1

A Transformation-based Parsing Technique
With Anytime Properties

Kilian Foth, Ingo Schréder, Wolfgang Menzel
(foth | ingo | wolfgang@nats.informatik.uni-hamburg.de)
Fachbereich Informatik, Universitdt Hamburg
Vogt-Kolln-Strafie 30, 22527 Hamburg, Germany

Abstract

A transformation-based approach to robust parsing is presented, which achieves a
strictly monotonic improvement of its current best hypothesis by repeatedly applying local
repair steps to a complex multi-level representation. The transformation process is guided
by scores derived from weighted constraints. Besides being interruptible, the procedure
exhibits a performance profile typical for anytime procedures and holds great promise for
the implementation of time-adaptive behaviour.

Introduction

Parsing procedures always have to be designed around a number of pre-specified requirements

which arise from specific conditions of the individual application area in mind. Text retrieval

tasks, for instance, can be accomplished already with a rather shallow analysis whereas speed

and fail-soft behaviour are of utmost importance. Grammar checking and foreign language

learning applications, on the other hand, must provide for highly precise error detection ca-

pabilities but differ considerably in their coverage requirements. One of the most demanding

combination of target specifications results from the development of spoken language dialogue

systems. Since this task is an attempt to model central capabilities of the human language fac-

ulty, rather strong criteria have to be met in order to achieve natural communicative behavior

on a competitive level:

¢ Robustness:

A spoken language dialogue system is typically confronted with a rich variety of linguistic
constructs and will almost inevitably have to deal with extragrammatical input sooner or
later. Also, repairs, hesitations, and other grammatical deviations will frequently produce
ungrammatical utterances, while the recognition uncertainty inherent in spoken language
input further increases the ambiguity.

The parsing component must be able to cope with these problems in a robust way. Be-
sides being able to return (possibly partial) analyses even for unexpected and arbitrarily
distorted input it is also necessary to provide some kind of measure of how sure the parser

is about its results.

Complete disambiguation: Natural language utterances typically exhibit ambiguity
when treated in isolation. Nevertheless, a simple enumeration of different (structural)
readings almost never can be considered a sensible contribution to a practical language
processing task. Although interactive applications can engage the speaker in a kind of
clarification dialogue, usually this possibility brings many additional complications and
should only be considered a measure of last resort. Instead, a well-designed system should

89

make use of all the available information to obtain a single interpretation of the utterance,

which is only abandoned if the user explicitly signals a communication failure.

e Multiple-source disambiguation: A vast variety of knowledge sources can contribute
to disambiguation: Syntactic constraints, semantic preferences, prosodic cues, domain
knowledge, the dialogue history, etc. All the available knowledge should be put to use as
soon as possible so that local ambiguity will not create a large space of useless hypotheses
during processing. For reasons of perspicuity and accessibility the integration of these
knowledge sources should be organized in a way which maintains their modularity. Only
then can the respective contributions of individual components be evaluated and properly
balanced against each other.

e Time-aware behavior: Three closely related aspects must be considered with respect
to the temporal behavior of a language processing component: Efficiency, incremental
processing and temporal ad aptivity. Whereas efficiency always has been an issue of major
concern, explorations into incremental and time-ad aptive parsing attracted more attention
only recently [GKWS96, Amt99, Men94]. Since speech unfolds in time, speaking time is a
valuable resource and an immediate response capability can be achieved only if incoming
information is processed in an on-line fashion. Temporal adaptivity, on the other hand, is
the capability of a component to dynamically control its processing regime depending on
how much time is available to complete the task. In principle, such an anytime behaviour
can be achieved by trading time against quality. Therefore a baseline performance will
be required which allows the quality of available results to grow monotonically as more
effort is made, and which is robust enough so that results of slightly reduced quality can

still be considered being acceptable in a certain sense.

Obviously, the most natural measure of external temporal pressure is given by the speaking
rate of the dialogue partner. Thus temporal adaptivity makes sense first of all under an
incremental processing scheme. Its basic mechanisms, however, can also be studied in the

far simpler non-incremental case.

