
PARSING BY SUCCESSIVE APPROXIMATION
Helmut Schmid

IMS-CL, University of Stuttgart
Azenbergstr . 12 , D-70174 Stuttgart , Germany

Email: schmid@ims. uni-stuttgart .de

Abstract It is proposed to parse feature structure-based grammars in several steps. Each step is aimed to eliminate as
many invalid analyses as possible as efficiently as possible. To this end the set of feature constraints is divided
into three subsets, a set of context-free constraints, a set of filtering constraints and a set of structure-building
constraints, which are solved in that order. The best processing strategy differs: Context-free constraints are solved
efficiently with one of the well-known algorithms for context-free parsing. Filtering constraints can be solved using
unification algorithms for non-disjunctive feature structures whereas structure-building constraints require special
techniques to represent feature structures with embedded disjunctions efficiently. A compilation method and an
efficient processing strategy for filtering constraints are presented.

1 Introduction

The efficiency of context-free parsing is well known [Younger, 1967]. Since many featured structure-based
grammars either have a context-free backbone or can be transformed into a grammar with a context-free
backbone, it is possible to take advantage of the efficiency of context free parsing if the parser proceeds in two
steps : First a context-free parser builds the context-free part of the syntactic analysis which is then extended
by the calculation of feature structures. Maxwell and Kaplan [Maxwell III and Kaplan, 1994] experimented
with variants of this strategy in their LFG parser. One result of their experiments was that their grammar is
processed more efficiently by their parser if the rather broad context-free categories chosen by the grammar
writers are replaced by more specific categories. To this end some relevant features have been compiled manually
into the context-free grammar. Of course one would prefer to have a compiler perform this task automatically.
This would enable the grammar writer to use the categories which he considers appropriate, without loosing
efficiency. How this can be done is shown in section 3.

Often it is useful to split the second part of processing, the evaluation of feature constraints, into two
steps as well. Feature constraints which are likely to eliminate analyses (filtering constraints) are evaluated
first whereas the evaluation of other constraints (structure-building constraints) which mainly serve to build
some (e.g. semantic) representation is delayed. The ALEP system (Advanced Language Engineering Platform
[Simpkins, 1994]) allows the user to explicitly specify features whose constraints are to be delayed. Kasper and
Krieger [Kasper and Krieger, 1996] present a similar idea for HPSG parsing.

Separating filtering constraints and structure-building constraints has two advantages: Since many analyses
are eliminated by the filtering constraints, the parser does not waste time on the - usually costly - evaluation
of structure-building constraints for analyses which will fail anyway. As another advantage, it is possible to
choose the most efficient processing strategy for each of the two constraint types independently.

Structure-building features tend to reflect the syntactic structure of a constituent. The semantic feature
of a VP node e.g. would encode the attachment side of an embedded PP if there is ambiguity. In order to
avoid such local ambiguities multiplying out in the semantic representation, it is necessary to have means to
represent ambiguity locally; i .e. the feature structure representation must allow for embedded disjunctions . A
representation in disjunctive normal form (i.e. as a set of alternative non-disjunctive feature structures) would be
inefficient because the number of feature structures would grow too fast as local ambiguities multiply out. More
efficient algorithms for processing disjunctive feature constraints have been presented e.g. in [Kasper, 1987] ,
[Dorre and Eisele, 1990] , [Maxwell III and Kaplan, 1996] , and [Emele, 1991] .

177

Filtering constraints, on the other hand, can be processed with standard unification algorithms and a dis­
junctive normal form representation for feature structures if the feature values restricted by these constraints
have limited depth and therefore limited compexity. The SUBCAT and SLASH features in HPSG e.g. have
· this property whereas e.g. the SUBJ and OBJ features in LFG do not. Even if the depth of a feature value
is unbounded it is still possible to limit the complexity of the feature structures artificially by pruning feature
structures below some level of embedding. Little of the restrictive power of the constraints is lost thereby, since
constraints seldom refer to deeply embedded information. However, in order to ensure the correctness of the final
result, the filtering constraints have to be evaluated again in the next step together with the structure-building
constraints.

