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Abstract 
In this paper we present an application of explanation-based learning (EBL) 

in the parsing module of a real-time English-Spanish machine translation system 
designed to translate closed captions. We discuss the efficiency/coverage trade-offs 
available in EBL and introduce the techniques we use to increase coverage while 
maintaining a high level of space and time efficiency. Our performance results 
indicate that this approach is effective. 

1 Introduction. 
In this paper we present an application of explanation-based learning (EBL) in the 
parsing module of a real-time English-Spanish machine translation (MT) system de- 
signed to translate closed captions. The core idea of EBL is to convert previous analyses 
into some generalized form that can be called on when similar new examples are en- 
countered (Mitchell et al. 1986; van Harmelen & Bundy 1988). The main motivation 
for using an explanation-based learning approach to parsing is to increase efficiency. 
Dramatic increases in speed can be obtained, at the expense of some coverage and in- 
creased memory requirements. In our MT system, efficiency is a major priority because 
the closed captions included with television and video broadcasts will be translated in 
real-time. In this paper we discuss the various efficiency/coverage trade-offs that are 
available within the EBL approach and describe the techniques we use to maximize 
coverage while maintaining efficiency as the primary focus. 

This paper is organized as follows. In section 2 we introduce the EBL approach as 
it has been used in natural language processing. Section 3 introduces the translation 
system in which the EBL parser is embedded and discusses the consequences of effi- 
ciency versus coverage in this domain. In section 4 we introduce our EBL parser and 
describe the means we use to maximize efficiency and coverage. The performance of 
the system is discussed in section 5. Concluding comments can be found in section 6. 

2 Explanation-based Learning in Natural Language 
Processing. 

The EBL approach has been extended to natural language processing (NLP) by Rayner 
(1988), Srivinas & Joshi (1995), among others. They use existing wide-coverage gram- 
mars (or a tree bank (Sima’an 1997)) to analyze a set of training examples. The 
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                             Corpus    Training Corpus Size(sentences)     Coverage 
                             ATIS                           356                                     80% 
                              IBM                          1100                               40% 

Alvey                           80                                     50% 

Table 1: Coverage on 3 different corpora, Srivinas & Joshi 1995 

analyses are then generalized in various ways so that they are applicable to a wide 
range of examples beyond the original input string. In some cases these analyses are 
manually-checked before generalization to ensure they are the correct interpretation 
for the given input string (Samuelsson 1994). Typically, the generalized parse is stored 
with a key that is used to subsequently identify when this parse is applicable to a new 
example. Srivinas & Joshi (1995), for example, use the part of speech sequence of the 
input string as the key. The generalized structures that are saved during EBL train- 
ing are referred to as ‘generalized parses,’ ‘macro-rules,’ ‘generalized macro-rules,’ or 
‘rule-chunks’. For our purposes these terms are inter-changeable. 

It is a characteristic of general wide-coverage grammars that they are extremely 
ambiguous. Hence, parsing involves many options and can be quite slow. The advantage 
of EBL is that the run-time complexity of parsing is reduced since the majority of the 
parsing occurs off-line. At run-time, the system need only identify the most similar 
parse from those available. In theory the accuracy of the system can be increased since 
an EBL grammar is tuned to the rules actually used in the training domain. 

The one disadvantage of the EBL approach is that there is a loss of coverage since 
the EBL grammar is a subset of the original grammar used to derive it. If an example is 
not covered by the generalized examples in the EBL grammar then an analysis cannot 
be provided. 

Rayner & Carter (1996) note that there are two main parameters that can be 
adjusted in the EBL learning phase: training corpus size and the number and type 
of macro-rules. They note that the larger the corpus the smaller the loss in coverage. 
However, it should be noted that the size/coverage correlation only holds within a 
corpus. Comparisons cannot be made across different corpora. For example, Srivinas 
& Joshi (1995) conduct tests on three different corpora. The coverage details of the 
EBL grammars they developed are given in Table 1. Both the largest and the smallest 
corpora have extremely poor coverage. The median-sized corpus exhibits the best 
coverage. Hence, the coverage of a given corpus depends both on the variability of the 
structures contained in the corpus as well as on its size. 

