
A Deterministic Dependency Parser for Japanese

Ulrich Germann
USC Information Sciences Institute, Marina del Rey, CA 90292

germann@isi.edu

in: Proceedings of the MT Summit VII: MT in the Great Translation Era. Asia-Pacific Association for Machine Translation.
Singapore, 1999, pp. 547-555; also available from http://www.isi.edu/˜germann
Note: This is a slightly revised version of the original paper. Some typographical errors have been corrected.
This version was produced on 5th November 1999.

Abstract

We present a rule-based, deterministic depen-
dency parser for Japanese. It was implemented
in C++, using object classes that reflect linguis-
tic concepts and thus facilitate the transfer of
linguistic intuitions into code. The parser first
chunks morphemes into one-word phrases and
then parses from the right to the left. The av-
erage parsing accuracy is 83.6%.

1 Introduction

Dependency grammars have recently received increased
attention and interest from computational linguists. While
there has always been active research in dependency gram-
mars and related theories since the publicationof Tesnière’s
Éléments de syntaxe structurale(1959), dependency-based
approaches now also seem to become more popular for
practical projects and applications such as annotating cor-
pora (Kurohashi and Nagao, 1997; Hajic, 1998) and build-
ing parsers (e.g., Kurohashi and Nagao, 1994; Tapanainen
and Järvinen, 1997; Arnola, 1998; Haruno et al., 1998;
Oflazer, 1999; Sekine et al., 1999; Uchimoto et al., 1999).
This interest has also manifested itself in a recent work-
shop on the processing of dependency-based grammars
(Kahane and Polguère, 1998).

The objective of this paper is to present the results of a
rule-based implementation of a deterministic parsing algo-
rithm for Japanese. Although our parser does not perform
quite as accurately as recent statistical parsers or Kuro-
hashi and Nagao’s knowledge-based parser (see section 7),
we believe that our experiment provides some interesting
insights. On the one hand, our results offer support for
some observations made by Sekine et al. (1999) regarding
the feasibility of deterministic parsing. On the other hand,
we would also like see them as a counterargument to the
claim made by Uchimoto et al. (1999) and Sekine et al.
(1999) that rule-based systems are practically not feasible.

In the remainder of the paper, we first briefly present
some core ideas of dependency grammars, and a summary
of specific characteristics of Japanese that are relevant to
the discussion. We then discuss and argue for parsing Ja-
panese “backwards”, i.e., from the last element of the sen-
tence to the first. Finally, we present and discuss the results
of a rule-based implementation of this algorithm.

2 Dependency Grammars

Dependency grammars assume direct, binary and asym-
metric dependency relationsbetween the elementary units
(nuclei) of a sentence. For the sake of simplicity, these nu-
clei can be assumed to more or less correspond to words in
English, although Järvinen and Tapanainen (1998:4) point
out that “there is no one-to-one correspondence between
nuclei and orthographic words, but the nucleus consists
of one or more, possibly discontinuous, words or parts
of words. The segmentation belongs to the linearisation,
which obeys language-specific rules.” We will later intro-
duce the notion of one-word-phrases(OWPs) as an appro-
priate unit for the analysis of Japanese.

The relations between the nuclei of a sentence are bi-
nary in the sense that they always hold between exactly
two of them, and they are asymmetric in the sense that one
of these two nuclei is considered the heador governor, and
the other one its dependent.

Dependency grammars further assume that the depen-
dency structure of a sentence is a tree. One nucleus —
often the ‘main verb’ or the inflected part of the predicate
— has no governor and constitutes the root of the tree. It
is said to be finite or independent. All other nuclei in the
sentence have exactly one governor. The number of the de-
pendents of a nucleus is not restricted. Figure 1 provides a
simple example of a dependency tree.

Dependency relations can be established on the basis
of morphological, syntactic, and/or semantic criteria. For
the purpose of this paper, we assume that morpho-syntactic
criteria are largely sufficient to determine the dependency
structure of a sentence. The advantage of this approach is
that it does not require extensive semantic and ontologi-
cal knowledge bases. It should be noted, however, that the
parser presented here does make some use of semantic cri-

is

This better

much

Figure 1: The dependency structure of the sentence This
is much better.

teria, e.g. in the case of dates and quantifications, which
both can be recognized by matching regular expressions.

With respect to Japanese, Rickmeyer (1983) mentions
two criteria for the determination of dependency relations:
morphological mark-up of the dependent and/or the linear
order of dependent and governor.

3 The Structure of Japanese

3.1 Morphology

Japanese is a primarily agglutinative language, i.e., lexi-
cal items are morphologically marked by means of affixes
(pre- and suffixes). In agglutinative languages, each affix
typically contributes only one grammatical feature, as op-
posed to inflecting languages, where one morpheme may
carry several features. Figure 2 illustrates this with an
analysis of the Japanese word form �RbeC ���

(tabe.rare.na.kat.ta- ‘s.o. could not eat s.th. / s.o. or s.th.
was not eaten (by s.o.or s.th.else)’1.

