
MT Summit VII Sept. 1999

Multilingual Document Language Recognition for
Creating Corpora

Yevgeny Ludovik Ron Zacharski

New Mexico State University
USA

Abstract
In this paper we describe a language recogni-
tion algorithm for multilingual documents
that is based on mixed-order n-grams,
Markov chains, maximum likelihood, and
dynamic programming. We present the re-
sults of an experimental study that showed
that the performance of this algorithm has
practical value.

1 Introduction
Language recognition algorithms are an essential
component of many natural language processing sys-
tems. For example, a system that translates web-
documents must first determine the language of that
document. Moreover, in multilingual documents, the
system must determine monolingual segments and the
language of each segment. Language recognition al-
gorithms are also essential in the development of
many natural language processing systems. For exam-
ple, very large corpora are often required in the de-
velopment of machine translation systems and a lan-
guage identification system can be combined with a
web spider to automatically collect such corpora.

These recognition algorithms are not just concerned
with the language of electronic texts, but also with
how the characters of that language are encoded. This
specification is important because the characters of a
given language may be represented by several distinct
encoding methods or code sets. For example, Japanese
text may be in J1S-X-0208-1990 or JIS-X-0212-1990,
among others, and Chinese text might be in GB-2312-
80 or Big Five. Thus, throughout this paper we will
always be concerned with identifying a specific lan-
guage/code set pair. However, to ease exposition we
use the term language to mean this language/code set
pair.

In the following sections we describe a language
recognition algorithm for multilingual documents
based on mixed order n-grams, Markov chains,
maximum likelihood, and dynamic programming. We
present the results of a study that examined the per-
formance of this algorithm on multilingual docu-

ments, which consisted of fragments in 30 languages.
We discuss how the algorithm can be incorporated
into a web spider that collects multilingual documents
in specified languages.

2 Recognition Algorithm for Mono-
lingual Documents

A common sense and frequently used approach to
language identification has been to use lists of words
that commonly appear in the languages of interest
(Ingle 76).That is, for every language of interest one
constructs a list containing the most frequent words in
that language. For example, the, of, and and are com-
mon words in English, and el, de, que, and y are
common words in Spanish. If you are trying to iden-
tify the language of a text and you see a lot of the's
of's and and's in the text a good guess would be that
the text is in English. Similarly, if you see el, que, and
de, a good guess would be Spanish. While this ap-
proach is simple, intuitive, and performs adequately
in many cases, it does have several drawbacks. First,
while the approach works well for identifying texts of
moderate length, its performance significantly de-
grades as the text to be identified gets smaller. Sec-
ond, since it is a word-based approach it crucially
depends on the ability to segment the text into words.
This is easy if the task is to recognize languages like
English and Spanish where words are bordered by
spaces, but is significantly more challenging if we
include languages that do not use spaces as word de-
limiters such as Chinese and Japanese.

The approach we propose here is not dependent on
identifying the words of a text. Rather, it is a statisti-
cally based approach that learns to distinguish be-
tween languages by building an n-gram model.1 It is
similar to the work of Cavnar and Trenkle (Cavnar &
Trenkle 94), among others, in that it makes use of

1 The n-grams of a text are all the character sequences of
length n contained in that text. For example, unmarked
helicopters, contains 20 unigrams (u, n, m, a ,r, . . .) , 19 bi-
grams (un, nm, ma, . . .), 18 trigrams (unm, nma, mar, . . .)
and so on.

- 317-

MT Summit VII Sept. 1999

mixed-order n-grams.2 In contrast to the Cavnar and
Trenkle algorithm, which uses an ad hoc rank-order
distance measure, the algorithm we propose here is
theoretically well motivated based on a maximum
likelihood approach.

The algorithm has two main phases: training and
classification.

2.1 Training
The algorithm is a variable length n-gram approach.
We start with an empty common n-gram pool, CNP,
which we will fill with n-grams from each training
text—m1 unigrams, m2 bigrams, ... mn n-grams. For
every language we extract the n-grams (n = 1...N)
from the training text. (In our comparative experi-
ments we used an N of 4.) First, we create separate
lists for unigrams, bigrams, and so on. Next, we add a
portion of these n-grams to CNP (the common pool);
first we add unigrams, then bigrams, and so on.

