
If You Have It, Flaunt It: 

Using Full Ontological Knowledge for Word Sense 

Disambiguation1
 

Kavi Mahesh, Sergei Nirenburg and Stephen Beale 
Computing Research Laboratory (3CRL) 

New Mexico State University 
Las Cruces, NM 88003, USA 

{mahesh,sergei,sb}@crl.nmsu.edu 
http://crl.nmsu.edu/Research/Projects/mikro/ 

Abstract. Word sense disambiguation continues to be a difficult problem in natural language pro- 
cessing. Current methods, such as marker passing and spreading activation, for applying world 
knowledge in the form of selectional preferences to solve this problem do not make effective use of 
available knowledge. Moreover, their effectiveness decreases as the knowledge is made richer by 
acquiring more and more conceptual relationships. Effective resolution of word sense ambiguities 
requires inferring the dynamic context in processing a sentence in order to find the right selectional 
preferences to be applied. In this article, we propose such an inference operator and show how it 
finds the most specific context to resolve word sense ambiguities in the Mikrokosmos semantic ana- 
lyzer. Our method retains its effectiveness even in a rich, large-scale knowledge base with a high 
degree of connectivity among its concepts. 

1.    Disambiguation in Context 

Word sense disambiguation continues to be a difficult problem for programs that process natural language. 
The goals of word sense resolution methods are: (a) to select as small a subset of possible senses of a word 
as possible, ideally just one sense, and (b) to select the best sense(s) given all the knowledge available to 
the system, including the dynamic context in processing the text. The most common methods for resolving 
word sense ambiguities are based on statistical collocations or selectional preferences (for a recent survey, 
see Guthrie et al, 1996) between pairs of word senses. Often, individual selectional preferences applicable 
to a word are not strong enough to exclude all but one sense of the word. The real power of word sense 
selection seems to lie in the ability to constrain the possible senses of a word based on selections made for 
other words in the dynamic context. 

Although it is a truism that context plays a significant role in sense disambiguation, computational models 
have not demonstrated the effectiveness of modeling context for resolving word senses in a large-scale 
NLP system. 

This work presupposes a semantic analysis environment, such as the Mikrokosmos system (Beale et al, 
1995; Mahesh et al, submitted; Onyshkevych and Nirenburg, 1995), in which the results are expressions in 
a text meaning representation language whose syntax is based on propositions and their arguments, as well 
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as information about speaker attitudes and the speech situation. The vocabulary of this language is defined 
by a large ontological model of the world, and the lexicon formulates selectional restrictions and other 
semantic constraints in terms of ontological concepts. The focus of this paper is on control issues in apply- 
ing selectional preferences to achieve effective resolution of sense ambiguities. Word sense disambiguation 
in a basic semantic analysis system is addressed in a parallel submission (Mahesh et al, submitted). In this 
paper, we argue that: 

• individual constraints between the head of a proposition and each of its arguments typically available 
in static knowledge sources (lexicons) are often not strong enough for effective selection of word 
senses; knowledge of constraints and conceptual relationships among the arguments of a proposition is 
often critical; 

• effective sense disambiguation requires rich knowledge with a high degree of cross-dependence among 
knowledge elements; 

• it is often not possible to determine a diagnostic context statically (i.e., before any decisions are made 
for the current sentence); 

• while representations such as semantic networks (including both simple labeled hierarchies (e.g., SEN- 
SUS (Knight and Luk, 1994) and ontological concept networks (e.g., the Mikrokosmos ontology 
(Mahesh, 1996; Mahesh and Nirenburg, 1995)) can capture such constraints and relationships, process- 
ing methods currently applied to semantic networks such as marker passing (Charniak, 1983; 1986; 
Eiselt, 1989) and spreading activation (Waltz and Pollack, 1985) do not facilitate selection of word 
senses based on the dynamic context; 

• marker passing and spreading activation are effective on well-designed and sparse networks but 
become less and less effective as the degree of connectivity increases. 

