marked (note that 'Y, 7' denote sequences of labels with empty stacks) . A buHC-LIG tree (T, k, l) is admissible w.r.t. G iff every local tree in it is admissible w.r.t. G and, if the m-th child of the root of T is marked then k < m ::; l .  Let ( T ,  k,  l) be a buHC-LIG tree and v a node in  T with a stack of length n 2:'.: 1 .  Consider the unique sequence of dependent descendants beginning at the dependent descendant of v and extending downwards to a leaf. If it exists ,  the unique node v' closest to v on this sequence with stack length n - I is called the dependent stack descendant of v. This means that on the path from v to v' the stack length does not fall below n except at v' . If v is the root of T then v' is called the dependent stack descendant of T. Note that if (T, k, l) is admissible w.r.t. some LIG then v has a dependent stack descendant. The buHC-LIG tree operations are obtained from the buHC tree operations by incorporating the stack operations associated with the productions. Fig. 3 shows the buHCa and buHCA operations. In the resulting trees the nodes labeled with a resp. B[w] are marked. The other operations do not mark or unmark nodes. The Scan and Compl operations do not perform any operations on stacks, however, the Compl operations are only defined if the stack on the root of the side tree is empty. The buHC-LIG tree algebra is denoted with AbuHC-LIG· Prop. I remains valid if AbuHC is replaced with AbuHC-LIG and "buHC trees" is replaced with "buHC-LIG trees" , if we consider a buHC-LIG tree as a buHC tree over the infinite label domain (N U "E) x Q* and a LIG production as an abbreviation for an infinite set of context-free productions over this infinite domain. Note that the proof of Prop. I 
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does not rely on the finiteness of N and P. However, in AbuHC-LIG we do not find a strong congruence relation with finitely many congruence classes of admissible buHC-LIG trees: 
Proposition 2. Let � be a strong congruence relation of AbuHC-LIG· If the length of stacks in the derivation trees of G is unbounded, then [0]AbuHc-ual� is infinite. 
Proof. We give an informal proof. Consider the buHCA operation and a production with a pushq operation. First, observe that if two admissible buHC-LIG trees are congruent then they must have the same symbol Q on top of the stacks at their root nodes, because of the buHCA operation. Let w = Qi . . .  Qm and w' = Q� . . .  Q� be the stacks at the root nodes, where Qm = Q� . By the same operation we can conclude that Qm-i = q�-i - By induction it follows that any two congruent, admissible buHC­LIG trees must have the same stack at their root nodes. Thus, if the length of stacks is unbounded, there are infinitely many noncongruent buHC-LIG trees. □ 

Below we will define an algebraic transformation that preserves the correctness of the transformed nondeterministic algebra under certain conditions. Then we proceed as follows: First, we replace the buHCA operation in Fig. 3 with two operations buHCA0p for op E {push, pop} ,  with the additional condition that o(p) = opq (for some Q) in Fig. 3. Obviously, this does not affect the correctness of the tree algebra. Next, we use the transformation to modify the buH_CApush operation. The transformed buHC-LIG tree algebra will have new congruence relations with only finitely many congruence classes of admissible buHC-LIG trees. We first define some additional algebraic concepts. Let A =  (A, F) be a nondeterministic algebra and R : A2 ➔ P(A) a binary operation on A. A subset A' � A is called forward closed w.r.t. R if for all a1 , a2 E A' : if R(a1 , a2 ) I- a then a E A'. A' is called backward closed w.r.t. R if there is some function d : A' ➔ N, such that for all a1 E A' there is some a2 E A' with d(a2 ) < d(ai) and R(ai , a2) I- ai . We denote with A[R] = (A, F U {R}) the algebra where R has been adjoined as a new operation. f o R denotes functional composition, i.e. ; f o R(ai , a2) I- a iff for some a' E A: R(a1 , a2) I- a' and J(a') I- a. 
Theorem 4. Let A = (A, F) be a nondeterministic algebra and f E F a unary operation and R :  A2 ➔ P(A) and let A' = (A, F') where F' = F \ {/} u {/ o R} . 
1. If [0]A is backward and forward closed w. r. t R then [0]A = [0]A, . 
2. Cgr(A[R]) = Cgr(A) n Cgr((A, R)) � Cgr(A') . 
Proof. (1) follows from the definition of closure and by induction on the values of d. (2) follows directly from the definitions. □ 