In this article a parser is presented which implements the first two steps of the parsing strategy outlined
above. Currently it is assumed that the grammars do not contain structure-building constraints which would
require the third processing step (see also seGtion 4.3). Section 2 provides an overview of the grammar formalism
used by this parser. Section 3 describes the compilation of the grammar. Details of the parsing strategy and
its current limitations are given in section 4. Section 5 presents results from experiments with the parser and
section 6 closes with a summary.

2 The Grammar Formalism
The parser employs a rule-based grammar formalism. Each grammar rule has a context-free backbone. One of
the daughter nodes in a rule is marked as the head with a preceding backquote. Trace nodes are marked with an
asterisk after the category name. At least one daughter node has to be non-empty because rules which generate
empty strings are not allowed. Associated to each node in a rule is a set of feature constraint equations which
restrict the values of its features. Variables are used to express feature unification: Two features are unified by
assigning the value of the same variable to both of them (e.g. f1 = v; f2 = v ;). Feature structures are totally
well-typed, i.e. they are typed and each feature which is appropriate for some type is present and has a value
of an appropriate type. Equality is interpreted extensionally, i.e. two feature structures are considered equal if
they have the same type and all of their feature values are equal. Feature structures have to be acyclic. Type
hierarchies are not supported currently.

Two predefined feature types and three classes of user-defined types are available to the grammar writer.
Features of the predefined type STRING accept any character string as value. Features of the predefined type
FS_LIST take a list of feature structures of the class cat egory (see below) as value. The user defines his own
feature types of the class enumeration type by listing the corresponding set of possible values which have to
be atomic. Another class of user-defined feature types are the stru ctured types which are defined by listing
the set of attributes appropriate for this type with the types of their values. Cat egori es are the last class of
user-defined feature types. Their definition is analogous to that of a structured type. Each node of category X
has an associated feature structure of type X.

To simplify the grammar writer's task, the grammar formalism supports templates, default inheritance be­
tween the mother node and the head daughter of a rule (the value of a feature of the head daughter of a rule
is inherited from the mother node if it is undefined otherwise and if the feature structure of the mother node
contains a feature with the same name and type - and vice versa), automatic handling of the two features
Phan and HeadLex (lexical head), and special variable types called "restrictor" types which define a subset of
features which are to be unified when two cat egory feature structures are (partially) unified by assigning the
same variable to both of them. The last feature is needed e.g. to exclude the Phan feature from unification
when the feature structure of a trace node is unified with the feature structure of a filler node which has been
threaded through the tree.

The grammar formalism allows disjunctive value specifications in the case of features of an enumeration type 1 .

A simple toy grammar written in this formalism is shown in the appendix.

3 Compilation
A compiler transforms the plain text representation of the grammar into a form which is appropriate for the
parser and provides error reports. Compilation aims to minimize the computations required during parsing.

1 Using a bit-vector representation, such disjunctions are easy to store and process efficiently.

178

The compiler expands templates , adds constraint equations for automatic features and for inherited features,
flattens feature structures by replacing structured features with a set of new features corresponding to the
subfeatures of the structured feature, and infers in some cases additional constraints. E.g. while compiling the
rule2

VP {Subcat= [*] ; Subcat=r ; } -> ' V {Subcat= [NP{}=np I r] ; } NP {}=np ;
the follmving constraint equations are obtained3 (among others) :

r O.VP.Subcat x = O.VP.Subcat . cdr (1)
r = 1.VP.Subcat.cdr (1) x = []

From these constraints the compiler infers the additional constraint:
x = 1.VP.Subcat.cdr (2)

These inferences are necessary for the constraint evaluation algorithm presented in section 4 . 1.
Finally, the compiler replaces unified variables with a single variable, merges equations of the form x=constantl; x=constant2 into a new equation x=constant3, eliminates redundant equations and generates fixed assignments for equations with a feature path expression on the right hand side if the variable on the left

hand side is unified with an unambiguous constant in some other equation. This is e.g. the case for the third
equation and the inferred equation above. The fixed assignments derived from these equations are:

O.VP.Subcat. cdr (1) : = [] 1.VP.Subcat.cdr (2) : = []
The three equations involved are removed at this point. For each of the remaining equations with a path
expression on the right hand side, the compiler generates a variable assignment :

O . VP . Subcat : = r 1 . VP . Subcat . cdr (1) : = r
Equations with the same variable on the left hand side are then grouped together:

r: r = O.VP.Subcat r = 1.VP.Subcat.cdr (1)

The variables representing these groups are sorted so that variables which depend on the values of other variables
will follow these other variables4 . This ordering is required by the constraint evaluation algorithm presented in
section 4.1.

3 . 1 Generation of Context-Free Rules

The compiler supports compilation of feature constraints into the context-free backbone of the grammar in the
case of features of the class enumeration type. Features of other types cannot be compiled because the number
of possible values is infinite. The user has to specify which features are to be incorporated - i.e. compiled - for
each category, and the compiler automatically generates all valid context-free rules with the refined categories.

The following algorithm is used for the generation of the context-free rules: First the compiler orders the
incorporated features of all nodes of a given grammar rule. A sequence ii , h , . . . , fn is obtained. Then the set
of permitted values for the first feature Ji is determined. To this end, the compiler checks whether there is a
fixed assignment for this feature. If one exists, the corresponding value is the only permitted value. Otherwise,
the compiler checks whether there are two constraint equations of the form v = ii and v = (c1 ; c2 ; . . . ; cm) where

. (c1 ; c2 ; . . . ; cm) is a disjunction of constant values . In this case the set of permitted values is { c1 , c2 , . . . , Cm }.
Otherwise all values appropriate for feature ii are permitted features. The compiler chooses one of the permitted
values and switches to the next feature.

While assigning a value to feature Ji, the compiler first checks whether fi is unified with some feature f k
where k < i. This is the case if there are two equations y = Ji and y = fk . If ther� is such a feature fk ,
which already got a value since it has a smaller index, then its value is assigned to feature Ji . Otherwise the
set of permitted values is computed as described above and one value is selected. After the value of the last

2The notation NP{ }=np means "unify the feature structure of the node NP with the feature structure denoted by the variable np
according to the definition of the restrictor type of the variable np," i .e . unify the subset of features listed in the restrictor definition.
The list notation is similar to that in Prolog, but an asterisk rather than an underscore is used to mark dummy arguments.

3The number in front of a path expression refers to the position of the node in the rule. The expression cdr{l} refers to the rest
list at position 1 of a list, i .e. the list minus its first element.

4 Dependencies arise when a feature value of type STRING is defined as the concatenation of the values of two other STRING
features. The value of the Phan feature e.g. is defined in this way.

179

feature has been fixed, the corresponding context-free rule is output. The other context-free rules are obtained
by backtracking.

Assuming that the feature Number is to be incorporated into the categories NP, DT, and N, the parser will
generate in case of the rule

NP {Number=n ; } -> DT {Number=n ; } ' N {Number=n ; } ;

the following two context-free rules:
NP_sg -> DT_sg N_sg
NP_pl -> DT_pl N_pl

3.2 Compression of the Lexicon

For a parser to be able to process arbitrary text it is essential to have a large lexicon with broad coverage.
In order to reduce the space requirements of such a large lexicon, the compiler checks for redundancies. Most
information is stored in the form of linked lists and if two lists are identical from some position up to the end,
the common tail of the lists is stored only once. Also if two list elements (not necessarily of the same list) are
identical, only one copy is stored. With this technique it was possible to compress a lexicon with 300,000 entries
to about 18 MBytes , which is about 63 bytes per entry.

