
MT Summit VII Sept. 1999

Controlled Language - Issues in Checkers' Design

Uus Knops
LANT nv/sa Belgium

Abstract

The present paper deals with several recurrent
issues in the design and implementation of
controlled language checkers. It is based on
market analysis and on LANT’s experience in
building and customizing controlled language
checkers.

1 Introduction
A controlled language (CL) refers to a standard in

which the grammar, the style and the vocabulary are
more limited than in the normal use of the language. A
CL is generally adopted in order to increase the
readability and translatability for non-native speakers. It
is not entirely clear whether a CL increases the
readability by native speakers of the language. The
increase in translatability usually refers to machine-
aided processes, although translatability by humans is
normally implied as well.

The value of a CL for readability and translatability is
now generally recognized for the restricted application
in the domain of technical documentation. Also, the
value of a checker to support the introduction of CL has
become widely accepted. More particularly, CL
checkers are believed to be supportive in the following
respects:

• They reduce training time and costs for authors
while allowing for computer-based training

• They support authors in adjusting their texts to the
CL standard

• They support editors in validating documentation
against the CL standard

• They improve translation quality in case of auto-
correction.

Despite its generally accepted value, a CL and its
support environment, is only one of the factors in the
entire documentation development chain: document
management, terminology management, CL and CL
checking, translation memory, machine translation and
other mechanisms must all combine for an optimization
of the complete documentation process.

2 LANT®MASTER™
LANT®MASTER™, the CL checker developed and

customized by LANT, is a client-server application in
which the checking server is conceived as a special
language pair (English to Controlled English) within the
LANT machine translation (MT) environment. The
checker’s input is an English sentence, which is first
analyzed by the same English grammar as is used for
translation into other languages. Conformance checking
itself is effected during the transfer and generation
phase.

The checker’s output is a dual object: the input
sentence annotated with diagnosis labels for all detected
rule violations, and an auto-correction string with
proposed revisions for most diagnosed violations. The
restricted vocabularies are implemented as an English-
Controlled English transfer lexicon. Conformant terms
have a target language form identical to the source
language form. Non-conformant terms are mapped into
conformant alternatives.

The client enables authors to import and export a file,
to submit it to the checker, to edit it, to generate an error
report, and to re-check individual sentences (interactive
checking). It also provides users with the functionality
to look up grammar rules and vocabulary, to overrule
errors and to file reports to the CL administrator.

By now, LANT has implemented a whole library of
controlled English rules, with each rule being tagged
with the appropriate customer label. Up till now, all
rules and vocabularies have been specified and
implemented for English. A fair amount of the CL rules
could be easily extended to other languages, such as
German, French, Spanish and Dutch, but LANT has not
yet implemented controlled grammars and lexicons for
languages other than English.

LANT’s library of controlled English rules is
extensive enough to serve different application needs.
In some applications the conformance checker is
primarily conceived as an authoring tool for native and
non-native writers in a monolingual English
documentation development environment (e.g.,
AECMA SE). In other applications the emphasis lies
more on translation. Here, the checker is primarily used
as a pre-editing tool for translation either by humans or
by machine (e.g., CASL, Means and Godden 1996).

- 40-

MT Summit VII Sept. 1999

3 Deep vs. Shallow Analysis
One of the main issues in CL checkers’ design is the

question whether checking should be based on a deep or
shallow analysis of the language involved. This
question cannot be easily answered in a general way,
because the required depth of analysis varies greatly
according to the rules.

Consider the CL rule pertaining to the restrictive
length of sentences. Here a word-counting mechanism
will do, and a full parse seems to be overkill. It should
be noted, though, that even with regard to this simple
rule the diagnostic results of a full parse may differ
from those of a simple word-counting mechanism, in a
sentence such as:

E.g. The PCM selects the most appropriate ignition
timing settings from within the PCM’s programming.