3.2 Bunsetsu (������) and One-Word-Phrases — the
Units of Analysis

Dependency-based analyses of Japanese usually rely upon
a concept called bunsetsu, which Fujio and Matsumoto
(1998:88) describe as follows: “A bunsetsubasically con-
sists of one (or a sequence of) content word(s) and its suc-
ceeding function words (that forms the smallest phrase,
such as a simple noun phrase).”

Rickmeyer (1995) provides a much more precise con-
cept which he calls one-word-phrase(Einwortphrase). In
his analysis of Japanese, he distinguishes five morpheme
classes: prefixes, lexemes, suffixes, particles, and flexives.
The distribution over the various parts-of-speech is shown
in Tab. 1. Of these morpheme classes, only lexemes can
occur in isolation, all other morphemes occur only when
affixed to a lexeme. A word is defined as a lexeme or lex-
ical compound with up to two prefixes, possibly suffixes
and at most one flexive. A one-word-phrase(OWP) is a

1The morphological form ’passive’ can express both passive
and potential in Japanese

tabe
�R – ‘eat’ (V – lexeme verb),
rare
be – passive/potential (-v – suffix verb),
na

C – negation (-a – suffix adjective),
kat

�� – a suffix verb (-v) needed for derivation, so that
the following flexive can be attached

ta
� – flexive (f) marking perfect

Figure 2: Morphological analysis for the Japanese word
form V+v+a+v+f �RbeC��� (tabe.rare.na.kat.ta–
‘s.o. could not eat s.th. / s.o. or s.th. was not eaten’),
following Rickmeyer (1995)

Table 1: Morpheme classes according to Rickmeyer
(1995). The part of speech of a word or one-word-phrase
is determined by the part of speech of its last derivational
morpheme.

part of speechj derivational j other
j lexeme (L)j suffix (s) j particle (p) j

Verb j V j -v j =v j
Noun j N j -n j =n j
Adjective j A j -a j =a j
Nominal Adj. j K j -k j =k j
Adverb j M j -m j j
Adnominal j D j -d j j
Interjection j I j j j

j non-derivational j
Particle j j j =p j
Prefix j j j j q
Flexive j j j j f

word plus any number of particles, whereby certain par-
ticles can affix suffixes and flexives. The structure of a
Japanese one-word-phrase can be described schematically
by the regular expression

(qf0,2g)(LjC)(s*)(f?)(p(s*)(f?))*

where

‘q’ = prefix
‘L’ = lexeme
‘C’ = compound (= /(((L)(s*))+)*L/)
‘s’ = suffix
‘f’ = flexive
‘p’ = particle
‘f0,2g’ = ‘occurs 0 to 2 times’
‘*’ = ‘occurs any number of times’
‘?’ = ‘occurs at most once’
‘+’ = ‘occurs at least once’

All morpheme classes except lexemes are closed classes
and can be enumerated.

Examples:

� (�)� (��)� (��)� (��)� (��)� (G)�
siñ miñsyu reñgoo syozoku giiñ no

q + N + N + N + N = p
‘(of)� (members of parliament)� (belonging to)�
the (New)� (Democratic)� (Union)�’

� (�R)� (be)� (C)� (��)� (�)� (G)� (�)�
tabe rare na kat ta no de

V + v + a + v + f = n = p
‘(due to)� (the fact that)� [= because] [s.o.] (was)�
(not)� (able to)� (eat)� [s.th.]’

It should be noted that Rickmeyer’s concept of one-
word-phrases is not equivalent to the more widely used

concept of bunsetsu.The main difference is that Rickmeyer’s
classification is based strictly on syntactical and morpho-
logical criteria, whereas the notion of bunsetsualso takes
recourse to semantics and often considers syntagmas one
bunsetsurather than two or more. Consider, for example
the sequence

(o�)� (�)� (C)� (�eI)� j (Cb)� (C)� (�)�
doryoku si na kereba j nar- -a)na i

Nv + V + a + f j V + a + f

‘(If)� [s.o.] does (not)� (make)� an (effort)�, it will
(not)� (become)� [anything] = [s.o.] must make an
effort’

SinceCd (nar.u– ‘become’) can also occur independently,
it is a lexeme. Therefore, according to Rickmeyer’s analy-
sis, the syntagma consists of two one-word-phrases(OWPs),
whereas it is considered one bunsetsuin most bunsetsu-
based approaches, due to the “functional” character of nar.u
in this syntagma. As a rule of thumb, OWPs tend to pro-
vide a slightly more fine-grained text segmentation than
bunsetsu. In the following sections, we will assume that
the analysis of Japanese is based on OWPs. In practice,
the differences between the two notions do not seriously
affect the performance of the parser.