This paper investigates a non-standard parsing approach, which attempts to reconcile two
different kinds of robustness, namely robustness against unexpected and ill-formed input and
robustness against external temporal pressure. It is based on the application of constraint
satisfaction techniques to the problem of structural disambiguation and allows the parser to
include a wide variety of possibly contradicting informational contributions. Different solution
procedures are presented and compared taking into account solution quality and the observed
temporal behavior. '

2 Parsing As A Consistent Labeling Problem

Although most contemporary unification-based grammars can be said to employ constraints,
none of them fulfill the traditional definition of a Constraint Satisfaction Problem (CSP) con-
sisting of a fixed number of wariables, which receive their values from domains, i. e. sets of
alternative value assignments. The global consistency of a value assignment is defined by

means of local constraints, which can be understood as sets of admissible value tuples, specified

90

intensionally.! A conflict then can be defined as a tuple outside a constraint, and a solution is
a complete value assignment without conflicts. Finally, Consistent Labeling Problems (CLP)
are characterized by their domains being discrete, finite and known in advance.

Parsing a given utterance can be viewed as an instance of such a problem in that every word
form fulfills a specific function (i. e. complement, specifier, etc.) in a particular analysis. As long
as a grammar theory is defined over a finite number of such functions, they can immediately be
used as the values of a CSP. Since an utterance often contains multiple instances of the same
grammatical function (i. e. a determiner modifying a noun), it always has to be specified in
what context the word form fulfills its function. Therefore, every word form in an utterance is
annotated with a pair consisting of a label (i. e. the grammatical function of the form) and a
pointer to another word form, which is modified by the first one. This way, an entire dependency
tree can be encoded in a CSP of a fixed size.

Conversely, some word forms require other word forms to fulfill certain functions for them
as obligatory complements. Such valence requirements can be modeled as constraint require-
ments as well. Furthermore additional relations between word forms can be included easily
(e. g. semantic arguments or aspects of the informational structure), thus creating a fairly rich
structural representation.

Figure 1 shows an example of such a multi-level representation including syntactic depen-
dencies (the arcs above the word forms), semantic arguments (e. g. the arcs labeled agens and
patiens) and a bunch of valence requirements (all those with the label prefix n_, e. g. n_subj, n_inf
etc.). Admissible combinations between dependency relations on two different representational
levels are also defined by means of suitable constraints.

inf obj
det subj m
Y YA\ R
The dog seems to like the cat.
‘_,//Nm_*///' \ e n def‘\~—/’/
n_det n_subj n_to =
n_inf n_obj
patiens

agens

Figure 1: A CDG analysis

The notion of a constraint dependency grammar was first introduced by Maruyama [Mar90].
Harper et al. [HH94] extended the idea in order to cope with ambiguity arising from lexicon
lookup and speech recognizer uncertainty. Menzel [MS98a] incorporated soft constraints, i. e.,
constraints that can be violated by a valid solution if no other solution can be found otherwise.
For this purpose, constraints are annotated with a weight or score between zero and one that
determines how easily that constraint may be violated. Hard constraints have a weight of zero

1From this perspective, the constraint-solving mechanism of a typed unification grammar, like the one un-
derlying e. g. HPSG, might be considered a degenerate CSP with only a single variable, a domain consisting of
all possible top-level feature structures, and constraints licensing parts of a complex value assignment.

[

91

and must not be violated by any solution. Constraints which reflect regularities of the grammar
receive a small weight greater than zero while constraints that model mere preferences will
be weighted close to one. A solution candidate to the CSP can then be assigned a score by
determining the product of the weights of all the constraints which are violated somewhere in the
structural description. Under these premises, parsing becomes a multidimensional optimization
problem.

For reasons of efficiency at most binary constraints can be allowed, hence the universal ex-
pressive power of constraints is not available in practice. This serious shortcoming, however,
can be neutralized to a certain degree by approximating higher order constraints using binary
ones. Another disadvantage is the lack of a variable binding mechanism like the one which is
provided by a unification operator together with the missing notion of a constituent (which,
however, is shared with most dependency grammar approaches). Experience with grammar
writing has confirmed that nevertheless nontrivial subsets of grammar can be encoded suc-
cessfully, although some phenomena such as long-distance dependencies can only be modeled
approximatively [SMFS].