Assume that A is correct w.r.t. some set of admissible elements A0 , i.e. , [0]A = A0 , let R be a binary operation on A such that Ao is forward and backward closed w .r. t. R, and define A' as in Theorem 4. Then by Theorem 4, A' is also correct w.r.t. A0 • Forward closure of Ao w.r.t. R preserves the soundness of A' while backward closure preserves its completeness. The second part of Theorem 4 guarantees that all strong congruence relations of A are preserved in A' . More importantly, in the example below A' will have new (interesting) congruence relations. Define the binary operation R as shown in Fig. 4. The lines indicate sequences of dependent descendants. C[w] is the dependent stack descendant of B[wQ] in the left tree. Note that this implies that the stack w is not consulted from B[wQ] to C[w] . The right tree is obtained by replacing each stack of the form WQi . . .  Qm (m � 0) on the path from B[wQ] to C[w] in the left tree with a stack of the form w' Qi . . .  Qm , and then replacing the subtree rooted by C[w'] with the middle tree. The substitution of stacks exploits the fact that the application of LIG productions on the path from B[wQ] to C[w] does 
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Figure 4: Substitution in buHC-LIG trees. 
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Figure 5: buHCApush o R. 
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not depend on w. If (r, k, l) has no dependent stack descendant then let R(r, k, l) (r', k', l') = (r, k, l) for any buHC-LIG tree (r', k', l' ) .  
Proposition 3.  [0]AbuHc-uc is forward and backward closed w. r. t. R. 
Proof. For forward closure, observe that every node that is not on the path from B[wq] to C[w] is not a dependent descendent of any node on that path, and hence the stack substitution in the left tree, together with the subtree substitution, does not affect the admissibility of any local tree in the white area. For backward closure, observe that the right tree in Fig. 4 can be obtained by replacing the subtree rooted by C[w'] with itself in the right tree (i.e. ,  by doing nothing) , and use the number of nodes in a tree as the function d in the definition of backward closure. □ 

Let A�uHC-LIG be the algebra that is obtained from AbuHC-LIG by replacing the buHCApv.sh op­eration with buHCApush o R (see Fig. 5) . By Theorem 4 and Prop. 3, A�uHC-LIG is correct w.r.t. admissible buHC-LIG trees. Furthermore, let �buHC-LIG be the equivalence relation defined as fol­lows: Let (r1 , k1 , li ) , (r2 , k2 , l2 )  be buHC-LIG trees and for i = 1 , 2 let Ti = (Ai [wi] ➔ Ai (ri � ui)�i ) ­
Then (r1 , k1 , li ) �buHC-LIG (r2 , k2 , l2 )  iff A1 = A2 and A1 = A2 and r1 = r2 and �1 = �2 and k1 = k2 and li = l2 , and if w1 = c then w2 = c, and if w1 = wq then w2 = w' q, and r1 has a dependent stack descendant iff r2 has a dependent stack descendant, and if BO is the dependent stack descendant of r1 then BO is the dependent stack descendant of r2 , and if B[wq'] is the dependent stack descendant 
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I- [A ➔ /3• ai . 8, -, - , - , i - 1, i ,  - , -] (A ➔ /3ai8 E P) 
[ B ➔ • , • , q, C, q", i, j, r, s] ,  [ C ➔ • ,' . , q1, X, q�, r, s, u, v] I- [ A ➔ ,B • B. 8, q1, X, q�, i, j, u, v] 

(p = A ➔ ,BB8 E P, o(p) = pushq) 
[B ➔ . ,., q, C, q", i, j, r, s] , [C ➔ . ,'., -, -, -, r, s, -, -] I- [A ➔ ,B. B. 8, -, - , - , i, j, - , -] 