The second parameter that Rayner & Carter identify is the number and type of 
‘rule-chunks,’ or macro-rules, that are generalized. At one end of the spectrum are 
approaches like Srivinas & Joshi (1995) and Neumann (1994) where the whole parse 
tree for each training example is turned into one generalized macro-rule. This type of 
grammar is extremely fast, but the coverage loss is typically high. At the other end of 
the spectrum, each rule-chunk is derived from a single rule application. This results in a 
grammar that is identical to the original one; there is no loss in coverage but equally no 
gain in efficiency. Rayner & Samuelsson (1994) have taken the approach of trying to find 
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an intermediate solution by creating macro-rules corresponding to four possible units: 
full utterance, recursive NPs, non-recursive NPs and prepositional phrases. Samuelsson 
(1994), on the other hand, attempts to identify chunks automatically via an entropy 
minimization method. Rayner & Carter (1996) generalize to seven possible units. 

The variation in coverage and speed that can be obtained by varying the number 
and type of rule chunks is illustrated by comparing the results of Srivinas & Joshi 
(1995) and Rayner & Carter (1996). Srivinas & Joshi obtain coverage of 40-80% (over 
3 corpora) with a 60 fold decrease in time when compared to parsing their test examples 
with the original parser and grammar. Rayner & Carter claim 95% coverage with a 10 
fold decrease in parsing time. 

There is a third parameter, not noted by Rayner & Carter (1996), that can be ad- 
justed in EBL. This is the amount of information that is retained in the generalized rule. 
Minimally it is necessary to remove the information contributed by the lexical items so 
that the rule can apply to new word strings. Beyond this, there is considerable scope 
for variation. However, this possibility does not seem to have been taken advantage 
of. Rayner & Samuelsson (1994), for example, are typical in keeping all of the feature 
sharing specified in the original rules which make up the generalized macro-rule. 

In sum, there are three parameters that can be adjusted in an EBL approach; the 
size of the training corpus, the size of the rule chunks, and the amount of information 
that is saved in the generalized parse. Before describing the approach we take, we briefly 
introduce the MT system in which our EBL approach is embedded. This provides the 
motivation for our efficiency-based approach. 

3    The MT System. 
We have developed a constraint-based lexicalist transfer system, which is designed to 
translate closed captions from English to Spanish (Popowich et al. 1997). The intended 
goal of this system is a consumer product that Spanish native speakers will purchase so 
that they can access North American broadcasting in their own language. This requires 
real-time translation since the translation occurs once the broadcast signal is received 
by the viewer’s television. The translation must be produced extremely quickly since 
the rate of caption flow is quite high. This translation environment dictates that, in the 
trade-off between efficiency and coverage, efficiency should be given the first priority. 

There are other factors of the domain which support this preference for efficiency 
over coverage. In the context in which the translations will be used, the captions are 
just one of several information sources available to the viewer. When reading captions, 
the viewer also has the sound effects and vocal tones of the source language speech, 
the visual context, and the storyline, each of which contribute to convey meaning. 
Viewers use these information sources to complement the information from the captions. 
Shortcomings in the translated captions may be made up by the other information 
sources. Hence, in this domain we can afford to sacrifice some coverage in order to 
achieve the required efficiency.  An example of closed captions can be found in Table 2. 

The translation system consists of analysis, transfer, and generation components 
as  illustrated  in  Figure  1.     Note,  this  diagram  has  been  simplified  somewhat  from the 
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CYNTHIA, PUSH! COME ON, CYNTHIA! 
GOOD GIRL. 
COME ON, CYNTHIA. 
GOOD GIRL. HE'S GOT THE HEAD. 
IT'S A BOY. 
OH! OH! 
OH, YOU'VE GOT A BOY! 
HERE, HONEY. 
HERE YOU GO. 
OKAY. OKAY. 
YEAH. 

                                                SHOULD NOTIFY THE COUNTY, HUH? THANKS. 