Constraint dependency grammar is a purely declarative formalism. This property makes it
amenable to a variety of problem solving strategies that can be compared, e. g. with respect to
their temporal behaviour. The possibility to add further representational levels supports the
integration of knowledge contributions from very different sources into a single solution space
without sacrificing the strict modularity of the grammar and of the structural representation.
Of course, this possibility is limited to only those knowledge sources that can meaningfully
attach information to single word forms. A single interpretation of the incoming utterance can
be obtained by using all available evidence, including minor preference indicators like ordering,
distance or default cases. A truly ambiguous sentence will usually allow several analyses with
only small differences between their scores, which can be ignored if desired.

The approach exhibits a remarkable robustness against unexpected and ill-formed ‘input
[MS98b], which obviously can be attributed to three important characteristics:

e the use of weighted constraints, which provides for the accommodation of conflicting
evidence and therefore makes the analysis of deviating structures possible,

e the redundancy between loosely coupled representational levels, which allows conflicting
information on one level to be overridden by sufficient evidence from a complementary

one, and

o the possibility to license arbitrary categories as an acceptable, but in most cases highly
disfavored, top node of a dependency tree, thus introducing a partial parsing scheme as

a natural extension of the normal mode of operation.

Note that the resulting robust behavior follows immediately from the fundamental principles
of the approach and no error rules or special operations become necessary.

Two other characteristics of the approach contribute to the rich potential for obtaining the
desired anytime behaviour. In contrast to other parsing approaches the space of all possible
analyses for constraint dependency parsing is always finite and very regularly structured. Pars-
ing therefore becomes a process of selection between different analyses with virtually identical
formal properties, which considerably facilitates their mutual comparison.

92

3 Solution Procedures

3.1 Consistency-based Methods

The canonical method for solving a constraint satisfaction problem is to establish a certain
degree of consistency in it by deleting incompatible values from its domains, and then select
an assignment to all constraint variables from the remaining values. This approach contrasts
strongly with common parsing methods that are constructive in nature. Usually, grammatical
structures are built up recursively from simpler structures, and ultimately from the information
associated with the lexical items present in an utterance. Thus, the number of structures
available increases over time. In contrast, the achievement of consistency is an eliminative
process: The more progress is made, the fewer values remain in the problem. An attractive
property of this kind of parsing is that it can be exactly determined, at any time, how much
progress has already been made and how much work remains to be done until disambiguation
is completed. This information will be of great use to a time-aware solution procedure.

Various well-defined degrees of consistency can be achieved in a CSP, and general algorithms
exist to establish any desired degree of consistency. Consistency-based methods are used exten-
sively in a constraint dependency parser by Harper et al. [HHZ195]. However, this approach
does not lend itself to robust processing of deviating input. Since consistency algorithms only
remove those values that cannot appear in any solution, only hard constraints are effective.
If a constraint grammar predominantly employs soft constraints, a consistency algorithm may
remove very few values or none at all.

A suitable algorithm for consistency in a partial CSP should remove all those values that
do not appear in the optimal solution—a property that is much more difficult to determine.
The usual consistency algorithm will find a value that cannot appear in a solution by noting
that it cannot appear in a valid n-ary assignment. A similar approach for partial CSP would
be to select those values for deletion that only occur in n-ary assignments with low scores. The
obvious method is to define a fixed limit and consider all scores below it unacceptable; this has
much the same effect as employing the unmodified algorithms on a grammar in which more
constraints are hard.

Another method known as pruning [MS98b] goes one step further. While a consistency
algorithm cannot guarantee how much progress it will achieve, a pruning method will invoke a
selection function at regular intervals to select exactly one value for deletion. If this function
uses a fixed amount of time, an exact appraisal can be given not only of the amount of work to
be done, but also of the actual runtime left until termination.