3.3 Syntax

In addition to the general constraints on dependency struc-
tures mentioned above, namely that the dependency struc-
ture of a sentence is a tree, Japanese is furthermore charac-
terized by the following two principles:

1. the dependent always precedes its governor;

2. dependency relations do not cross each other. For
example, in the sequence a b c d ein Fig. 3, a cannot
be governed by c, because this dependency would
cross the dependency between b and e. This con-
straint applies to many languages (often with sys-
tematic exceptions such as wh-movement in ques-
tions, e.g. in English) and is also known as the prin-
ciple of projectivity(cf. Mel’čuk, 1988:35ff.).

4 An Argument for Parsing Japanese Back-
wards

Various researchers have suggested and used backwards
parsing as an adequate and efficient approach to parsing
head-final languages such as Japanese (Fujita, 1988; Rick-
meyer, 1995; Sekine et al., 1999) and Korean (Kim et al.,
1994). Indeed, given the fact that, in Japanese, the depen-
dent always precedes its governor, and given the assump-
tion of dependency grammar that the governor determines
the form or occurrence of its dependent but not vice versa,
it seems reasonable to analyze the dependency structure of
Japanese in a backwards fashion for the following reasons:

a b c d e f g

g

e f

b d

a c

Figure 3: No-crossings or projectivity constraint: a can
only be attached to elements on the left edge of the parse
tree, i.e., b, e, or g. All other attachments would lead to
crossing dependencies and therefore violate the constraint.
The linear order of the elements is a, b, c, d, e, f , g.

� Since the dependent always precedes its governor, it
follows that the last OWP in each sentence must be
the root of the corresponding dependency tree.

� Since it is assumed that the dependent does not af-
fect the behavior of its governor, no information pre-
ceding (‘to the left of’) any given OWP should be
needed in order to determine the governor of this
OWP.

� When parsing head-final languages such as Japan-
ese from the left to the right (‘forward’), we face
the dilemma that we have to decide how many of
the elements already in the parse space are governed
by the most recent addition to it. It may be all of
them, none, or any number in between. At the time
we have to make the decision, we do not even know
what other ‘candidates for governor’ there are. This
may be acceptable for non-deterministic parsing tech-
niques, which keep track of alternatives, but it is a
serious problem for a deterministic parser that com-
mits itself to one single interpretation early on.

Parsing ‘backwards’ avoids this problem. Since we
always add a new dependent, not a new (potential)
governor to the parse space, and since every depen-
dent has exactly one governor, we know that we have
to establish exactly onedependency relation. In ad-
dition, the search space is closed: we must select the
governor from the OWPs already in the parse space.

Working from the end of the sentence, we get a safe start:
the last OWP in the sentence necessarily governs its im-
mediate predecessor. We can then turn to the third-but-last
OWP and try to determine which of the last two OWPs is
its governor. Next, we examine the fourth-but-last OWP,
and so on.

Figure 4 outlines the parsing process. In the outer for
loop, the OWPs are introduced into the parse space one by
one, working backwards from the end of the sentence to
its beginning. In order to determine their respective gov-
ernors, the parse space is now traversed in the opposite di-
rection (left-to-right; cf. the inner loop in Fig. 4).

The left-to-right approach in the inner loop is moti-
vated by the following consideration: Since dependency

Declarations

current, tmp are variables for one-word-phrases (OWPs)
first is the first OWP in the sentence
last is the last OWP in the sentence

last - 1refers to the second-but-last OWP, last -2to the third-but-last, etc.
next(OWP) is a function that returns the immediate successor of a OWP
gov(OWP) is a function that returns the governor of a OWP

for eachcurrentfrom (last -1) to first do:

REM Step 1: collect potential governors (candidates)
tmp= next(current)
begin loop

if tmpcould be the governor of current(based on morphological, lexical and/or semantic
criteria), add tmpto the list of candidates

if tmp= last then
exit loop

else
tmp= gov(tmp)

end if
end loop
REM Step 2: selection of governor
select one of the candidates as the actual governor of current; if the list is empty, select the immediate

successor of currentas its governor. Governor selection is based on configurational criteria.

end for

Figure 4: The parsing algorithm. The outer for loop traverses the sentence from right to left, the inner loop traverses the
parse space from left to right.

relations do not cross each other in Japanese2 , it is suffi-
cient to examine only OWPs on the ‘left edge’ of the parse
tree as potential governors. Consider, for example, the sit-
uation in Fig. 3. Since b is governed by e, and e by g,
the only candidates for the attachment of a are b, e, and g.
The projectivity constraint reduces the number of attach-
ments that have to be considered in the parsing process.
In the worst case (all OWPs depend on their immediate
neighbor), the time complexity of the parsing algorithm is
O�n � logn�, where n is the number of OWPs in the sen-
tence. The left edge of the parse tree can be easily detected
by following the dependency chain from the leftmost ele-
ment in the parse tree (i.e., the immediate neighbor of the
OWP under consideration) to the root.