Table 2: Script fragment 

details of the actual system. Translation is a non-deterministic multi-phase process: 
failure in any one process causes back-tracking into a previous process. The rules and 
lexical entries in the system are defined in terms of feature structures. The analysis and 
generation phases need not utilise the same theoretical framework. It is only necessary 
that the appropriate features are used. 

The analysis component consists of a part of speech (POS) tagger, a segmenter, and 
an EBL parser. The POS tagger uses a modified subset of the POS tags used in the 
Oxford Advanced Learners Dictionary (henceforth OALD). The tagger assigns one tag 
per word or phrase. The rule-based segmenter splits an input string into one or more 
substrings which are translated separately. We refer to these substrings as ‘segments’. 

 
Figure 1: System architecture 
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4    An Efficiency-focused EBL Parser. 
In our EBL parser, we use a “single-rule per training example” approach where the 
whole parse tree for each training segment is converted into one generalized “macro- 
rule.” Although this maximizes efficiency, it is most challenging in terms of coverage 
since a given generalized example will only apply to examples of the same length (Sriv- 
inas & Joshi (1995) and Neumann (1994) discuss techniques to overcome this limita- 
tion). The generalized parses are keyed off the POS tag sequence of the input string. 

At run-time, the input string is tagged and segmented. Each segment is looked 
up in the EBL index. If the POS sequence is found, then the lexical items from the 
input string are unified with the generalized parse(s) keyed for this POS sequence. If 
unification is successful, a parse has been found and the analysis phase is complete. 

While this standard approach meets our efficiency requirements it does pose some 
challenges for coverage. In the following we describe the techniques we have imple- 
mented to minimize coverage loss. 

The generalization techniques we describe, whether concerning training examples, 
lexical entries or generalized parses, share a common theoretical motivation, based on 
the relation between our source lexicon, our original grammar and our tagger. Our 
original grammar is an HPSG-style lexicalist grammar, with most of the syntactic 
information encoded in lexical entries. In turn, our lexicon was derived from the OALD. 
The core of our lexical entries are macros corresponding to modified versions of the 
lexical tags used in the source lexicon. Each macro defines one relevant lexical class 
(e.g. one macro for each verb subcategorization frame) and expands the information 
concisely encoded in an OALD tag into a full feature structure. On the other hand, 
our tagger uses the same set of tags. Therefore there is a direct mapping between the 
lexical macros used in the lexicon and the tags used by the tagger. This correspondence 
has two relevant consequences. The negative consequence is that our tagset is larger 
than most standard tagsets (such as that used in the Penn treebank), and encodes 
information (like subcategorization) usually unavailable in other tagsets. This makes 
tagging a more challenging task than it is with other tagsets. The positive consequence 
of having a lexicalist grammar and a direct mapping between lexical categories and tags 
is that our tags encode, in a nutshell, most of the information relevant to parsing. This 
enables us to rely mainly on those tags for parsing and be able to remove other features 
from our lexical entries in the generalization phase without considerably affecting the 
accuracy of parsing. In other words, we transfer part of the burden of resolving syntactic 
ambiguity on tagging, thus making the parsing task easier. 

The first way in which we increase coverage is by performing some of our gener- 
alization before parsing the training corpus. Before parsing a training example, we 
replace each word in the example with the part of speech tag assigned by our tagger. 
In addition, we replace the lexicon with one containing a lexical entry for each POS 
tag. The lexical entry for each of these “tag-words” is the most general instance of all 
words that can take this tag. For example, the lexical entry for the tag-word “deter- 
miner” is a feature structure corresponding to the generalization of all the individual 
determiner lexical entries. Having replaced the words with POS tags, we then parse 
the tag sequence as if it were a regular sentence (Popowich et al. 1997). 
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This approach allows us to maximize the coverage of our tree. Because the input 
“lexical items” are extremely general, the parse obtained is quite general and is not 
a specific idiosyncratic parse that may be produced from an input string containing 
words that are in some way unique or unusual. Hence, we end up with parses that are 
likely to be general and therefore widely applicable to new examples. 