4 Parsing

The parser proper consists of two components. The first component is a context-free parser which generates
a parse forest , i.e. a compact representation of a set of parse trees which stores common parts of the parse
trees only once. The BCKY parser developed by Andreas Eisele5 is used for this purpose. It is a fast bit­
vector implementation of the Cocke-Kasami-Younger algorithm. The second component of the parser reads the
context-free parse forest and computes the feature structures in several steps. In each step the parse forest is
traversed and a new parse forest with more informative feature structures is generated. Parsing is finished when
the feature structures do not change anymore. The first step is the most expensive one computationally since
most analyses are typically eliminated in this step. The goal is therefore to make the first step as efficient as
possible, rather than minimizing the number of steps.

The recomputation of the parse forest proceeds bottom-up and top-down in turn. During bottom-up process­
ing, the parser first computes the feature structures of terminal nodes by evaluating the constraints associated
with the lexical rules. Since the number of lexical rules for a terminal node can be larger than one, there may be
more than one resulting feature structure. The new nodes with their feature structures are inserted into a new
chart. If a node with the same category and feature structure already exists in the new chart, the parser just
adds the new analysis (i.e. the rule number and pointers to the daughter nodes) to the list of analyses at this
node. Otherwise, a new node is generated. In both cases, the parser stores a link from the old node to the new
one. When the feature structure of a nonterminal node is computed, the parser checks all alternative analyses
of this node one after the other. For each analysis it has to try out all combinations of the new nodes which
are linked to its daughter nodes (cp. figure 1). For each consistent combination, the parser builds an updated
feature structure for the mother node and inserts it into the new chart as in the case of terminal nodes. This
method is analogous to the chart parsing techniques used in context-free parsing.

During top-down processing, the parser first copies all top-level nodes which cover the whole input string to
the new chart and inserts them into a queue. Then the first node is retrieved from the queue and its daughter
nodes are recomputed. The recomputed daughter nodes are inserted into the new chart and, if new, also inserted
into the queue for recursive processing. After a traversal of the parse forest is completed, it is checked whether
any node has changed. If not , parsing is finished. Otherwise the old chart is cleared, the charts are switched
and the next processing step begins.

Why is it necessary to traverse the parse forest more than once? In contrast to formalisms like LFG and HPSG
it is not assumed that the feature structure of the root node of a parse tree contains all relevant information6 •
Hence it is necessary to compute the feature structures of all nodes in a parse tree. If there were only one
unambiguous parse tree, it would be sufficient to traverse the parse forest once. By means of value sharing it

5 Andreas Eisele, IMS-CL, University of Stuttgart, andreas@ims:uni-stuttgart.de
6 It is even assumed that this is not the case (cp. section 4 .3) .

180

old chart new chart

Figure 1 : Recomputation of the parse forest

would be possible to update the values of unified features of different nodes in the parse tree synchronously.
This is not possible in the case of parse forests, however, because cross-talk would result whenever two analyses
have a common node, unless such a shared node is always copied before it is modified which is expensive and
to no avail if the analysis later fails. Instead the parse forest is traversed again to update the feature structures
of the non-root nodes.

The presented parser has to traverse the parse forest even more often because value sharing between different
features of the same feature structure is not used, in order to keep data structures and algorithms as simple as
possible. By repeated recomputation, information is properly propagated within the parse forest so that the
correct result is obtained. This strategy might seem inefficient, but it turns out that the first two passes which
are necessary in any case account for about three quarters of the total processing time and the number of passes
seldom exceeds five. As mentioned earlier, it seems more important to speed up the first pass than to reduce
the number of passes.

4 .1 Constraint Evaluation

The recomputation of feature structures is carried out in four steps. First the input feature structures are
specified. During top-down processing, the mother node is a node in the new chart and the daughter nodes
are from the old chart. During bottom-up processing it is the mother node which is contained in the old chart
and the daughter nodes are from the new chart. The parser then checks whether the fixed assignments are
compatible with the input. feature structures. If this is the case, the parser computes the values of the variables
used in this rule by non-destructively unifying the values specified in the constraint equations for this variable
(cp. section 3). The values to be unified are either values of feature paths , or constants7 , or results of string
concatenation operations.