Of course, an erroneous ‘long’ attachment in the pars-
ing process may block certain attachments later on. In or-
der to assess the effect of such errors, we compared the
results of ‘regular’ parsing with the results of an experi-
ment in which we adjusted such erroneous ‘long’ attach-
ments before we continued to parse. The improvement in
accuracy was not significant (from 70789/84704 = 83.57%
to 70866/84704 = 83.66%; tested on the January 1-10 sec-
tions of the Kyoto Treebank).

2There are a few rare exceptions that can be treated on an
individual basis, cf. Rickmeyer (1995: 58f.).

5 Implementation

The parsing algorithm described here was implemented
in a rule-based fashion in C++. The parser operates on
the output of the JUMAN text segmentation and tagging
utility developed at the University of Kyoto (Kurohashi
et al., 1994; Kyoto University, 1997a). JUMAN segments
texts into morphemes and annotates them with informa-
tion on their part of speech and inflectional form. Prior
to the actual parsing process, the JUMAN classifications
are mapped to our own classification scheme, which is
based mostly on Rickmeyer (1995), and the morphemes
are chunked into OWPs. Morphemes, OWPs, and sen-
tences are each wrapped in corresponding C++ classes that
provide member functions to check for various linguistic
properties of the respective entity.

The general idea behind this approach is to provide
programmatic equivalences to concepts and notions that
linguists use when talking about the structure of Japanese,
and to thereby allow code writing that is closer to the way
that linguists ‘speak’ than previous approaches.

The properties provided by the C++ object classes range
from rather simple ones such as the part of speech or the
inflectional form of the respective entity to more complex
and abstract properties such as ‘does this OWP have a ver-
bal regimen?’, which is true not only for verbs and adjec-
tives, but also, for example, for verbal nouns (Nv) under
certain conditions (see section 5.2 below), and for OWPs
that are nouns by means of derivation but contain a verb
or adjective. For instance, the OWP V+f=n=p �dG H

if ((current->adnominal() && candidate->nominal())

... // other conditions that allow an attachment of ‘current’ to ‘candidate’

|| ((candidate == current->next) // ‘current’ immediately precedes ‘candidate’
&&(current->casemarker() == "k") // and ‘current’ is marked with k
&&(candidate->casemarker() == "D") // and ‘candidate is marked with D
&&((*candidate->governor)->bform != "�d")

// and ‘candidate’ is not governed by a form of �d (s.uru)
&&is any of(candidate->bform,

"�A|ZB|��|���|�X|��|X�|���|����|�|I|M�|X|I�|IW"))
)

)
f

current->candidates.push back(candidate);
// then add ‘candidate’ to the list of potential governors

g

Figure 5: Sample code: This piece of code handles exceptions that allow adnominal attachment of nouns marked with =p
k (wo; usually exclusively adverbal) to certain other nouns marked with =p D (ni). The code has been changed slightly
from the original.

(sagur.u=no=wa– ‘Finding’) is a derivational noun mor-
phologically, i.e., its morphological behavior and its be-
havior as a dependent is that of a noun. It was derived
from the verb �d (V+f sagur.u– ‘find’) by affixing the
the particle noun G (=n no). The focus particle H (=p
wa) is non-derivational, i.e., it has no effect on the part of
speech of the OWP. In spite of the derivation, the verb con-
tained in the OWP maintains its verbal regimen, so that the
OWP as a whole may also govern adverbal constituents.3

For example, in [B�Wk]� [�dGH]� [����]�
([dakyooten=wo]� [sagur.u=no=wa]� [muzukasi.soo=da]�
– ‘[Finding]� [a common ground]� [seems to be difficult]�’),
the dependency attachment of []� to []� is adverbal, which
is clearly marked by the particle k (wo). On the other
hand, as a dependent, []� behaves like a noun, filling a va-
lency slot of []�.

Correspondingly, verbal OWPs derived from nouns by
suffixation of the suffix verb 	 (=v da – ‘be’) allow both
an adverbal complements marked with =p
 (ga; nomina-
tive), and adnominal modifiers such as relative clauses or
nouns marked with =p G (no; genitive). Sometimes cer-
tain morphological forms, such as N=� (de), or positions,
such as the finite (= final) position in the sentence, can also
affect the valency.

Since dependency relations are often marked morpho-
logically on the dependent in Japanese, properties such as
adverbalor adnominalindicate whether a OWP expects
governor with a verbal or adnominal regimen. Some sam-
ple code is given in Fig. 5.

3Note the similarity to Turkish, also an agglutinative lan-
guage, where the behavior of a word as a dependent is determined
only by its last inflectional group, while dependencyrelations em-
anating from dependents may generally ‘land’ on any inflectional
group within that word (Oflazer, 1999:252–255).