A full-parse approach performs a complete syntactic
analysis of the sentence, before it identifies and
localizes CL rule deviations. The approach is usually
adopted by industries that already have a syntactic
parser for a language and start to look for extensions in
new application fields. The full-parse approach requires
that the input to the checker is a complete and
grammatical sentence. As a consequence, a full-parse
checker may allow for less interactivity and robustness
compared to a checker with a flat formalism. The main
arguments for adopting a full-parse approach are the
following (see also Schmidt-Wigger, 1998):

• Reuse of linguistic resources
• Accuracy in error diagnosis, both in terms of recall
 (false negatives) and precision (false positives)
• Extension towards corrector functionality
• Consistency between checker and MT results

The reuse of an already existing parser for a language
allows for keeping checker development costs low,
while ensuring high-quality results in diagnosis. If a
checker is to be developed from scratch, the heuristic
approach based on string-matching mechanisms will
entail lower development costs, inevitably coupled with
lower accuracy levels. Consider the CL rule, stating that
"in order to" should be used instead of "to" to introduce
a purpose clause. In order to disambiguate correctly
between the subclause conjunction "to", the infinitive
marker "to", the preposition "to" and the verbal adjunct
"to", a complete syntactic analysis of the sentence is
needed. E.g.,

+ The program offers the possibility to revise the
text.
+ The program allows the user to revise the text.
- The user selects the ‘batch’ or ‘interactive’ mode
to revise the text.

+ The user selects the ‘batch’ or ‘interactive’ mode
in order to revise the text.

In addition, only a full parse allows for the controlled
generation of a correction string. Although this
corrector’s functionality is a controversial issue in CL
(see section 5), it is clear that auto-correction, if offered,
should aim at eliminating all errors and that it must not
introduce new errors.

Consider the CL rule pertaining to the restrictive use
of passives. It is possible for a tool based on shallow
linguistics to recognize passives, but it is more difficult
for such a tool to rephrase a passive sentence into an
active and to propose this as a revision to the human
editor. In a full-parse approach rephrasing the sentence
is not a problem, provided the logical subject is
expressed. E.g.,

- The program can be started by the administrator
from the main screen.

+ The administrator can start the program from the
main screen.

A further advantage in re-using an existing parser lies
in the fact that a complete consistency between checker
results and MT results can be obtained. Such a
consistency is particularly important in applications
where the conformance checker is conceived as a
facilitating step to MT.

4 Parser-driven vs. Rule-driven Checkers
Within the full-parse approach a further distinction

can be made between parser-driven and rule-driven
checkers. Parser-driven checkers intervene in the
authoring process, if and only if the parser is hindered
in forming a complete representation of the underlying
sentence. In fact, no full automatic analysis is
performed. Instead, the author is interactively restricted
to the structures allowed and covered by the grammar,
or he is asked to solve structural ambiguities. Parser-
driven checkers will by their very nature never produce
auto-corrections. They simply ask questions and expect
unambiguous answers from the users. They act more as
text generation tools than as checkers.

Rule-driven checkers start from a set of rules that
need to be adhered to by the authors. This is usually a
set that can be learned, that is structured and makes
some sense to the authors. The rule set can serve
readability issues as well as translatability issues. The
checker is more or less independent of the translation
tools. It can be machine translation, but the underlying
translation engine need not necessarily be the same as
the checking engine. In addition, translation memories
and human translation will profit from rule-driven
checkers as well. The machine translation process will

- 41-

MT Summit VII Sept. 1999

not necessarily yield a complete and perfect translation,
however.

The disadvantages of parser-driven over rule-driven
checkers are the following:

• Lack of user friendliness
• Lack of corrector functionality
• Lack of support functionality for text

comprehension by humans
• Complete dependency between checking and

translation

In view of the above disadvantages, pure parser-
driven checkers are rare. Most full-parse checkers
combine both approaches. Siemens’ Checker for
Siemens-Dokumentationsdeutsch (SDD) for instance,
addresses besides the actual violations of some 10 SDD
rules the more prominent problem of textual ambiguity
by helping the author to solve it interactively (Schachtl
1996). LANT’s checker, though basically rule-driven,
warns the user in case of a parse-error or a phrasal
analysis. These warnings serve a dual goal. First, they
draw the user’s attention to the fact that the diagnosis
may be less reliable than in the case of a successful
parse. Second, they signal the fact that a subsequent
translation might not be complete.