The second way in which we deal with the coverage issue is by prioritizing the 
selection of the training examples. Most training sets discussed in the literature are 
quite small (below 5000), the only exception being the 15,000 utterance corpus of 
Rayner & Carter (1996). In addition, in many cases it is unclear whether the size of 
the training and test corpora are restricted by the amount available or are dictated by 
some other reason. In any case, if the training corpus is part of some larger corpus, 
there appears to be no principled motivation behind its selection from the larger corpus. 

In contrast, we prioritize the selection of training examples. In order to maximize 
the coverage of the grammar, we ensure that our training corpus contains examples that 
reflect the most common constructions found in the corpus. Our method for extracting 
the training corpus is as follows, and is illustrated in Figure 2. Our base corpus consists 
of 11 million words of closed captions. As a first step we segment and tag this corpus to 
obtain a second corpus which consists of the part of speech sequences for each segment 
found in the original corpus. We select the 18,000 most frequent POS sequences to 
comprise our training corpus. Using this approach we guarantee that we are getting 
the most mileage out of our EBL grammar since each training example is attested to 
be a frequently occurring example in this domain. In addition, we increase coverage by 
using as large a training corpus as possible. 

 

Figure 2: Training Architecture 

Once an input sequence has been parsed, we essentially have a generalized parse 
already, since the input string consists of POS tags instead of specific lexical items. In 
order to  maximize  coverage,   we  take  our  generalization  one  step further and specifically 
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target the parse to reflect the needs of the transfer component of the translation system. 
We ignore the majority of the instantiated features and focus only on the 29 features 
which are referred to in the MT system’s bilingual lexicon. We save any co-indexing 
found between these features and ignore the specific values of the features for all but 
eight of the features. 

The goal of the bilingual lexicon is to specify mappings between source language 
lexical items and target language lexical items. Hence, the 29 features which are refer- 
enced in the bilingual lexicon, and for which we save co-indexing information, concern 
the status and indexes of gaps, fillers, modifiers, and complements, features specifying 
whether the lexical item is interrogative or relative, and features for number, POS, etc. 
The eight features for which we save values mainly provide details of the status of com- 
plements, gaps, fillers, and modifiers in the lexical item, as well as its word type and 
complement form. Although by saving these features we make our parse less general 
(the most general form would just save the co-indexing), the realities of our system 
make this approach the most efficient. These eight features differentiate between many 
homographic lexical items that have the same part of speech tag, yet have different 
feature structures. If we do not save the values of these features, then an inappropriate 
lexical item can unify with the parse. This inappropriate item is likely to cause prob- 
lems in either transfer or generation, requiring the system to eventually backtrack into 
the parser to select the appropriate lexical item. However, to rely on those components 
to make up for a bad choice in parsing is time consuming and not the best use of the 
limited time available to our real-time system. Hence, we save these features in the 
generalized parse. This means that an inappropriate lexical entry will fail in parsing 
instead of later in the system. The system can then immediately try other lexical en- 
tries which may be more appropriate. A simplified example of a generalized parse can 
be found in Figure 3. 

 
Figure 3: Simplified Example of a Generalized Parse 

There are several advantages to this approach. Firstly, our parses are more general 
since  we  do  not  save  the  specific  values  of  most  of  the  features.  Instead,  we  save the 

167 



co-indexing which has been introduced by the rules that were used in creating the 
parse. In addition, we are only interested in the co-indexing that holds between the 29 
features that are relevant to transfer. For the most part, the values of the features will 
be instantiated during parsing when the parse is unified with lexical entries. 

Secondly, this approach is more efficient since we are saving less information for 
each parse. Hence, for an EBL grammar of a specific size, this means an increase in 
the number of generalized parses that can be saved. Thirdly, fewer features means that 
run-time unification is faster. 