5.1 Detecting Potential Dependency Relations

As mentioned above, governor selection takes place in two
stages. First, a list of all potentialgovernors is compiled,
and then one actualgovernor is chosen among them. The
criteria used for determining whether or not a dependency
relation might hold between a pair of OWPs can be divided
into three categories: morphological/syntactic (including
punctuation), pattern-based semantics, and idiosyncratic.

� Morphological and syntactic criteria rely on such fea-
tures such as part of speech, inflection, position in
the sentence, and punctuation.

� Pattern-based criteria use regular expressions to de-
tect certain semantic properties that can be inferred
from the spelling of the words. For instance, it is
possible to use regular expressions to fairly reliably
detect numbers, dates, quantities, distances, etc.

� Idiosyncratic criteria are based on individual words
or word forms. Nouns marked with =pk (wo; accu-
sative), for example, generally cannot depend on an-
other noun. However, there are exceptions. Cer-
tain nouns such as �A (moto – ‘basis’) or ��
(tyuusin– ‘focus’) can govern other nouns marked
withk (wo) when they themselves are marked with
D (ni; dative), e.g. Xk �AD (X=wo moto=ni –
‘based on X’). These phenomena could be explained
transformationally as elliptic structures derived from
X=wo Y=ni si.te (‘making X Y’). However, since
dependency grammar does not assume ‘hidden’ or
‘emtpy’ nodes, X is considered dependent on Y in
these cases. Note the explicit listing of certain entry
forms (“bform”) in Fig. 5.

if (current->checkpos("Nv")
&& current->has particle("none")
&& current->ends with comma
)

f
if (current->prev->adnominal() || current->prev->ends with comma)
f

// this case is handled further down in the code ...
g
else
f
while (!(((*current->governor)->checkpos("V|A")

|| (current->checkpos("Nv") && current->has particle("none"))
)

&& (*current->governor)->ends with comma
)

&& current->advance governor()
)fg

g
g

Figure 6: Sample code handling the attachment of verbal nouns without particles but marked with a comma. The method
advance governor() returns true unless the last candidate has been reached.

5.2 Determinism: Choosing One Governor

Detecting potential governors is a task that can be per-
formed fairly easily with a constraint-based approach, de-
termining for each pair of nuclei individually whether or
not one nucleus couldbe dependent on the other. The de-
terministic step of the parsing process, namely to select one
of the candidates as the best or correct one, on the other
hand, requires a weighting scheme or some other heuristic
procedure. Designing such a scheme or procedure by hand
may seem to be a daunting task at first glance. Indeed,
our parser is currently being outperformed by several sta-
tistical parsers (see section 7 below). However, we found
that even with hand-coded rules, it is possible to achieve
acceptable parsing results. First of all, the nearest candi-
date is the correct choice in about 77% of all non-trivial
cases. We consider as non-trivial all dependency relations
except the obvious one between the last two OWPs of the
sentence.

Using the nearest candidate as a starting point, we tried
to identify indicators for longer attachments. Our approach
was to use these indicators as a trigger conditions to ‘ad-
vance’ a pointer that points to the governor of the OWP
under consideration along the list of candidates (ordered
by precedence) until we encounter certain stop conditions.

For example, commas often are a good indicator that
a longer attachment should be preferred. Figure 6 shows
a section from the code that handles the attachment of so-
called verbal nouns (Rickmeyer, 1995:249f.; the traditional
term is �
���; sahen-meishi) that have no particles
and are marked with comma. Verbal nouns (Nv) are a
subclass of nouns that can compound with the verb �d
(s.uru – ‘make’) to form verbs. Especially in newspaper
texts, they often are used in their verbal meaning without
compounding with s.uru. These occurrences are ambigu-

ous in the sense that the occurrence may be either verbal
or nominal but not both in the particular context. Based on
the intuition that such an occurrence is verbal only if there
is an adverbal dependent, we first look at the immediate
predecessor to determine if it is marked as adverbal or ad-
nominal. If it is adnominal, we conclude that the verbal
noun under consideration is nominal (because it has either
no dependent or an adnominal one). The same applies if
we find an adverbal predecessor marked with a comma,
which indicates a dependency that reaches over the verbal
noun in question. Note, by the way, that this is a case where
we do make use of the left context, even though in a very
local manner.

If the occurrence of the verbal noun is verbal (and, in
this particular case, is therefore also considered adverbal),
we advance the pointer to the governor until we encounter
(a) a verb or adjective marked with a comma, or (b) another
verbal noun without particles and marked with a comma
(cf. Fig. 6).