The effectiveness of a rule-driven checker is for a
great deal dependent on whether its rule set has been
defined with computational tractability in mind. The
difference between machine-oriented and human-
oriented CL’s (Huijsen 1998) is of relevance here. A
machine-oriented CL typically defines implicitly the
rules about structures that are allowed, and explicitly
the rules about structures that are forbidden. Moreover,
the explicit rules are more precise and specific than in a
human-oriented CL. In a human-oriented CL the rules
tend to be positive, vaguer and less formal. It is also
much harder to determine the effects of their use. E.g.,

“Present new and complex information slowly”
(AECMA SE)
“Make your instructions as specific as possible”
(AECMA SE)
“Take care with the logic of and and or” (Pym
1990)

5 Correction vs. Auto-correction
The question whether CL checker programs should

attempt to automate correction is another controversial
issue. In addition to flagging errors, most checkers
make suggestions for error correction, but only few
actually perform some amount of auto-correction. The
opponents’ arguments against auto-correction are that
the control and correction procedure as well as the
responsibility for the text should remain with the author
(Schmidt-Wigger 1998, Wojcik 1998).

Still, there is no question that any automation in error
correction is likely to be welcomed by authors, provided
that there are few false alarms, that the auto-correction
does not introduce new rule violations, and that authors
can retain the feeling that they are in charge of their
documents. The latter can be facilitated by presenting
the auto-correction as a proposed revision, and by
ensuring that authors always have the possibility to
overrule errors that are diagnosed by the system.

Analogously to the situation for analysis, auto-
correction follows a heuristic approach or an MT
approach. The heuristic approach uses pattern
substitution methods to correct rule violations. The MT
approach applies full computational transfer and
generation grammars in order to “translate” the
unrestricted language into CL. The latter approach is
adopted by LANT, even if its checker cannot correct
every error. The auto-correction, offered as a proposed
revision to the author, can still contain errors that need
manual revision. Some very obvious examples of such
errors are:

• lexical errors due to a term not being known to the
system

• lexical errors for which selection of the most
appropriate alternative requires human judgement

• sentence-length errors
• passive errors in contexts where the logical subject

is not expressed
• errors due to ellipsis, such as the omission of the

direct object(s) in a sentence
• parenthesis errors where parentheses are used for

explanatory text

In order to increase a checker’s performance with
regard to its proposed auto-corrections, the integration
of a checking memory should be considered as a further
promising alternative. A checking memory is
comparable to a translation memory in that it stores
rewrites that have already been validated by humans. In
addition, one might expect that the hit rate of the system
is increased by the lexical and syntactic standardization,
involved in CL. Hence, time and money can be saved
by reducing repetitive human revision tasks to an
absolute minimum.

Again, the function of a checking memory should be
defined as an aid to the author, presenting matches to
the author as proposed revisions, which are expected to
be more useful than the proposed auto-correction
produced by the checking engine. It is obvious that a
checking memory is a particularly useful approach for
systems that have no corrector’s functionality at all.
Storing text-type information with the original
sentences (e.g. that a given phrase is a title) will render
the results more accurate with regard to the matching

- 42-

MT Summit VII Sept. 1999

algorithm. Some CL rules are text-type specific, and
should a sentence occur in a certain text-type, the
human revision, proposed by the checking memory,
may not be appropriate for a different text-type.

6 Grammar and Style vs. Terminology
Customers normally focus on rule issues. They come
to LANT with a set of rules, with the wish to have these
rules implemented, or with the wish to have the set of
AECMA-SE rules adapted to their own writing
practices. Also training courses in CL focus on syntactic
and stylistic rule matters.

 In practice however, the biggest workload is involved
in the development and maintenance of the lexicon.
Two issues are at stake, here. First, there is the General
Vocabulary. which has been defined in AECMA as a
rather well-defined and finite set of approximately
2.000 conformant and 1.000 non-conformant words. An
organization that wants or needs to define its own
General Vocabulary will have to go through the process
of defining its own General Vocabulary almost from
scratch. Usually, the underlying norms tend to be less
restrictive than in the AECMA case.