2. Knowledge Requirements for Word Sense Disambiguation 

If one chooses a semantic network-like formalism to encode large amounts of highly interdependent 
knowledge elements required for a processing task, the network will exhibit a high degree of connectivity. 
In NLP, more connections means more knowledge that is potentially useful in finding semantic connec- 
tions between the different parts of a sentence or text. We will describe the processing in our approach 
using a simple (but un-contrived) example. 

Consider a sentence such as “John prepared a cake with the range.” Leaving aside, for the sake of simplic- 
ity, the PP-attachment ambiguity, let us concentrate on lexical disambiguation. In this sentence, several 
words are ambiguous, relative to the static knowledge sources we used in our experiment: “Prepared” can 
mean prepare-food1 or prepare-document, “cake” is A-KIND-OF baked-food and also A-KIND-OF dessert, 
and “range” can mean oven or stove, in addition to the mathematical, military and agricultural senses. 

Suppose that the analysis process has already ruled out, based on static context, the non-kitchen senses of 
“range” and determined the correct sense of “prepared.” The ontological concept prepare-food has pre- 
pared-food as its THEME; human as its AGENT; and cooking-equipment as its INSTRUMENT. It also has bake 
as one of its descendants. Bake is constrained as follows: its INSTRUMENT is oven; its AGENT is baker (this 
constraint is made RELAXABLE-TO human, as a preparation for processing non-literal language — see Ony- 

1.   Words in double quotes “” denote lexemes; words in italics denote ontological concepts, words in SMALL CAPS denote proper- 
ties (and properties of properties) of ontological concepts. 

2 



shkevych and Nirenburg (1995) for details); its THEME is baked-food (of which, recall, cake is A-KIND-OF). 

One cannot realistically expect an English lexicon to contain a selectional constraint associated with the 
INSTRUMENT role of prepare-food that enables the system to distinguish between oven and stove, both 
direct ontological descendants of cooking-equipment, because any kind of cooking-equipment can be the 
instrument of preparing food. However, as soon as it is determined that the food in question is a cake, 
which is a kind of baked food, the kinds of cooking equipment that can used will become further con- 
strained. In particular, stove will be ruled out, leaving oven as the only remaining sense of “range.” 

How can this dynamic constraint on cooking-equipment be introduced? In the ideal situation, there will be 
a direct connection in the network between oven and baked-food but none between stove and baked-food 
and the system selects oven based on this information. Such inter-argument, “lateral” selectional restric- 
tions (i.e., those not anchored at the head of a proposition, such as bake, in this case) seem to be invaluable 
for word sense disambiguation. 

In reality, however, things are more complicated and the availability of such links cannot be guaranteed. As 
a result, NLP systems that depend on always having such information have not been highly successful in 
domain-independent word sense disambiguation. It would be safe to assume that knowledge sources for 
NLP are always incomplete and inaccurate, due to limitations of manual acquisition. The necessary links 
(such as the oven to baked-food link) may not have been acquired. On the other hand, some other links may 
be present between stove and baked-food, which might complicate the decision if the measure of semantic 
distance used in disambiguation is based only on connectivity (see Mahesh et al (submitted) for a discus- 
sion of the ontological search algorithm for determining semantic distance between any two ontological 
concepts). 

We show how the dynamic context helps resolve the ambiguity even in the absence of complete knowledge 
(such as a direct connection between oven and baked-food.). Then we show why spreading activation meth- 
ods fail to apply available knowledge effectively and how the method we propose determines the dynamic 
context correctly and applies the same knowledge effectively to select the oven sense of "range," even in 
the absence of a direct (or “short,” “low-cost”) link between oven and baked-food. Then we show how the 
proposed method retains its effectiveness even at higher degrees of connectivity while marker passing and 
spreading activation methods lose their disambiguation power as more knowledge is introduced. 