Once the values of the variables have been computed, the new feature structures are built by modifying the
old feature structures according to the set of fixed assignments and variable assignments. The assignments have
been sorted by the compiler so that assignments to less deeply embedded features are carried out first. A lazy
. copying strategy is used: Before the value of a feature is changed, all levels of the feature structure above this
feature are copied unless they have been copied before. After all assignments have been made, the resulting
feature structure is inserted into a hash table. If an identical feature structure is already contained in the hash
table, a pointer to this feature structure is returned. Otherwise, the new feature structure is inserted. The
hashing is done recursively: All embedded feature structures (i.e. elements of feature structure lists) , are hashed
before an embedding feature structure is hashed. Hashing simplifies the comparison of feature structures to a
mere comparison of pointers.

4.2 Optimization

The parsing scheme presented so far has been modified in several ways in order to improve the speed of the
parser.

1. The compatibility check for fixed assignments can be done for each node independently of all the other nodes.
It is not necessary to repeat it for all combinations of daughter nodes. If a feature structure turns out to be
7 Such constants are necessarily disjunctive values because otherwise a set of fixed assignments would have been generated.

181

incompatible, the number of combinations is reduced.

2. The probability that a constraint fails is not identical for all constraints in a rule. Therefore the constraints
are sorted so that those constraints which are more likely to fail will be checked first. Inconsistent analyses
are therefore eliminated earlier on average. The statistics are collected during parsing.

3. Sometimes it is known in advance that a recomputation of a feature structure will not change its content.
This is the case if all input feature structures remained unchanged when they were recomputed the last time.
In this case it is sufficient to copy the feature structures to the new chart without recomputing them.

4. Expensive computations are sometimes done repeatedly during parsing, e.g. feature structure unifications. In
order to avoid this redundancy, the parser stores each unification operation with pointers to the argument
feature structures and the resulting feature structure in a hash table. Before a unification of two feature
structures is carried out it is checked whether the result is already in the hash table. Other expensive
operations like string concatenations are stored as well.

5. The parser generates a large number of data structures dynamically. In order to avoid the overhead associated
with memory allocation calls to the operating system, the parser uses its own simple memory management
system which allocates memory from the operating system in large chunks and supplies it to other functions
in smaller chunks as needed. Once a sentence has been parsed the allocated memory is freed in one step.

The parser and the compiler have been implemented in the C programming language.

4.3 Limitations

Only the first two processing steps discussed in section 1 - context-free parsing and processing of filtering
constraints - have been implemented in the parser so far. In order to be able to build a semantic representation, it
would be necessary to add another step which processes structure-building constraints efficiently. The algorithm
presented in [Maxwell III and Kaplan, 1996] could be used for this purpose. An even better alternative is
Dorre's algorithm [Dorre, 1997] which has polynomial complexity but only works if the constraints never fail. ·
If alternative parse trees are scored after parsing, e.g. with a probabilistic model, semantic construction could
also be confined to the best analyses.

The presented parsing method cannot immediately be used to process other grammar formalisms like LFG
or HPSG. LFG has no feature typing which is essential for the compilation of the context-free grammar. A
separation of filtering constraints and structure-building constraints is difficult in LFG because the SUBJ and
OBJ features are used to check subcategorization and to build a simple semantic representation at the same
time. The pruning strategy outlined in section 1 might help, but an additional module for the processing of
structure-building constraints would still be needed. Of course, other modifications would also be necessary.

The main problem when parsing HPSG with the presented method is to obtain a rule-based grammar from
the principle-based representation. Apart from this it would be necessary to emulate the type hierarchy with
features. The head features could be partially compiled into the context-free grammar. It is not necessary
to compute the DAUGHTERS feature because the tree structure is already represented in the chart. The
computation of the features which store the semantic information would have to be done by an additional
module.