To guarantee that a value is selected for deletion within the allotted time, the selection
function will usually have to be heuristic in nature. A simple selection function mimics the
behaviour of a 2-consistency algorithm: Tables of mutual support are constructed for all pairs
of domains in the problem. The support of a value v from another domain d can be defined as
the maximal or the average compatibility of v with any value from d, or in a more elaborate
way. The value whose maximal support by any other domain is smallest is selected for deletion.

Since the globally optimal solution may consist of values that are locally suboptimal, in
general this method of assessing values exclusively by local information may remove the wrong

values from a problem. While the CDG formalism ensures that the remaining values form

93

a complete assignment, in general it cannot be guaranteed that this assignment will be the
optimal solution, or even a grammatically valid one. Thus, a heuristic consistency algorithm
may fail without result even though there is a valid solution, which defies the purpose of robust

processing.

3.2 Enumeration

Most parsers use some kind of search algorithm to enumerate all alternatives for local or global
ambiguities arising in the analysis of their input. A great number of search variants has been
invented for different parsing applications (top-down vs. bottom-up parsing, depth-first vs.
breadth-first search, linear vs. island parsing), and choosing the right method can have dramatic
impact on the efficiency of a parser. In general, considering every possible alternative ensures
that an algorithm is complete as well as correct, but may require so many resources that it
becomes impractical to apply.

Since in a problem in CDG, consistency-based methods cannot guarantee either complete or
correct behaviour, a complete method of solution is desirable even if it has other disadvantages.
For instance, a complete but inefficient algorithm will still be of great use to the developer of a
constraint grammar to check the validity of their model, or to verify the results of an incomplete
method.

For the CSP, a complete search of all possible assignments can be conducted that is guar-
anteed to find the optimal solution.

In the partial CSP, a normal best first search can be employed which finds the optimal
solution without ever having to expand a partial solution with a lower score. The current
implementation of the CDG parser provides a straightforward best-first search in which the
variables of a problem are instantiated in a fixed order. This will usually be the order of the
words corresponding to the constraint variables. Compared with other parsers, this would be
classified as a heuristically driven left-to-right search. It resembles bottom-up parsing in that
each word can immediately be integrated into a tree that forms part of the complete dependency
structure. A top-down parsing method could be simulated by arranging the search so that every
additional dependency edge must modify a word that has already been analyzed, starting with
those words that can modify the root of the dependency tree.

Since the CSP is N"P-complete, probably any complete solution method will have an expo-
nential worst-case complexity. Although the actual runtime of a complete search algorithm is
usually far below the worst possible case, and heuristic re-ordering of both domains and values
can greatly improve the efficiency, it is difficult to predict even approximately how long a par-
ticular instance of the problem will take to search. Therefore, a complete search is inadequate
as a solution method when time-aware behaviour is required. However, in contrast to other
methods a complete search can easily enumerate globally near-optimal structures such as those

defined by syntactically ambiguous sentences.

3.3 Transformation

An obvious way to overcome the unacceptable temporal behaviour of complete algorithms is to
employ suboptimal methods. A strategy that works well in practice is that of heuristic repair.
Rather than attempting to build the correct structure by selecting correct values step by step,

9

this method first constructs an arbitrary dependency structure with errors in it and then tries

to correct the errors.

Suppose that the dependency structure shown in Figure 2 has been constructed, in which

both nouns have been analyzed as subjects of the same verb.

det N
VY /1o Q

like

The

\ S
\.n_subj

n_det

dog

inf

seems to
_/
n_to
_ A
n_inf
agens

subj

det/—\\

the cat.
n_det‘\/
patiens

Figure 2: A suboptimal dependency analysis

Figure 3 a) shows part of the corresponding matrix of constraint variables. If a constraint

exists that excludes multiple subjects, one of the two annotations with the label ‘subj’ must be

replaced. By analyzing the word ‘cat’ as an object instead, this assignment can be transformed

into the assignment shown as Figure 3 b). Note that when providing an object for the verb

‘like’ we also changed the corresponding value of the ancillary level OBJ to reflect the fact that

the object required by the verb is actually present now. The new assignments represent the

optimal analysis shown above as Figure 1.

a) Syntax SUBJ OBJ b) Syntax SUBJ OBJ
the; det/2 - - the; det/2 - -

dog2 subj/3 - - dog2 subj/3 - -

seemsz | — nsubj/2 - _, seemss | - nsubj/2 -

toq to/5 = = toq to/5 - -

likes inf/3 - -~ likes inf/3 - n_obj/7
theg det/7 - - thes det/7 -

catz subj/3 caty obj/5 -

Figure 3: Transformation of a dependency structure.