3. Dynamic Context Helps Select the Right Sense 

An important point to note from the above example is that bake was not explicitly referred to in the sen- 
tence. Nevertheless, once “cake” is determined to be baked-food, the processor should be able to infer that 
the meaning of “prepared” must have, in fact, been bake since that is the only subclass of prepare-food that 
takes baked-food as THEME. (In other words, the system, in fact, “corrects” the author of the input text, sug- 
gesting that in English “bake” should have been used in this sentence.) This information is included in the 
dynamic context only after it is determined that “cake” refers to baked-food. Once this dynamic context is 
inferred, constraints are modified; in this case, tightened. As shown in Figure 1, we know that the INSTRU- 
MENT of bake is constrained to be an instance of oven, and hence that is the appropriate sense of “range,” 
while the instrument of prepare-food could be any cooking-equipment. By tracking the dynamic context, 
we can exploit such constraints between two (or more) arguments (the THEME baked-food and the INSTRU- 
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Figure 1. A Semantic Network. 

Current methods based on constraint satisfaction techniques do not make this inference and hence fail to 
apply the stronger constraints available in the system's knowledge bases. They do not necessarily apply 
constraints attached to intermediate nodes, that is, those nodes in the conceptual network that are along the 
paths between origin nodes pointed at by the lexical entries for the words in the sentence. Such constraints 
seem to play a critical role in word sense disambiguation. For example, in the sentence above, it is not pos- 
sible to discriminate between the senses of “range” without looking at the constraints attached to the inter- 
mediate node bake. 

Note that the problem is one of control of finding the right constraints to apply rather than the correctness 
of propagating directly available constraints. Can marker passing or spreading activation accomplish this? 
Yes, but only by guessing the dynamic context with the help of heuristics based on the topology of the net- 
work, not the content of the knowledge in the network. The methods are too weak to guarantee that the 
guessed context is the right one given all available knowledge. This is because the methods are unduly 
influenced by knowledge in the network that is not relevant to the current context. The following section 
illustrates how well-intentioned links among other related concepts can unduly influence the methods so as 
not to include bake in the current context. 

4. Spreading Markers or Activation: A Game of Luck 

In the case of marker passing, there may be many other paths of the same or shorter length connecting 
pairs of concepts that do not go through nodes in the current context such as bake. In Figure 1, for exam- 
ple, there is an alternative path from baked-food to prepare-food via prepared-food. This path consists of a 
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THEME segment and an IS-A segment just as the one going through bake. Thus, any choice in a marker pass- 
ing algorithm will be hampered. 

Let us assume that “John” is an instance of human. The following nodes become the origins for marker 
passing: human, prepare-food, other senses of “prepare”, baked-food, oven, stove and other senses of 
“range.” The goal of marker passing is to find a shortest path between each pair of origins. In pure marker 
passing, there are no weights on links; they carry a unit cost. Some candidates for shortest paths are shown 
in Figure 2. 

 
Figure 2: Paths in the Semantic Network. 

Paths are selected from the set in Figure 2 by applying several heuristics such as finding a minimal span- 
ning tree for the origin set or maximizing the set of shared nodes in the paths (Eiselt, 1989). It is clear from 
the figure that cooking-equipment and prepared-food are strong intermediate nodes. Bake might lose 
against these two and if so, the path from oven to baked-food via bake may be rejected and the competing 
path via prepared-food selected in order to maximize measures such as the total number of shared nodes 
among the selected paths. 

As a result, oven and stove turn out to be equally likely! Although bake had created a shorter path between 
oven and baked-food than between stove and baked-food, other parts of the network had an undue advan- 
tage over bake as a result of well-intentioned heuristics such as the above. In this situation, it is only by 
luck that oven might get selected, or that the heuristics discriminate between competing word senses suffi- 
ciently for any selection to take place at all. 

5 



Knowledge of bake which was clearly present and accessed during processing was not applied effectively 
by the marker passing method to make the right selection for the sense of “range.” Similarly, in spreading 
activation, prepared-food and cooking-equipment receive a high amount of activation, once again jeopar- 
dizing the role of bake in selecting oven rather than stove. There is no guarantee that the configuration in 
the network will result in a higher activation of oven than other senses because of the activation flowing 
through bake. 