5 Experimental Results

An English grammar with 290 phrase structure rules8 has been written for the parser. A lexicon of
about 300,000 entries with subcategorization information was extracted from the COMLEX lexical database
[Grishman et al., 1994]. The parser has been used to parse 30,000 sentences from the Penn Treebank corpus
[Marcus et al. , 1993]. Missing lexical entries were automatically generated from the part-of-speech tags in the
tagged version of the corpus. However, the part.:of-speech tags were not used for parsing itself. Quotation
marks were ignored during parsing. More than 7 words per second were parsed on average with a Sun Ultra-2

8 About 90 rules only deal with coordination, quotation and punctuation .

182

workstation. Three times the parser stopped prematurely due to memory exhaustion. The calculation of the
feature structures was the most time-consuming part of parsing.

For 80 percent of the sentences the parser produced at least one analysis. For 54 percent of the sentences there
was at least one analysis which was compatible with the Penn Treebank analysis. An analysis was considered
compatible if there were no crossing brackets. However, analyses without crossing brackets are not necessarily
acceptable analyses. 100 sentences have been parsed and inspected manually to estimate how often there was
an acceptable analysis. For 57 of these sentences the parser had produced a Treebank-compatible analysis, but
for only 48 an acceptable one. Interpolating these results, the portion of sentences with an acceptable analysis
is probably around 45 percent in the larger corpus.

25 ..----..----,----,-----,---r---,---,----,--,

Q)
0

� 20

Q)

(/)

g 1 5
(/)

·'=
Q)

:§ 1 0
0)
C:

"<ii
(/)

e 5

//:/
,,, 0

/f'°

_ _,,,,•"'�
,./'�,◊ 0

/� 0
/'1' .. o

,,,, o"'o

1,_

0

0-0-f?,-'>-Q?__<j_<j_S,_0
? 9,<,-�-

◊-<,-�-◊

0 0

o =��-�-�-�-�-�-�--�
1 0 1 5 20 25 30 35 40 45 50

sentence length

Figure 2: Empirical parsing complexity

Figure 2 shows .the empirical parsing complexity which is close to n3 (the dashed line in the diagram) where
n is the sentence length9 .

strategy 25 sentences 1 complex sent.
all optimizations 65 .9 180
no hashing of unifications 67.4 193
no hashing of string concatenations 79.3 244
recomputing always 67.3 236

Table 1: Parsing times for 25 randomly selected sentences and a single complex sentence

Another experiment was carried out to check the influence of some of the optimization strategies described
in section 4.2 on parsing time. A randomly selected set of 25 sentences was parsed with different variants of
the parser in the first part of the experiment. In the second part a single complex sentence was parsed. In
each variant of the parser one optimization was switched off. Table 1 shows the results. Hashing of unifications
only showed minor effects on parsing speed. Hashing of string concatenation operations was more effective.
Presumably string concatenation operations are more likely to be repeated than feature structure unifications.
A voiding unnecessary recomputation of feature structures had a bigger influence on the parsing of the complex
sentence than on the parsing of the simpler sentences.

The impact of the incorporation of features into the context-free grammar has also been examined. We
observed in contrast to Maxwell and Kaplan (Maxwell III and Kaplan, 1994] , only a marginal speedup of about
3 percent from feature incorporation. The incorporation of some features let to disastrous results because the
parse forest generated by the context-free parser became very big, slowing down both context-free parsing and
the calculation of the feature structures. A close relationship between the number of nodes in the context-free
parse forest and parsing time has been observed.

9There is an outlier at (48, 36. 7) which is not shown in the diagram.

183

The parser was also compared to a state-of-the-art parser, the XLE system developed at Rank Xerox which
was available for the experiments. A corpus of 700 words which both parsers have been able to parse completely
was used in this experiment. The XLE system parsed this corpus in 110 seconds whereas our parser needed
123 seconds. Of course it is very difficult to compare these figures since the parsers are too different wrt. the
grammar formalisms used, the information contained in the analyses, the degree of ambiguity and other criteria.