This method has several advantages as opposed to the previous ones:

e Because a complete dependency analysis is maintained at all times, the algorithm may

be interrupted at any time and still return a meaningful answer, though not always the

optimal one. Thus, it automatically fulfills a strong anytime criterion.

e The constraints that cause conflicts in a suboptimal assignment can suggest which value

is inappropriate and what other value should be substituted.

e Becauseallanalysesof a given utterance comprise the same number of values, it is guaran-

teed that the optimal solution (if any exists) can be constructed from any other assignment

by successively replacing one value at a time.

95

A transformation step is usually defined as the exchange of one value of a constraint variable
for another. By this definition, the correct solution of a CSP of degree n can always be reached
in not more than n transformation steps, if the correct replacement value is chosen at any
point. To accomplish this, however, every value in the problem has to be considered as an
alternative in each step, whereas a backtracking search only has to try out all values from
one particular domain. Obviously the transformation algorithm will encounter a much greater
branching factor. However, the search space is now graph-shaped, and so not every alternative
must be pursued further because the order in which several values are inserted into an analysis
does not matter. Instead, the number of alternatives that are tried out at all can be used as a
parameter to speed up the computation.

Obviously, the efficiency of such a repair algorithm depends on its ability to select the correct
values for repair. Even a totally uninformed repair method can ultimately find the correct
solution, since it is simply a random walk through the problem space. For better results,
heuristic decision methods must be found to guide the selection. The simple hill climbing
method will always choose the value that results in the best immediate improvement. The
principal difficulty with this method is that it can get stuck in local optima of the problem
space where no immediate improvement is possible.

Different methods exist to allow an algorithm to leave such misleading areas of the search

space.

e Occasional downbhill steps may be allowed so that an algorithm may escape from a local
maximum. For example, in the popular method of simulated annealing downhill steps are

allowed but gradually discouraged as analysis progresses.

e In another approach, hill climbing does not optimize the score of an analysis itself, but
an ancillary cost function that is adapted in each step, so that the local optimum can be

turned into an ascent.

e The definition of a transformation step can be changed so that several values may be
replaced simultaneously. Assignments which differ in several variables will then become
adjacent to the current assignment. Again, the number of values that may be changed in
one step can be used as parameter to influence the speed of the algorithm.

A subsequent difficulty is that after such a repair algorithm has converged to the optimal
solution, it may not terminate. If the optimal solution still causes some minor conflicts, the
algorithm will continually try to repair these conflicts without success, since there is no simple
way to distinguish a local optimum from the global one. In this case the individual constraints
of the grammar can be used as a taboo criterion: If no repair step is allowed to re-introduce
the conflict that prompted it in the first place, termination can be guaranteed.

Although repair-based solution methods cannot guarantee to find the optimal solution in
all cases, in practice they achieve results comparable to those of exhaustive methods. This
demonstrates that the values contained in a complete parse are helpful in selecting correct
values even though some of them may themselves be incorrect [Minton92]. In this way, parsing
by transformation can make use of global information without suffering the full combinatorial

explosion of a complete search.

96

0%k |

10%

L L I 1

. s s
30s 40s 50s 60s 70s 80s 90s 100s

0% L

Figure 4: Solution quality as a function of time.

In a series of experiments, repair methods have been successfully applied to the the constraint
parsing problem. The corpus comprised 200 consecutive utterances from the Verbmobil corpus
of spoken dialogue utterances, segmented and slightly regularized by hand. Figure 4 illustrates
the average temporal behaviour of a transformation-based algorithm grouped by the number n
of constraint variables? in the resulting CSP. For each problem class, the average score after
the indicated runtime is given relatively to the optimal score attainable.