Figure 1 shows a small fragment of a conceptual network, with only a few types of available links listed. 
Any realistic model will have a much larger network with many other types of links between concepts, fur- 
ther decreasing the chances that the desired path through bake will be the least-cost path in the context of a 
sentence such as the one above. Moreover, these networks are almost always hand-coded and may include 
spurious links that eventually bypass certain desired paths. Processing mechanisms such as marker passing 
and spreading activation are simple and have a cognitive appeal, but their lack of reference to the content of 
the nodes makes them too weak for making the kinds of inferences needed for effective word sense disam- 
biguation. 

The ideal situation for network-based methods is one where there are no intermediate nodes. That is, when 
each pair of appropriate word senses in a sentence is connected by a direct link in the network, and no word 
sense that is not to be selected (such as stove) has a direct link to any of the other selected senses. This, 
unfortunately, is rarely the case when processing real texts. As the number of intermediate nodes between 
desired senses of a pair of words increases, it becomes less likely that constraints represented by the inter- 
mediate nodes have an effect on the final selection. That is why in any real implementation on sizable net- 
works and vocabularies, the standard network based methods turn out to be a mere game of luck. Often 
there are poorer alternatives that just happened to be cheaper. The only control is in adjusting weights on 
links which does not always guarantee that dynamic contexts will be inferred correctly to yield good 
results for previously unseen inputs. 

5. Inferring and Applying Dynamic Contexts 

Our method of checking selectional constraints exhaustively examines all the pairwise constraints on   all 
word   senses in a   sentence, encoded statically in the network   or in the lexicon,   using a very efficient 
search mechanism, called Hunter-Gatherer, based on constraint satisfaction, branch and bound, and solu- 
tion synthesis methods (Beale, Nirenburg and Mahesh, 1996). To augment this method to infer dynamic 
contexts, we introduce the Context Specialization Operator (CSO) with the following content: If a sense P 
is selected for a word w, and the rest of the word senses in the environment satisfy the constraints on P, 
examine the constraints on children of P; if exactly one child C of P satisfies the constraints, then infer that 
the correct sense of the word is C, apply the constraints on C to other words. 

The semantic analyzer checks selectional restrictions and   applies the CSO iteratively, thereby   resolving 
word sense ambiguities successively. For example, “cake” is first determined to be a kind of baked-food; 
then using this information, “prepared” is disambiguated to prepare-food. Applying the CSO at this point 
shows that the only child of prepare-food which satisfies the constraint that the theme must be a baked-food 
and the instrument some sense of “range” was bake. Hence bake is included   in the dynamic context and 
its constraints are   applied to “range”   in turn, thereby excluding stove and selecting oven. 
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6. Richer Knowledge: Current Methods Fizzle Out 

As an example of interference from irrelevant knowledge, consider a situation where there is a direct link 
(such as manufactured-by) from stove to human in Figure 1. A similar link from oven to human may be 
missing in the knowledge base. Such omissions and inaccuracies are inevitable in any manually acquired 
knowledge base of nontrivial size. Marker passing and spreading activation will be unduly influenced by 
this additional link to stove and prefer stove as the meaning of “range” even though the additional link is 
completely irrelevant to the input at hand.   It   would be relevant   if the input referred to a manufacturing 
relationship between “John” and “range.” High connectivity in world knowledge representations is essen- 
tial   for general purpose NLP. Presumably, a link between any two nodes in the representation may at one 
time or another serve as a useful    selectional constraint for word sense disambiguation. 

Methods used to process such world knowledge must remain efficient even as network connectivity grows. 
Several attempts have, in fact, been made to contain the combinatorial effects in large-sized networks by 
constraining marker passing (e.g., Yu and Simmons, 1990). While such methods make processing more 
tractable, they do not help maintain its effectiveness at higher  connectivities. Our method is  robust 
against irrelevant connections in the knowledge base. It only considers those constraints that are relevant to 
the current text. 