6 Summary

A parsing strategy has been outlined which splits parsing into three steps: context-free parsing, evaluation
of filtering constraints and evaluation of structure-building constraints. A parser has been presented which
implements the first two of these steps. A compiler is used to transform grammar descriptions into a form
which the parser is able to process efficiently. The compiler automatically refines the context-free backbone of
the grammar by compiling a user-defined set of feature constraints into the context-free backbone. An iterative
procedure is used to compute feature structures in disjunctive normal form after a context-free parse forest has
been built. As long as the feature structures are not used to build representations which encode the structure
of constituents, this parsing strategy works very well: Wall Street Journal data has been parsed at a speed of
7 words per second.

References

[Dorre, 1997] Dorre, J. (1997). Efficient construction of underspecified semantics under massive ambiguity.
submitted to ACL'97.

[Dorre and Eisele, 1990] Dorre, J. and Eisele, A. (1990). Feature logic with disjunctive unification. In Proceed­ings of the 13th International Conference on Computational Linguistics, pages 100-105, Helsinki, Finland.
[Emele, 1991] Emele, M. (1991). Unification with lazy non-redundant copying. In Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics, pages 323-330, Berkeley.
[Grishman et al . , 1994] Grishman, R. , Macleod, C. , and Meyers, A. (1994). Comlex syntax: Building a compu­

tational lexicon. In Proceedings of the 15th International Conference on Computational Linguistics, Kyoto,
Japan.

[Kasper, 1987] Kasper, R. T. (1987). A unification method for disjunctive feature descriptions. In Proceedings of the 25th Annual Meeting of the A GL, pages 235-242, Stanford, CA.
(Kasper and Krieger, 1996] Kasper, W. and Krieger, H.-U. (1996). Modularizing codescriptive grammars for

efficient parsing. In Proceedings of the 1 6th International Conference on Computational Linguistics, pages
628-633, Copenhagen, Denmark.

[Marcus et al. , 1993] Marcus, M. P., Santorini, B. , and Marcinkiewicz, M. A. (1993) . Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313-330.

[Maxwell III and Kaplan, 1994] Maxwell III, J. T. and Kaplan, R. M. (1994). The interface between phrasal
and functional constraints. Computational Linguistics, 19(4):571-589.

[Maxwell III and Kaplan, 1996] Maxwell III, J. T. and Kaplan, R. M. (1996). Unification-based parsers that
automatically take advantage of context freeness. Draft.

[Schiehlen, 1996] Schiehlen, M. (1996). Semantic construction from parse forests. In Proceedings of the 1 6th International Conference on Computational Linguistics, Copenhagen, Denmark.
[Simpkins, 1994] Simpkins, N. K. (1994). ALEP-2 User Guide. CEU, Luxembourg. This document is online

available at http://www.anite-systems.lu/alep/doc/index.html.
[Younger, 1967] Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3 . Infor­mation and Control, 10:189-208.

184

A A Toy Grammar

% comments start with a percent s ign

%%%%%% declarations %%%%%%%%%%%%%%%

% definit ion of the automat ic
% feature ' Phon '
auto Phon ;

% enumerat ion type features
enum PERSON {1st , 2nd , 3rd} ;
enum NUMBER {sg ,pl} ;
enum CASE {nom , acc} ;
enum VFORM {f in , inf ,bse , prp , pap , pas} ;
enum BOOLEAN {yes , no} ;

% def init ion of a structured feature
struct AGR {

} ;

NUMBER Number ;
PERSON Person ;
CASE Case ;

% category def init ions
category TOP {
} ;

category COMP {
} ;

category SBAR {
BOOLEAN Wh ;

} ;

category s {
FS_LIST Slash ;

} ;

category VP {
VFORM VForm ;
BOOLEAN Aux ;
FS_LIST Subcat ;
FS_LIST Slash ;

} ;

% Definition of the features which
% are to be compiled into the context
% free grammar .