With the observed increase of the solution quality the parser has a performance profile
typical for anytime procedures [BD89]. In 90% of all problems, the solutions found were either
identical to those found by a complete search or had even better scores (since the search uses
a finite agenda, it may actually become incomplete in large problems). In the final analyses,

99.7% of all dependency links were established correctly.

5 T T T T

runtime

=i problem size

0 H
50 100 150 200 250 300 350 400

Figure 5: Ratio of runtime for transformation and search methods.

2In this particular constraint grammar, a sentence of five words will typically map to a CLP with about 100

variables.

97

In general, a near-optimal structure will be constructed after a short time. Finding the
exact optimal analysis may take considerably more time in medium-sized and large optimization
problems. However, particularly in these cases the algorithm will be consistently faster than
a complete search. Figure 5 gives the average time that the transformation-based solution
method takes to terminate, measured in terms of the runtime of a best-first search of the same
problems. Clearly, the repair method is faster in most large problems except for the highest
problem class (which only has two members in our corpus, however). Comparison of the time
until the last successful repair with the total runtime shows that the algorithm will usually
terminate not long after having reached the optimal analysis.

For applications that have to react to varying external time constraints, a parameter is
provided that adjusts the number of alternatives to be tried out at each transformation step.
In the cases investigated so far, decreasing this parameter can speed up the repair substantially,
with an acceleration by a factor of about 3 reducing the accuracy to 86% of correct dependency

links.

4 Related work

There is a striking analogy between constraint dependency parsing and customary approaches
to the task of tagging natural language data: In both cases each word form in the utterance
is annotated with a label from a finite set of alternatives and the approaches differ only in the
information content of the labels. Although tagging usually means to classify word forms into
(syntactic and semantic) types, the idea can also be extended to the use of functional tags in a
straightforward way. Karlsson et al. [KVHA95] use such functional descriptions in Constraint
Grammar parsing. Their tagset contains elements like “subject” or “a determiner modifying
a noun to the right”. Usually these tags are underspecified, because the exact identity of the
modified item is unknown. Constraint Dependency Grammar as discussed in this paper extends
this approach to fully specified structural representations. Since the identity of the modified
word is now included into the composite tags, the size of the tagset additionally depends
on the number of word forms in the given utterance. Moreover, the extension to multi-level
disambiguation allows to treat considerably richer representations as compared to what a usual
tagger is taking into account.

Another approach using complex tags is Supertagging [BJ99], where complex tree fragments
are attached to word forms by means of a stochastic model. These tags represent considerably
more structure than values in CDG, which correspond to single dependency edges. However,
tags are treated in isolation and the compatibility between adjacent structures is modeled only
probabilistically. In order to combine tags to complete parse trees an additional processing step
has to be carried out after the tagging itself.

The idea to obtain a structural description of natural language utterances by applying a
sequence of transformations which successively modifies an intermediate representation has
first been pursued within the framework of parsing as tree-to-tree transduction [BGQA82],
although no explicit notion of scoring and quality improvement was involved at that time. The
dynamics of the transformation process was fully under the control of the grammar writer,
taking into account the precedence ordering implicit in a sequence of rules and some additional
means to influence the degree of non-determinism. Transformation-based approaches have later

98

been applied to the problem of syntactic tagging [Bri95]. However, focus was on inducing an
appropriate set of transformation rules from the information contained in an annotated corpus.

Possibilities to model grammar by means of contradicting principles are investigated cur-
rently in the framework of optimality theory [PS91]. The grammatical principles postulated
there are ranked rather than weighted, with higher ranked regularities completely overriding
the influence of the lower ones. First applications have been identified in phonology and syntax.

5 Conclusion

A novel approach to parsing as constraint-based structural disambiguation has been presented.