The parser applies a similar strategy for OWPs marked
with the focus marker H (wa). In other cases, we decided
to assume an attachment to the very last candidate directly.
For example, a sentence may start with a preliminary re-
mark that provides some background information for the
following statement. The root of the subtree representing
this preliminary remark is usually a verb or adjective in
present or past tense, marked with the particle
 (ga) and
a comma. If we encounter such a configuration, we di-
rectly assume attachment to the last candidate. The same
holds for certain sentence-initial discourse markers such as
��� (shikashi– ‘but’) or	�b (dakara– ‘therefore’).

Table 2: Performance of the parser for the different sections of the Kyoto Treebank. Parts of the treebank, in particular
from sections 01/01 and 01/03 were also used as a testbed during the development of the parser. There was no issue of the
Mainichi Shinbunon 01/02/95.

method total 01/01 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10
immediate neighbor 59.5% 59.9% 59.5% 59.4% 59.8% 59.5% 59.2% 58.4% 59.7% 60.1%
nearest candidate 77.4% 79.0% 78.2% 77.5% 77.7% 77.0% 77.7% 76.6% 76.4% 78.4%
with heuristics 83.6% 84.0% 84.2% 82.9% 83.6% 83.3% 83.8% 82.9% 82.9% 84.6%

6 Evaluation

In order to assess to performance of our parser, we evalu-
ated it against the Kyoto Treebank (Kurohashi and Nagao,
1997; Kyoto University, 1997b), which provides depen-
dency structures for about 10,000 sentences from the news-
paper Mainichi Shinbunfrom early January, 1995. The av-
erage number of OWPs per sentence is 9.94, ignoring one-
OWP sentences. In order to keep the analyses comparable,
we accepted the chunking of the sentences into bunsetsu
provided by the treebank.

As a measure for accuracy, we computed the the ra-
tio of correct connections to the total number of connec-
tions, excepting the obvious connection between the last
two OWPs in the sentence from counting. For example, if
the parser correctly identifies 9 dependency relations in a
sentence with 12 OWPs (i.e., there are 11 dependency re-
lations within the sentence), we will consider this as 80%
accurate ((9-1)/(11-1)). This measure is also used by Mit-
suishi et al. (1998), Shirai et al. (1998), and Sekine et al.
(1999).

Table 2 compares the accuracy of the parser to two base
line algorithms, one postulating the dependency relation
always between immediate neighbors, the other one always
selecting the nearest candidate.

7 Related Work

Recently, numerous parsers and parsing strategies have been
proposed and developed for Japanese.

Mitsuishi et al. (1998) implemented an underspecified,
HPSG-Style grammar in LiLFeS (Makino et al., 1998).
They report an accuracy of 72.6% at a coverage of 91.9%,
tested on 10,000 sentences from the EDR corpus. This is
below the performance of our first candidateparsing strat-
egy at 100% coverage (cf. Tab. 2).

Shirai et al. (1998) focus on the use of lexical asso-
ciation statistics for parsing. They developed two statis-
tical models for Japanese, one based on syntactic criteria,
the other one based on lexical association statistics. These
models were then used to disambiguate the output of a
probabilistic Generalized LR-parser that was trained on ca.
10,000 sentences from the Kyoto Treebank. Their results
showed that by combining lexical and syntactical statistics,
parsing accuracy can be improved from 72.1% for the syn-
tactic model and 76.5% for the lexical model to 82.8% for
the combined model.

Hermjakob (p.c.) reports an accuracy of 84.5% for
a trainable shift-reduce parser, which he originally devel-
oped for English (Hermjakob and Mooney, 1997) and re-
cently adapted to Japanese. This parser was trained on the
Kyoto Treebank and parses left to right.

In contrast to the work mentioned above, which relies
on concatenative grammars for parsing, Fujio and Mat-
sumoto (1998) calculate the dependency probabilityof each
potential dependency relation directly using a maximum
likelihood model. They report a recall of 83.5% at a preci-
sion of 86.1% (Fujio and Matsumoto, 1998:Table 3). How-
ever, since the evaluation scheme differs, these number
cannot be compared directly to the other numbers reported
here.

Kurohashi and Nagao (1994) built a dependency parser
(KN-parser) that relies upon linguistic knowledge bases
such as a thesaurus, a “surface case dictionary” and a case
frame dictionary. Their dependency parser first identifies
coordinate structures and then uses valency information
from the surface case dictionary as well as simple heuris-
tics to determine dependency relations within these coor-
dinate chunks. According to their own evaluation, they
achieve an overall accuracy of 96% on a test corpus of 150
sentences from technical and scientific articles. In a com-
parative evaluation carried out by Sekine et al. (1999), the
KN-Parser achieved an accuracy of 90.8% on a test corpus
of 279 sentences of 7-9 bunsetsueach. These sentences
were taken from the January 9 section of the Kyoto Tree-
bank (newspaper text).

Haruno et al. (1998) use decision trees to generate
probabilistic dependency matrices for the bunsetsuin a sen-
tence. These dependency matrices allow a probabilistic
ranking of alternative parses. The authors report an ac-
curacy of 85.0%.