We select the unigrams to add to CNP as follows.
For every unigram, a1 observed in the training data,
we compute the following training weight:3

We then order the list of all unigrams in descending
order on this value and place the top m1 unigrams in
the common pool, CNP.

Then we use the following recursive procedure.
Suppose we have already picked up n-grams of length
1 ... (k-1). For every k-gram (a1a2...ak) we compute a
training weight. If the (k-l)-gram (a2...ak) has not
been included in CNP the training weight value is4

If (a2...ak) is in CNP, then we use a slightly different
formula:

Next we sort the k-gram list in descending order on
this weight and place the mk top k-grams in CNP. The
training weights describe the reduction of the cross

2 See also. Churcher, Hayes, Johnson, and Souter (Chur-
cher et al. 94) and Dunning (Dunning 94).
3 p(a) represents the probability of a.
4 p(an|a1.. .an-1) represents the conditional probability.
That is, the probability of character an given that the im-
mediately previous characters were a1...an-1. For exam-
ple, p('e'|'th') is the probability that the third character is
'e' given that the first two characters are 'th'.

entropy between training data and the model if we
include the k-gram (a1a2...ak) in our pool. We repeat
the procedure for k = 2 ... N. For the comparative
experiments described in §3 we used an m1 of 170, an
m2 of 200, an m3 of 400, and an m4 of 230. The num-
ber of unigrams chosen was enough to include all the
unigrams for all languages in the training data. These
numbers have been determined through experimenta-
tion.

At the end of this process CNP, the common n-
gram pool, contains the union of the selected n-grams
for all L languages in our training set. For every n-
gram (n = 1 ... N) in CNP we compute a primary rec-
ognition weight L-dimension vector, PRW, as follows.
Each i-th component of the vector, PRW, is associated
with the i-th language, and contains a recognition
weight. For unigrams, the recognition weight is

For all other n-grams, the recognition weight is:

That is, the anti-log of the conditional probability of
ak given a1a2...ak-1 in the training set associated with
the i-th language. If some n-gram in CNP has not
been encountered in some language training data, its
recognition weight for this language is defined to be
some maximum value MAX (in our experiments,
MAX = 20.) At the end of this process we have a
primary recognition weight vector, PRW(a1a2...ak) for
every n-gram, a1a2...ak, in our n-gram pool, CNP.
Now we define the recognition weight L-dimension
vector of any N-gram (encountered or not encoun-
tered in our training data) as

In addition to developing the CNP containing rec-

ognition weight vectors, we also compute a weight
average and weight dispersion for each language
(these are used in the verification step of the recogni-
tion phase described in the following section). This is
done as follows. We divide the training text of a given
language, i, into K 500 byte segments (x1x2...x500). For
every segment k we compute:

- 318-

MT Summit VII Sept. 1999

The weight average for language i is defined as

The dispersion for language i i s defined as:

2.2 The Recognition Phase
The recognition process consists of two steps. First, in
the classification step, we tentatively classify the text
to be recognized as being in one of the languages
specified in the training phase. Next, in a verification
phase, we determine how well the text to be recog-
nized fits the proposed language. If the fit is not good
enough, we classify the language of the text as un-
known.

Classification Step: Let x0x1...xs-1 be the byte se-
quence of the text to be classified. We define a result
recognition weight vector as:

The recognition result (the proposed language of the
text) is

(That is, the text is classified being in the language,
i*, associated with the result recognition weight vec-
tor component with the lowest value.)

Verification Step: If 5

then we recognize the text as belonging to language
i*. If this does not hold then the language of the text
is classified as "unknown".

3 Evaluation of Monolingual Recog-
nizer

We evaluated this monolingual recognizer by com-
paring its performance to the Cavnar and Trenkle n-
gram algorithm (Cavnar and Trenkle 1994).