7. Implementation and Discussion 

The methods outlined above have been implemented in a large-scale semantic analysis system  in the Mik- 
rokosmos machine translation project (Beale, Nirenburg and Mahesh, 1995; Mahesh et al, submitted). The 
system employs an ontological world model represented as a network of 5,000 concepts where each node 
has an average connectivity of 16 (Mahesh and Nirenburg, 1995). A Spanish  lexicon of about 37,000 
word senses maps to nodes in this network. The methods are not only very effective in resolving word 
sense ambiguities but are also very efficient. The system has been tested successfully on several real-life 
Spanish texts (each about 350 words long) in the domain of business news. A typical text had about 50 
ambiguous (open-class) words of which roughly 97% were disambiguated correctly despite the fact that 
our model does not yet include reference resolution or discourse processing components. 

One might argue that a simpler solution for our featured example would have been to edit the network and 
add a direct link between oven and baked-food. It is certainly possible to fine-tune the network or tweak the 
weights on the links to obtain a selection of oven. However, such an approach does not guarantee that 
desired results will be obtained outside training corpora.   Moreover, such tuning invariably has a cata- 
strophic effect on processing other inputs. For example, if we fixed the network so that oven is closer to 
baked-food than stove, then oven would be selected even in an example such as “John ate the cake on the 
range.” There is, in fact, no information in this sentence that leads to a preference for either the stove or the 
oven sense of "range." 

Statistical methods based on sense-tagged corpus analysis (e.g., Yarowsky, 1992) also appear to suffer 
from the same drawbacks as network search methods. In a sufficiently general corpus, collocations of word 
senses may lead to irrelevant interference in sense disambiguation. For example, a high degree of colloca- 
tion between baked-food and oven helps select the right sense of “range” in “John prepared a cake with the 
range.” However, the same statistical preference can mislead the processor into selecting the oven sense of 
range in “John ate the cake on the range,” just as fine-tuning networks did. 
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Inferences of the kind proposed here can be recorded as “canned” episodic or stereotypical knowledge 
structures such as scripts, plans, and MOPs (e.g., Schank and Abelson, 1977). However, this strategy may 
not be easily scalable to sufficiently broad domains.   Acquisition of script-like structures is often prohibi- 
tively expensive. The kind of connections shown in Figure 1, on the other hand, can be acquired at a rea- 
sonable cost, as the experience of the Mikrokosmos project shows (Mahesh and Nirenburg, 1995). 

Note that our method would still benefit from scripts, if they are made available; not least for solving prob- 
lems in discourse and pragmatics. The inference operator has potential applications in machine translation 
as well. If an instance of a relatively more specific concept, such as bake (relative to prepare-food), is 
included in the meaning representation of the source text which serves as interlingua text in an MT system, 
a language generator can use this clue to generate a more appropriate word in the target language than if 
prepare-food is included (for example, when the target language has different words for baking and other 
forms of cooking). We are currently investigating other possibilities of dynamic combination and modifica- 
tion of selectional restrictions to enhance their effectiveness in ambiguity resolution. 

The above analysis assumed having a node for a lower concept (such as bake) to anchor the specific con- 
straints on it. We are also investigating ways of representing such inter-argument constraints when such a 
node is absent, for instance, by automatically acquiring such nodes to bootstrap a knowledge-based NLP 
system and tune its knowledge base to a specific corpus. 

8. Conclusion 

Years of effort have made it possible to build large-scale knowledge bases for applications in NLP. How- 
ever, current NLP methods were not designed with such knowledge in mind and are largely ineffective in 
solving difficult problems such as word sense disambiguation. In this article, we presented a way of using 
rich knowledge of semantic cooccurrence constraints in word sense disambiguation. This method effec- 
tively applies available knowledge by inferring dynamic contexts to resolve word sense ambiguities. We 
have also found that this method can be applied efficiently, using the Hunter-Gatherer control architecture. 
We believe that this line of work can lead to elegant models of solving semantic problems in NLP without 
placing unreasonable demands on knowledge acquisition. 
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