Finally, Sekine et al. (1999) developed a statistical
dependency parser that uses a backwards parsing strategy
very similar to the parsing algorithm employed in our par-
ser. However, instead of restricting the search space by a
set of constraints and then selecting the governor by means
of hand-coded heuristics, they estimate the probability of
each potential dependency relation based on a a maximum
entropy model of Japanese. The model was trained on
sections January 1–8 of the Kyoto treebank and tested on
the January 9 section. The authors report an accuracy of
85.5%4. Among other things, their research also shows

4In the same paper and elsewhere (Uchimoto et al., 1999),
the authors also report an accuracy of 87.1% for deterministic

that keeping track of more than one option at each parsing
step does not improve accuracy significantly. From this
they conclude that the contribution of the left context of
each nucleus to the disambiguation of dependency ambi-
guities is negligible.

8 Discussion

From the work reported in the previous section we can con-
clude the following:

� Current state-of-the-art statistical parsers can achieve
accuracies of up to 85.5% without the use of exten-
sive linguistic knowledge beyond information on the
part of speech and inflection as provided by state-
of-the-art segmenters and taggers. Making use of
additional knowledge bases, Kurohashi and Nagao
(1994) were able to achieve an accuracy of between
90.8% (evaluation by Sekine et al., 1999) and 96%
(Kurohashi and Nagao, 1994).

� Parsing Japanese backwards in a deterministic fash-
ion does not seem to lead to less accurate parses.
It can therefore serve as a mechanism to improve
parsing efficiency by systematically restricting the
search space.

The rule-based parser presented in this paper does not (yet)
achieve the accuracy reported for parsers using statistical
methods or extensive knowledge bases. While we were
able to reach an accuracy of about 82% fairly easily, im-
proving the parser beyond that turned out to be a tedious
and slow process that would have been hardly possible
without an annotated corpus (treebank) against which hy-
potheses could be tested. Nevertheless we believe that our
approach may be useful in certain situations and for a va-
riety of applications.

First of all, our approach does not, unlike statistical
parsers, necessarilyrequire a training corpus. On early
stages of development, the developer can evaluate the out-
put of the parser directly. On later stages, however, the
use of a test corpus may be mandatory in order to assess
the overall effect of changes to more fine-grained rules.
If such a corpus does not exist, it may be feasible to de-
velop a hand-coded parser and annotate a corpus in paral-
lel. Depending on the annotation interface, providing the
annotator with a pre-parsed structure that is 80% correct
and only needs to be corrected may be much more effi-
cient than putting 100% of the annotation burden on the
annotator. The annotated parts of the corpus could serve as
a testbed for improvements to the hand-coded parser, and
as training and test data for statistical approaches. As soon
as there is sufficient data for statistical parsers to outper-
form the hand-coded parser, the hand-coded parser could
be replaced.

Secondly, we expect that much of the code we devel-
oped for this project can be re-used for other purposes. In

parsing. The difference is due to the fact that this higher number
includes the last – obvious – dependency in each sentence.

particular, the object classes reflecting linguistic intuitions
and concepts, such as morpheme, OWP, sentence, etc., and
their respective linguistic properties should prove useful
for developing applications that deal with tasks such as se-
mantic interpretation or discourse parsing. These are areas
in which we are to date not aware of sufficiently annotated
corpora that are large enough to serve as a basis for statis-
tical methods.

9 Conclusion

We presented a deterministic ‘backwards’ parser for Ja-
panese. The parser was implemented in C++ using object
classes that were designed to reflect linguistic intuitions.
Using a constraint-based approach to limit the range of po-
tential governors for each nucleus and simple heuristics to
select the right one among them, we achieved an overall ac-
curacy of 83.6%. Even though the parser is currently out-
performed by other parsers, we consider our approach an
option especially for cases where annotated corpora or lin-
guistic knowledge bases are not available. We also expect
the code we developed to be useful in other applications.

10 Acknowledgments

I am very grateful to my reviewers of the MT Summit VII
program committee for various very helpful pointers to re-
lated work.

References

Arnola, H. (1998). “On parsing binary dependency struc-
tures deterministically in linear time”. In Kahane and
Polguère (1998), pages 68–77.

Fujio, M. and Matsumoto, Y. (1998). “Japanese depen-
dency structure analysis based on lexicalized statis-
tics”. In Proceedings of the 3rd Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP
’98), pages 88–96.

Fujita, K. (1988). “A deterministic parser based on kakari-
uke grammar”. In Proceedings of the 2nd National
Meeting of the (Japanese) Association for Artificial In-
telligence, pages 399–402. [����. 1988.��A�
c����D��d�X.�����p�������
�d� (e��)].

Hajic, J. (1998). “Building a syntactically annotated cor-
pus: The Prague dependency treebank”. In E. Hajičová
(ed.), Issues of Valency and Meaning, pages 106–132.
Karolinum, Prague.