3.1 The Method
The training data for both algorithms consisted of 50k
samples from the following 34 languages:

Afrikaans Italian
Albanian Japanese
Arabic Korean
Bulgarian Latin
Chinese Lithuanian
Croatian Malay
Czech Norwegian
Danish Persian
Dutch Polish
English Portuguese
Estonian Russian
French Serbian
German Slovak
Greek Spanish
Haitian Creole Swedish
Hawaiian Thai
Icelandic Turkish

We evaluated each algorithm under five conditions
that varied as to the size of the text to be identified:
1k, 500, 100, 50, and 20 byte samples. The samples
were distinct from the training text and were drawn
from 200k texts from each language. 200 samples for
each language were used to evaluate the algorithms in
the 1k condition, 400 samples for the 500 byte condi-
tion, 2000 samples for the 100 byte condition, 4000
samples for the 50 byte condition, and 10,000 samples
for the 20 byte condition.

5 The constant, VER_THR, is used to rule out documents,
which are not in the pre-trained languages.

- 319-

MT Summit VII Sept. 1999

3.2 Results
The comparison results for the algorithms (the Cavnar
& Trenkle (C&T) algorithm, and the monolingual
algorithm described above (mono) are shown in the
following table.

Percent Error Rate of Algorithms at Different
Sample Sizes

As this table shows, the performance of the algo-
rithms is good when the text to be classified is rela-
tively large (500-1,000 bytes). However, even under
this condition it should be noted that the algorithm
proposed here has less than one sixth the error rate of
the Cavnar and Trenkle algorithm. A significant per-
centage of the error rate in the 1,000 and 500 byte
conditions is due to misidentification of the test sam-
ples from Haitian Creole and its lexifier, French.6 This
is probably due to the fact that Creoles borrow much
of their vocabularies from their respective lexifiers
(Romaine 88). It is interesting to note that the algo-
rithms performed relatively well on Afrikaans and
Dutch, although many creolists regard Afrikaans as a
semi-creole of Dutch.

4 Recognition Algorithm for Multi-
lingual Documents

While this algorithm has important uses in many ap-
plications it does have some limitations in the current
form. For example, suppose we have a multi-
language machine translation system that converts

6 Without these two languages the results for the 1,000
and 500 byte tests are as follows:

web pages into an "English-only" form that is dis-
played to users. If the original web pages are in a sin-
gle language then the task is simply to identify the
language of the page using the current algorithm "as
is" and then applying the appropriate machine trans-
lation. However, if the web pages are multilingual
then the process is more complex. In this case we
need to segment the page into single-language
chunks, identify the language of each chunk, and then
perform the correct translation. This task is illustrated
in the following example.7

His example is essentially this (taken from Chechen): if
in a language geminates occur only inter-syllabically,
and the non-geminate version appears in those intersyl-
labic positions plus word-initially and word-finally, then
if we know the average number of syllables per word, we
can make a prediction of the relative frequency of the
single and geminate versions of a consonant. If our pre-
diction does not match the reality, then we can infer there
is something that remains to be accounted for.

"Le chiffre absolu de la fréquence réelle d'un
phoneme n'a qu'une importance accessoire. Seul le
rapport entre ce chiffre et le chiffre de fréquence at-
tendu théoriquement possède une valeur veritable.
(284)'Le calcul des probabilités théoriques n'est pas
toujours aussi simple que dans les exemples ci-dessus.
Mais on ne doit pas se laisser rebuter par les diffi-
cultés d'un tel calcul, car c'est seulement par com-
paraison avec les chiffres de fréquence possible ob-
tenus au moyen de ces calculs que les chiffres de
fréquence effective acquièrent une valeur, en mon-
trant si un phonème, dans la langue en question, est
beaucoup ou peu utilisé. (285)."

This is a powerful notion that remains to be fully ex-
plored. What Troubetzkoy (and others since) have seen is
that a study of frequency can often be tantamount to a
search for lurking generalizations.

As described above, the system needs to segment this
document, identify the languages of the chunks (in
this case English and French) and translate the French
segment into English. Fortunately, an important ad-
vantage of the approach presented above is that it can
be generalized for multilingual documents. This gen-
eralization is accomplished by adding a dynamic pro-
gramming algorithm based on a simple Markov model
of multilingual documents. This algorithm is de-
scribed in the following section.