The final technique that we use to increase coverage is to generalize the key un- 
der which parses are saved. For instance, our tagset categorises prepositions into 
five classes: noun-modifying, verb-modifying, verb complement, partitive, and pas- 
sive prepositions. Although the features structures for these lexical items are distinct, 
in some cases they are combined using the same rules. Hence, the parses differ only in 
the values of the features and not in the co-indexing that parsing introduces. In order 
to increase coverage, for selected tags we save parses under a more general tag, such 
as preposition. On this approach, a generalized parse for an input sequence such as 
‘case_prep determiner noun,’ is saved under the key ‘preposition determiner noun.’ It 
can then be used to parse any input sequence containing one of the six prepositions 
followed by a determiner and a noun. Hence, the one generalized parse can apply to 
a wider range of input. This results in increased coverage. Furthermore, the resulting 
parse still contains the more detailed information from the more specifically tagged 
lexical entries. This information is vital for the accuracy of the transfer module. 

In addition to the above approaches, we also include a few run-time heuristics to 
increase coverage. If a generalized parse cannot be found for a POS sequence, we allow 
the deletion of various lexical items. These include adverbs, adjectives, and other parts 
of speech whose primary goal is to modify information existing in the utterance. After 
deleting a lexical item, we again search the index for the EBL grammar to see if this 
reduced POS sequence can be found. 

It is the characteristics of our domain that allow us to take some of these approaches. 
The nature of colloquial text is such that the input to the machine translation system 
may cover a very wide semantic domain and may not be strictly grammatical. Hence, 
our source grammar is a grammar of colloquial English rather than a grammar of formal 
English. In addition, the grammar is just restrictive enough to augment the input lexical 
entries with sufficient information for the subsequent transfer phase. Any additional 
information which can be recovered in some other way during transfer is superfluous and 
thus avoided. For instance, the English grammar does not enforce agreement between 
subject and verb, because the Spanish grammar still has the means (by reference to 
argument indices) to recognize the subject-verb relation and to independently enforce 
proper agreement on the Spanish output. The unrestrictive nature of our original 
grammar motivates our unrestrictive approach to our EBL grammar. We maintain 
only the information that is required for effective transfer. 

Our heuristic to delete words from the input string is possible because our overall 
translation goal is not “meaning equivalence” between the input string and its trans- 
lation, but meaning subsumption (Popowich et al. 1997). That is, our translation 
objectives  have  been  met  if  the  meaning  of  the  target  string  subsumes  the  meaning  of 
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                                       Parser              Average time per segment 
Chart parser 900.5 milliseconds 
EBL Parser 4.0 milliseconds 

Table 3: Parser Comparison 

the source string. This approach is possible because the captions are only one of the 
information sources available to the user. 

In sum, our prime objective of efficiency dictates that we use the "single-rule per 
training example" approach. We mitigate the loss of coverage engendered by this 
approach by (i) prioritizing the training corpus, (ii) generalizing the input to training 
by parsing POS sequences instead of word sequences, and (iii) by reducing the amount 
of information that is stored for each generalized parse. 

5    Performance. 
This section describes a number of experiments carried out to test the effectiveness 
of our approach. We first evaluate the efficiency of the system and then review its 
coverage. 

The EBL grammar was built from a corpus consisting of the 18,000 most frequent 
POS sequences found in the segmented 11 million word corpus. Around 11,500 of 
these sequences could be parsed by our regular chart parser and hence the EBL parser 
covers these 11,500 sequences. Of the sequences which found a parse, the maximum 
length tag sequence contains 21 tags and the average length is 7.3 tags. The 11,500 
sequences which could be parsed were generalized to 8,757 tag sequence keys. Hence, 
by generalizing the preposition, verb, and auxiliary tags, we are able to reduce our 
index by about 25%. This means that in our next phase we can increase the number 
of tag sequences we use in training. 

We limit the number of parses that are stored for each POS sequence in the index. 
The maximum is a function of the number of generalizable tags in the sequence. Parsing 
the training corpus resulted in 20,235 generalized parses stored for an average of 2.3 
parses per POS index key. The tests were carried out on a file of 1000 sentences 
randomly selected from the 11 million word corpus. 