Second, apart from the General Vocabulary, there is
the issue of the domain-specific terminology. In
AECMA they are called Technical Terms and
Manufacturing Processes. The big issue here is to
adhere to the principle of a one-to-one correspondence
between word forms and concepts, to disallow
synonyms, homonyms, orthographic and morphological
variants, and to define clear and sound criteria for
controlled terminology. Once this is done, all terms
need to be coded into the CL-system and, in case of
machine translation, corresponding transfer and target
terms need to be defined and implemented.

In our view, it is important that a terminology
management system is used that is able to store
information for human lookup as well as automatic
processing. In addition, we believe that the
terminologist should play a very central role in the CL
business case. Although terminological input may be
provided by designers, manufacturers, implementers,
authors, editors, translators, and so on, the creation,
standardization, coding, storing and maintenance of
technical terms should be done at a central place, and
disseminated from this place to the company and the
outside world. This is one of the main reasons why in
CL design a client-server approach is preferable to the
standalone approach.

 Unfortunately, we have learned that there is a
tendency to underestimate the importance of
terminology standardization. The dichotomy between
grammar and terminology is not so much an issue of
controversy than one of awareness. Terminology

standardization immediately affects business processes
such as knowledge management and communication
within the company. It also immediately affects the
consistency and readability of the documentation, and
the workload involved in translation. The more
standardized a source terminology, the more
consistency in translations, and the lesser the work load
involved in creating and maintaining target terminology
systems.

Defining and implementing a controlled terminology
is a huge task, usually underestimated in workload. It is
moreover usually forgotten that this will be an ongoing
task, because terminology always changes and is never
complete.

7 CL Checkers vs. Grammar and Spelling
Checkers

Introducing a controlled language is a much more
radical change in a company’s business process than the
check step that is normally added to verify the quality
of a source text before submitting it for automatic
translation. Any source text must be grammatically
correct, lexically covered by the machine-translation
system, and it must follow certain style guidelines (e.g.,
with regard to average sentence length) in order to
achieve an understandable translation from the system.

Introducing a CL not only increases the check step,
but also shifts it to the authors, and adds it to the
authoring process as an extra activity. From the author’s
point of view the writing task becomes more complex,
and in his eyes the distinctions between different types
of errors, such as spelling, lexicon, grammar and style
errors may be irrelevant in terms of their effect on
readability and translatability. Consequently, he will ask
for a tool that combines orthographic, grammatical and
stylistic checking and integrates with his normal
authoring environment. This requirement is not fully
compatible with a high-quality, full-parse CL checker,
because the latter expects linguistic input that is correct
in orthographic and grammatical respect (see section 3).

A full-parse checker will signal orthographic and
grammatical errors as anomalies, but the real error type
will normally not be diagnosed, and the results on real
CL deviations will tend to be less reliable. A checker
and corrector functionality for ungrammatical input
may be added to a full-parse checker by enlarging the
scope of the grammar and relaxing certain conditions on
existing rules. However, when the search space for
analysis is enlarged, the number of possible
interpretations and the chances for misinterpretations
increase as well. Therefore, the accuracy of a grammar
checker will never reach that of a style checker.

The best way to deal with this problem is to combine
different approaches and tools in a text-oriented

- 43-

MT Summit VII Sept. 1999

workbench, analogous to the translator’s workbench.
Flat formalisms will do for spelling and grammar tools.
A more principled approach will yield better results for
style checking tools. A checking memory will enhance
the quality of the proposed corrections for both
formalisms. Authors can personalize their environments
by switching on and off tools and rules, as they proceed
with their re-writing task.