7 from
http://humantities.uchicago.edu/faculty/goldsmith/Royaum
ont98/lnfoTheory.html.

- 320-

MT Summit VII Sept. 1999

4.1 Segmentation algorithm

The algorithm is based on dynamic programming that
had been first used for segmentation in (Vintsiuk 70)
and is a further development of a computationally
effective algorithm presented in (Ludovik 82). It con-
sists of two steps:

• a recognition step where we apply a dynamic pro-
gramming algorithm to find the segmentation maxi-
mizing the likelihood of the total character sequence
of the document being processed,

• a verification step, which determines how well every
segment fits the language assigned to it.

Recognition step

The segmentation algorithm is based on the following
Markov model of a multilingual document. The model
has one state per language, 1 ≤ i ≤ L plus one addi-
tional 0-state accounting for segments that are not in
any of pre-trained languages, in particular, such seg-
ments may be in no language at all (e.g., a table of
numbers).

If a system is in a state i it generates characters in the
i-th language depending on the left context according
to the n-gram model described above in §2. Switch-
ing from language i1 to language i2 is defined by tran-
sition probabilities p(i2/i1) and probability distribution
of segment length r p(r), rmin ≤ r ≤ rmax, ranging from
minimal segment length rmin to maximal rmax. The
algorithm presented below finds the segments and
segment languages assuring the maximum likelihood
of the observed text given the Markov model. If k-th
segment starts at sk-1 and ends at sk-1, then using an-
tilog, the criterion to minimize is as follows:

where TSW is a segment weight:

if ik is not 0. Otherwise:8

The dynamic programming algorithm that finds opti-
mal values of {sk, ik, 0<k<K } consists in the follow-
ing iterative step for

with initial values:

After the algorithm has finished with the recursive
steps, we find the language of the last segment in the
optimal set of segments:

where S is the total length of the text
The value i* together with information stored in array
Ind(i, s) will allow us to get all segments with corre-
sponding language labels from the optimal set of
segments. During this process, the optimal number of
segments is automatically determined.

8 The constant JUNK_THR ("junk threshold") is used to
rule out document segments that are not in any of the pre-
trained languages.

- 321-

MT Summit VII Sept. 1999

Verification step
The verification step is executed exactly as in the
monolingual algorithm regarding every segment as a
separate monolingual document.

4.2 Evaluation
We evaluated the performance of the segmentation
algorithm on segmenting documents that contain
multilingual text. The test data contained text in the
following languages:

Afrikaans Japanese
Albanian Korean
Arabic Latin
Chinese Lithuanian
Croatian Malay
Czech Norwegian
Danish Persian
Dutch Portuguese
English Russian
Estonian Serbian
French Slovak
German Spanish
Greek Thai
Italian Turkish

The test documents were created by concatenating
randomly selected segments from documents in the
languages listed above. In this way we created six
documents; each document contained 1000 segments
having approximately the same length (20, 50, 100,
200. 500, or 1000 bytes).9 Thus, all bytes in a docu-
ment are labeled with a language. We compared this
known labeling to the labeling based on the optimal
segmentation produced by the algorithm. The error
rate was computed by dividing the number of misla-
beled bytes by the length of the document. The fol-
lowing table shows the segmentation error rate as a
factor of segment byte size.

Percent Error Rate of Multilingual
Algorithm at Different Segment Sizes

As this chart shows, this algorithm works extremely
well for moderate-sized segments and performs ade-
quately for short (approximately 3 word) segments.

5 Spider for collecting multilingual
corpora

A variety of natural language processing tasks (for
example, creating lexicons, and proper noun diction-
aries) could make use of multilingual corpora. While
pre-existing multilingual corpora are available for
some languages (often in the form of aligned texts),
they are not available for all languages that are of
interest to researchers. The algorithm we have just
described is a key element in a web spider, which
collects such texts.