The details in Table 3 indicate that the system meets our speed requirements. The 
average parse time for a segment using the EBL approach is significantly faster than 
our original chart parser. The times given in Table 3 reflect the cumulative time spent 
in the parse module. That is, if the system back-tracks into the parsing module, the 
additional time spent in this module is added to the total time. 

Overall, the coverage results are also encouraging. Table 4 provides the details. The 
EBL database has an overall coverage of 78.6% for multi-word segments produced by 
our segmenter. That is, 78.6% of the multi-word segments in the test file are assigned 
a POS tag sequence that it is in the EBL database. Considering that we take the “one 
rule per training example” approach, this is quite impressive. 87.9% of the multi-word 
segments  that  were   covered  by  the  EBL  database  found  a  parse  in  the  EBL  database 
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Coverage Performance 
POS sequence found (overall)        78.6% 
Parse found (when sequence already found) 87.9% 
Translation found (when parse already found)  89.9% 

Table 4: Coverage 

English input EBL translation Full Grammar translation 
(a) Why’d you let por qué tú alquilando por qué lo dejaste ganar-Y 

him win él victoria-N 
(b) this isn't right esto es no correcto-OK esto no está bien-Y 
(c) that's a smart idea eso es una idea lista-Y eso es una lista idea-OK 

Table 5: Comparison of Output 

(i.e. one of the stored parses unified successfully with the input lexical items). Of those 
multi-word segments which found a parse via the EBL method, 89.9% subsequently 
found a translation. In all, 62.1% of segments found a translation via the EBL method. 
This is an increase of 15% over the results found in our original EBL system. That 
system provided EBL translations for 54.2% of the input segments. 

In an analysis of 100 of the input sentences, the translations for 59.4% of the sen- 
tences (which consist of one or more segments) were rated as acceptable (on an ac- 
ceptable/ not acceptable scale). In comparison, when translated via the original chart 
parser, an acceptability rate of 68% was achieved. Our criteria for acceptability are 
discussed in (Popowich et al. 1997). 

Some example translations are given in Table 5. Acceptable/Unacceptable trans- 
lations are identified by ‘Y’/’N’ respectively. In this table, the notation ‘OK’ is used 
for an example which is deemed acceptable but which is not as good as the translation 
provided by the alternative parser. As expected, there are cases where the coverage of 
the EBL grammar is less than that of the original grammar. This is illustrated by the 
examples (a) and (b) which failed to find a parse via the EBL grammar. In the case 
of (a), the tag sequence corresponding to this input was not found in the EBL index. 
Hence, no parse could be found. In the case of (b) a parse was found via the EBL 
approach, but this parse could not be translated by the transfer and generation com- 
ponents of the system. Both examples were translated by the fall-back word-for-word 
translation method. However, there are also cases where the EBL grammar performs 
better than the original full grammar. The full grammar failed to find a correct parse 
for (c) and the input was translated word-for-word. In contrast, a correct parse was 
found via the EBL approach, resulting in a more acceptable translation. 

These results indicate that the EBL approach will successfully meet the needs of our 
real-time English-Spanish translation system. In addition, they provide clear indication 
of the areas in which we should focus to improve performance. For example, the 
coverage rate of 78.6% needs to be increased. To do this we plan to integrate our EBL 
approach with a partial parser. 
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Secondly, for the cases where a parse is found, we need to increase the accuracy of 
the found parse. We will be analyzing our results to determine whether the correct 
parse is not available or if it is available but not selected. Thirdly, we plan to extend 
the EBL approach to the generation phase of the translation system. 

6     Conclusion 
The explanation-based learning approach to parsing provides an efficient means of 
providing analyses at the expense of some coverage. In this paper we described how 
we took advantage of these efficiency gains in order to minimize the analysis time in 
a real-time English to Spanish MT system. We found that even when efficiency is the 
prime objective, there are techniques that can be used to minimize the coverage loss. 
On several levels we were able to maximize coverage while focussing on efficiency. This 
was achieved by making sure that the examples selected for training were instances of 
the most frequent constructions, by generalizing the input so that the parses produced 
would be of the most general type, and by generalizing the saved macro-rules and their 
key to the minimum needed for subsequent components of the system. 
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