8 English vs. Other Languages
Most CL checkers deal with English. Many reasons

can be given for this. First of all, English is the most
influential language in the world (Weber 1997), not in
terms of native speakers, but in terms of native and non-
native users. English is also the language that is most
often used for technical documentation and the
language most often translated. Accidentally, English is
also a language that is rather difficult to parse due to its
heavy homography and ambiguity. This makes it
particularly well suited for CL, although controlled
variants of other languages, such as French (Barthe, e.a.
1999), German (Schachtl 1996, Schmidt-Wigger 1998),
Swedish (Almqvist and Sågvall Hein 1996), Japanese
(Shirai e.a. 1998) and Chinese (Zhang and Shiwen
1998) have been reported in the literature.

Also, English is very often used as a language for
relay translation. Technical documents are originally
written in a non-English source language, and after
being translated into English, the English translation is
used as the source for translation into other target
languages. This raises the question as to whether an
English CL checker can be successfully put into use in
environments where English is not the native language
of the originator of the documentation.

In such a situation, an organization might decide that
all source documents are written in controlled English
and then translated into other languages, including the
native language. This requires an even more radical
change than the introduction of CL, and it is feasible
only when near-native competence of English is
available. An alternative option is that the source
documentation is written in the native language,
translated into controlled English and translated from
the latter into other languages. Here, it should be kept
in mind that translating an uncontrolled version into
controlled English implies more reformulation and
rework of text than is necessary with an uncontrolled
target language (cf. Barthe e.a. 1999). Thus, translators
have to work in very close co-operation with the
authors, should this option be considered.

References
AECMA, Simplified English. Document PSC-85-
16598. Issue 1, Revision 1, 1998.

Almqvist, I. and A. Sågvall Hem (1996). “Defining
Scania Swedish – A Controlled Language for Truck
Maintenance”. In CLAW 96. Proceedings of the First
International Workshop on Controlled Language
Applications, Leuven 1996. 159-165.

Barthe, K. e.a. (1999). GIFAS Rationalized French: A
Controlled Language for Aerospace Documentation in
French. Technical Communication. Second Quarter
1999, 220-229.

Huijsen, W. (1998). “Controlled Language - An
Introduction”. In CLAW 98, Proceedings of the Second
International Workshop on Controlled Language
Applications, Pittsburgh 1998, 1-15.

Knops, U. and Depoortere. B. (1998). “Controlled
Language and Machine Translation”. In CLAW 98,
Proceedings of the Second International Workshop on
Controlled Language Applications, Pittsburgh 1998. 42-
50.

Means, L. and Godden, K. (1996). “The Controlled
Automotive Service Language (CASL) Project”. In
CLAW 96, Proceedings of the First International
Workshop on Controlled Language Applications,
Leuven 1996, 106-114.

Pym, P.J. (1990). “Pre-Editing and the Use of
Simplified Writing for MT: An Engineer’s Experience
of Operating an MT System”. In P. Mayorcas (ed.).
Translating and the Computer 10: The Translation
Environment 10 Years On. ASLIB 1990, 80-95.

Schachtl, S. (1996). “Requirements for Controlled
German in Industrial Applications”. In CLAW 96,
Proceedings of the First International Workshop on
Controlled Language Applications, Leuven 1996, 143-
149.

Schmidt-Wigger, A. (1998). “Grammar and Style
Checking for German”. In CLAW 98, Proceedings of
the Second International Workshop on Controlled
Language Applications, Pittsburgh 1998, 76-85.

Shirai, S., S. Ikehara, A. Yokoo and Y. Ooyama (1998).
“Automatic Rewriting Method for Internal Expressions
in Japanese to English MT and Its Effects”. In CLAW
98, Proceedings of the Second International Workshop
on Controlled Language Applications, Pittsburgh 1998,
62-75.

Weber, George (1997). “Top Languages”. In Language
Today, December 1997, 12-18.

Wojcik, R. (1998). “AECMA Simplified English and
Controlled Language Checkers”" In ELRA Newsletter,
1998, 10-11.

- 44-

MT Summit VII Sept. 1999

Zhang, W. and Y. Shiwen (1998). “Construction of a
Controlled Ch in e s e Lex i c o n ” . I n C L A W 9 8 ,
P ro ceed ings of the Second International Workshop on
Controlled Language Applications, Pittsburgh 1998,

- 45-