The person using this spider specifies a set of lan-
guages (for example, English, and Russian) and ap-
proximate percentage desired for each language. For
example, if we are trying to collect potentially parallel
texts, the user would specify that the document be
approximately 50% English and 50% Russian. The
person using the spider also specifies a set of starting
URLs. These URLs are placed on a queue of places to
visit. The user can optionally specify an "only get
pages modified since" date.

The spider is of standard design and conforms to
general spider behavior conventions. It examines the
robots.txt file at each site specified to see if it is ex-
cluded from that site. It checks for meta robot tags in
the URL text itself to see if it is either excluded from
reading the text or excluded from following the links
contained on the page. It identifies itself by using the
user-agent and from fields supported in HTTP header
requests. Finally, it waits several minutes before vis-
iting the same site again to avoid overloading the
server.

If the spider is not excluded from reading the URL
text, it gets the text, strips out the HTML tags and
passes the text to the language recognizer. If the rec-
ognizer identifies the text as matching the specified
languages in the specified percentages, the text is
saved in a local file. If the spider is not excluded from
following the links on a page the links are collected.
This link list is filtered to exclude a variety of links
including those to JPEG and MIDI files, links to CGI
scripts and links to common sites like
www.altavista.digital.com and www.hotbot.com.
URLs of sites the robot has previously visited are also
filtered out. If the page containing these links
matched the target language the links are placed on a
priority queue. If the page does not match the target
the links are placed on the regular queue. URLs on
the priority queue are visited before those of the

- 322-

9 The length ranges were 17-23, 45-55, 90-110, 190-210,
500-550, 1000-1060.

MT Summit VII Sept. 1999

regular queue. The algorithm continues until there are
no URLs in either queue.

6 Conclusions
In this paper we have described a language recogni-
tion algorithm for multilingual documents. This algo-
rithm is based on mixed order n-grams, Markov
chains, maximum likelihood, and dynamic program-
ming. In §3, we described the results of an experi-
mental study that shows that the proposed algorithm
significantly outperforms the Cavnar and Trenkle al-
gorithm, one of the most popular language recogni-
tion algorithms. Moreover, the proposed algorithm
has an additional benefit. The Cavnar and Trenkle
algorithm finds the closest language that matches the
text to be classified, but give no guarantee that this
language is actually the language of the text. The pro-
posed algorithm has a separate verification step that
assures, with a controllable degree of certainty, that
the text to be classified is actually in the closest lan-
guage. Because of these advantages, the algorithm can
be successfully used in a variety of applications.

In §4 we described a language recognition algo-
rithm for multilingual documents, and presented the
results of an experimental study which showed that
the performance of this algorithm was extremely
good. For example, for 20 byte segments (roughly
three words) the error rate was only 13%, which
means that only that the initial and final bytes are
misrecognized. These misrecognized initial and final
bytes could be spaces or punctuation and not be seri-
ous errors for applications. These results suggest that
the algorithm has practical value; this algorithm offers
a new reliable tool for natural language engineering,
which allows for more sophisticated processing of
documents including web pages. In §5 we presented
one such application for this algorithm: a web spider
that collects multilingual documents.

References
Cavnar W. and Trenkle J. (1994). "N-gram-based text
categorization". Symposium on Document Analysis
and Information Retrieval.
Churcher G., Hayes J., Johnson S., and Souter C.
(1994). "Bigram and trigram models for language
identification and character recognition". In Proceed-
ings of the 1994 AISB Workshop on Computational
Linguistics for Speech and Handwriting Recognition.
Ted Dunning T. (1994). "Statistical identification of
language". Computing Research Laboratory Technical
Report MCCS-94-273. New Mexico State University.
Ingle N. C. (1976). "A language identification table".
The incorporated linguist 15(4).98-101.
Romaine S. (1988). "Pidgin and Creole Languages".
Longman.

Ludovik Ye. (1982). "An Algorithm for optimal quasi
linear compression of speech signals", in Proceedings
of "Automatic Speech Recognition-12". Odessa,
USSR.
Vintsiuk T.K. (1970), "Optimal splitting of a se-
quence of elements into subsequences". Cybernetics,
v.4,pp. 128-133, Kiev, USSR.

- 323-