Haruno, M., Shirai, S., and Ooyama, Y. (1998). “Using
decision trees to construct a practical parser”. In Pro-
ceedings of the Joint 36th Annual Meeting of the As-
sociation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics
(COLING-ACL ’98), pages 505–511.

Hermjakob, U. and Mooney, R. J. (1997). “Learning parse
and translation decisions from examples with rich con-
text”. In Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics (ACL ’97),
pages 482–489.

Järvinen, T. and Tapanainen, P. (1998). “Towards an im-
plementable dependency grammar”. In Kahane and
Polguère (1998), pages 1–10.

Kahane, S. and Polguère, A. (eds.). (1998). Processing
of Dependency-based Grammars: Proceedings of the
Workshop. COLING-ACL ’98.

Kim, C., Kim, J.-H., Seo, J., and Kim, G. C. (1994). “A
right-to-left chart parsing for dependency grammar us-
ing headable paths”. In Proceeding of the 1994 Inter-
national Conference on Computer Processing of Ori-
ental Languages (ICC-POL ’94), pages 175–180.

Kurohashi, S. and Nagao, M. (1994). “KN parser: Japan-
ese dependency / case structure analyzer”. In Proceed-
ings of the International Workshop on Sharable Nat-
ural Language Resources, pages 48–55, Nara, Japan.
Nara Institute of Science and Technology.

Kurohashi, S. and Nagao, M. (1997). “The Kyoto Univer-
sity text corpus project”. In Third Annual Meeting of
the Association for Natural Language Processing. [�
�������. 1997.�kd�����������
�����.������e����d�].

Kurohashi, S., Nakamura, T., Matsumoto, Y., and Nagao,
M. (1994). “Improvements of Japanese morpholog-
ical analyser JUMAN”. In Proceedings of the Inter-
national Workshop on Sharable Natural Language Re-
sources, pages 20–28, Nara, Japan. Nara Institute of
Science and Technology.

Kyoto University. (1997a). JUMAN. http:
//www-lab25.kuee.kyoto-u.ac.jp/
nl-resource/juman.html. As of 05/22/1997.
URL valid on 06/11/1998.

Kyoto University. (1997b). Kyoto University Text
Corpus, Version 1.0. http://www-lab25.kuee.
kyoto-u.ac.jp/nl-resource/corpus.html. As
of 09/23/1997. URL valid on 06/11/1998.

Makino, T., Yoshida, M., Torisawa, K., and Tsujii, J.
(1998). “LiLFeS - towards a practical HPSG parser”.
In Proceedings of the Joint 36th Annual Meeting of the
Association for ComputationalLinguistics and 17th In-
ternational Conference on Computational Linguistics
(COLING-ACL ’98), pages 807–811.

Mel’čuk, I. (1988). Dependency Syntax: Theory and
Practice. State University of New York Press, Albany.

Mitsuishi, Y., Torisawa, K., and Tsujii, J. (1998). “Hpsg-
style underspecified Japanese grammar with wide cov-
erage”. In Proceedings of the Joint 36th Annual Meet-
ing of the Association for Computational Linguistics
and 17th International Conference on Computational
Linguistics (COLING-ACL ’98), pages 876–880.

Oflazer, K. (1999). “Dependency parsing with an ex-
tended finite state approach”. In Proceedings of the
37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’99), pages 254–260.

Rickmeyer, J. (1983). “Wie schwierig ist die Japani-
sche Sprache. Ein Vergleich mit dem Deutschen”.
In Bochumer Jahrbuch zur Ostasienforschung, pages
187–202.

Rickmeyer, J. (1995). Japanische Morphosyntax. Groos,
Heidelberg.

Sekine, S., Uchimoto, K., and Isahara, H. (1999). “Sta-
tistical dependency analysis using backward beam
search”. Natural Language Processing, 6(3):59–73.
[������we��A��. 1999.���b���d
�JA�c��y�����.������. 6 (3)].

Shirai, K., Inui, K., Tokunaga, T., and Tanaka, H. (1998).
“An empirical evaluation on statistical parsing of Ja-
panese sentences using lexical association statistics”.
In Proceedings of the 3rd Conference on Empirical
Methods in Natural Language Processing (EMNLP
’98), pages 80–87.

Tapanainen, P. and Järvinen, T. (1997). “A non-projective
dependency parser”. In Proceedings of the 5th Confer-
ence on Applied Natural Language Processing, pages
64–71.

Tesnière, L. (1959). Éléments de syntaxe structurale.
Klincksieck, Paris, 2nd edition.

Uchimoto, K., Sekine, S., and Isahara, H. (1999). “Japan-
ese dependency structure analysis based on maximum
entropy models”. In Proceedings of the 9th Conference
of the European Chapter of the ACL (EACL ’99).