By combining techniques for robust parsing (graded constraints, multi-level-disambiguation and

partial parsing) with the idea of a transformation-based problem solving mechanism, a parser

can be created that shows the typical temporal behavior of an interruptible anytime algorithm.
Further investigations will focus on

1. transferring these procedural characteristics to the case of incremental parsing, thus ad-
dressing particularly the problem of processing time for long utterances,

2. a more thorough investigation into time-adaptive behaviour, which should be able to
speed up the convergence towards the optimum solution under temporal pressure, at the
risk of missing it completely, and

3. the combination of different solution techniques to improve the termination behaviour.

The resulting parsing method mimics human language processing in that it is time-adaptive

and robust and therefore lends itself to the implementation of human-machine dialogue systems.

References

[Amt99] Jan W. Amtrup. Incremental Speech Translation, volume 1735 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1999.

[BJ99] Srinivas Bangalore and Aravind K. Joshi. Supertagging: An Approach to Almost
Parsing. Computational Linguistics, 25(2):237-265, 1999.

(BD89] Mark Boddy and Thomas L. Dean. Solving Time-dependent Problems. in Proceed-
ings 11th Int. Joint Conference on Artificial Intelligence, Detroit, 1989.

[BGQAS82] Ch. Boitet, P. Guillaume, and M. Quezel-Ambrunaz. Implementation and conver-
sational environment of ariane-78. In Proceedings 9th International Conference on
Computational Linguistics, Coling ’82, pages 19-28, Prague, CSSR, 1982.

[Bri95] Eric Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics,
21(4):543-565, 1995.

[GKWS96] Giinther Gorz, Marcus Kesseler, Hans Weber, and Jorg Spilker. Research on archi-
tectures for integrated speech/language systems in verbmobil. In Proceedings 16th

99

[HHO4]

[HHZ+95]

[KVHA95]

[Mar90)]

[Men94]

[MS98a)

[MS98b]

[Minton92]

[PS91]

[SMFS]

International Conference on Computational Linguistics, Coling ’96, pages 484—489,
Kopenhagen, Denmark, 1996.

Mary P. Harper and Randall A. Helzerman. Managing multiple knowledge sources
in constraint-based parsing of spoken language. Technical Report EE-94-16, School
of Electrical Engineering, Purdue University, West Lafayette, 1994.

Mary P. Harper, Randall A. Helzermann, C. B. Zoltowski, B. L. Yeo, Y. Chan,
T. Steward, and B. L. Pellom. Implementation issues in the development of the

parsec parser. Software - Practice and Ezperience, 25(8):831-862, 1995.

Fred Karlsson, Atro Voutilainen, Juha Heikkila, and Arto Anttila, editors. Con-
straint Grammar — A Language-Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin, New York, 1995.

H. Maruyama. Structural disambiguation with constraint propagation. In Proceed-
ings 28th Annual Meeting of the ACL, pages 31-38, 1990.

Wolfgang Menzel. Parsing of spoken language under time constraints. In T. Cohn,
editor, Proceedings 11th European Conference on Artificial Intelligence, pages 560—
564, Amsterdam, 1994.

Wolfgang Menzel and Ingo Schroder, Constraint-Based Diagnosis for Intelligent
Language Tutoring Systems. In Proceedings IT €& KNOWS, XV. IFIP World Com-
puter Congress, 484-497, Wien and Budapest, 1998.

Wolfgang Menzel and Ingo Schréder. Decision procedures for dependency parsing
using graded constraints. In Sylvain Kahane and Alain Polguére, editors, Proc. of
the Joint Conference COLING/ACL Workshop: Processing of Dependency-based
Grammars, Montréal, Canada, 1998.

Minton, Steven, Johnston, Mark D., Philips, Andrew B. and Laird, Philip. Mini-
mizing conflicts: a heuristic repair method for constraint satisfaction and scheduling

I problems. In Artificial Intelligence 58, 161-205, 1992.

Alan Prince and Paul Smolensky. Linguistics 247: Notes on connectionism and
harmony theory in linguistics. In Technical Report CU-CS-533-91, Department of
Computer Science, University of Colorado, Boulder, Colorado, 1991.

Ingo Schroder, Wolfgang Menzel, Kilian Foth and Michael Schulz. Dependency
modeling with restricted constraints. Submitted to Traitement automatique de

langage, Special Issue on Dependency Grammar.

100