(p = A ➔  ,BB8 E P, o(p) = pushq ) 
[B ➔ . ,., q1, C, q�, i, j, r, s] I- [A ➔ ,B. B. 8, q, B, q1, i, j, i, j] (p = A ➔  ,BB8 E P, o(p) = popq ) 
[A ➔ /3ai • r•8, q, B, q', i, j, r, s] I- [A ➔ /3_• an- 8, q, B, q', i - 1, j, r, s] 
[A ➔ ,B. ,. ai+1 8, q, B, q', i, j, r, s] I- [A ➔ .B• ,ai+ 1 . 8, q, B, q1, i, j + 1 , r, s] 
[A ➔ ,BB. ,. 8, q, C, q', i, j, r, s] , [B ➔ . ,'., -, -, -, k, i, - , -] I- [A ➔ ,B. B,. 8, q, C, q', k, j, r, s] 
[A ➔ ,B. ,. B8, q, C, q', i, j, r, s], [B ➔ .,'. , - , -, - , j, k , - , -] I- [A ➔ ,B.,B. 8, q, C, q', i, k, r, s] 

Figure 6: The buHC-LIG deduction steps. 
of r1 then B[w'q'] is the dependent stack descendant of r2 , for some w, w', w, w' .  
Proposition 4. '::::!.buHC-LIG is a strong congruence relation of A�uHC-LIG with only finitely many congruence classes of admissible buHC-LIG trees. 

If (r, k, l) is as in Fig. 4 (left) then let 9huHC-LIG (r, k, l) = (u1 , u2 , u3 ) ,  and if r = (AO ➔ /3(r � u)8) then let 9buHC-Lia(r, k, l) = (- , u, -) .  Then the buHC-LIG operations can be defined on the buHC­LIG yields in a straightforward way (for example, see Fig. 5 for buHCApush), such that 9huHC-LIG is a homomorphism. Using the construction described in Sect. 3 (analogously to Sect. 4) we obtain a (cor­rect!) buHC-LIG parsing schema. The buHC-LIG items are of the form [A ➔ !3. ,. 8, q, B, q', i, j, r, s] where A ➔ /3,8 is a production, q, q' are stack symbols, 0 ::; i ::; r < s ::; j ::; lwl and q, B, q', r, s are - if a buHC-LIG tree has no dependent stack descendant (then O ::; i < j ::; lw l ) - The item homomorphism 'PhuHC-LIG maps a tuple of positions (i, j, r, s) to (ai+1 . . .  ar, ar+l . . . as, as+l . . . aj), resp. to (- , ai+l . . .  aj, -) if r = s = - , where w = a1 . . .  an is the input string. The deduction steps are shown iri Fig. 6. The transformation defined in Theorem 4 may also be used to account for the form of the steps in the CYK-LIG algorithm in [9, 10] . This algorithm may be seen as the result of a transformation of a CYK tree algebra for CFG in Chomsky normal form using a similar substitution of subtrees as in Fig. 4. 
6 Conclusion 

We have proposed an algebraic method for the construction of tabular parsing algorithms. A parsing algebra for a grammar G and input string w is a relative subalgebra of a quotient algebra of the direct product of a tree algebra A ( that reflects the parsing strategy) and a yield algebra B ( that describes how the input string is processed) which is homomorphic to A. A parsing schema is the inverse image of a parsing algebra under a strong homomorphism. Correctness of a parsing schema is defined at the level of tree operations. We have demonstrated the construction using a buHC parsing strategy for CFG. Furthermore, we have derived a buHC parsing schema for LIG from the buHC parsing schema 
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for CFG by means of a correctness preserving algebraic transformation. We have proposed the algebraic construction of tabular parsing algorithms for LIG as an alterna­tive to the automaton-based approach proposed in recent papers (1 ,  5] because it allows to derive LIG algorithms from CFG algorithms by means of algebraic transformations , allows sim.pler and more ele­gant correctness proofs by using general theorems , and is not restricted to left-right parsing strategies. Furthermore , it makes the notion of parse items more precise and thus adds to a better understanding of parsing schemata. 
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