VP incorporates {VForm , Aux} ;

category VBAR {
VFORM VForm ;
FS_LIST Subcat ;
FS_LIST Slash ;

} ;

VP incorporates {VForm} ;

category V {
VFORM VForm ;
BOOLEAN Aux ;
FS_LIST Subcat ;

} ;

VP incorporates {VForm , Aux} ;

185

category NP {
BOOLEAN Wh ;
AGR Agr ;

} ;

NP incorporates {Wh} ;

category N {
AGR Agr ;

} ;

category DT {
BOOLEAN Wh ;
AGR Agr ;

} ;

DT incorporates {Wh} ;

category pp {
} ;

category p {
} ;

% def init ion of restrictor types
restrictor+ NP_R(NP) {Phon , Wh , Agr} ;

% In the next definit ion , the Phon
% feature is exempted from unification .
restrictor+ NP2_R(NP) {Wh , Agr} ;
restrictor+ SBAR_R(SBAR) {Phon , Wh} ;

% variable declarations
BOOLEAN wh ;
AGR agr ;
NP_R np ;
NP2_R np2 ;
SBAR_R sbar ;
FS_LIST r , r2 ;

%%%%%% grammar rules %%%%%%%%%%%%%%%

TOP {} ->
' S {Slash= [] ; } ;

s {} ->
NP {Agr . Case=nom ; }=np

' VP {Subcat= [NP{}=np] ; } ;
% The subj ect-NP i s unified with the
% single element of the Subcat list .

VP {} ->
' VP {}
pp {} ;

VP {} ->
' VBAR {} ;

%
%
%

All features of the two
VP nodes are unif ied due
to feature inheritance .

VBAR {} ->
' VBAR {}
pp {} ;

VBAR {Subcat=r ; } ->
' VBAR {Subcat= [NP{}=np l r] ; }
NP {Agr . Case=acc ; }=np ;

% All features of the VBAR nodes are
% unif ied by default feature inheritance

% excepted the Subcat features .

VBAR {Subcat=r ; } ->
' VBAR {Subcat= [SBAR{}=sbar l r] ; }
SBAR {}=sbar ;

VBAR {Slash= [] ; } ->
'V {} ; pp {} ->
'P {}
NP {Agr . Case=acc ; } ;

NP {Wh=wh ; } ->
OT {Wh=wh ; Agr=agr ; }

' N {Agr=agr ; } ;

SBAR {Wh=no ; } ->
COMP {}

'S {Slash= [] ; } ;

SBAR {Wh=yes ; } ->
NP {Wh=yes ; }=np2

' S . {Slash= [NP{}=np2] ; } ;
% All features of the NP node and the
% element on the Slash list are unif ied
% excepted the Phon feature.
% See the definition of NP2_R .

VBAR {Subcat=r ; Slash= [np l r2] ; } ->
' VBAR {Subcat= [NP{}=np l r] ; Slash=r2 ; }
NP* {Agr . Case=acc ; }=np ;

% An NP trace is generated. Information
% from the filler node is threaded via
% the Slash feature .

%%%%%% template def init ions %%%%%%%%%%

N_sg
PRO

NPRO
WHPRO

N {Agr . Number=sg ; } ;
NP {Agr . Number=sg ;

Agr . Person=3rd ; } ;
PRO {Wh=no ; } ;
PRO {Wh=yes ; } ;

%%%%%% lexical entries %%%%%%%%%%%%%%%

"the" OT {Wh=no ; Agr . Person=3rd ; } ;
"a" OT {Wh=no ; Agr.Number=sg ;

Agr . Person=3rd ; } ;
"which" : OT {Wh=yes ; Agr.Person=3rd ; } ;
"man" N_sg {} ;
"pizza" : N_sg {} ;
"restaurant" : N_sg {} ;
"he " NPRO {Agr . Case=nom ; } ;
"him" NPRO {Agr . Case=acc ; } ;
" it " NPRO {} ;
"what " WHPRO {} ;
"eat s " V {Subcat= [

"at "
"that "

NP{} ,
NP{Agr . Number=sg ;

Agr . Person=3rd ; }] ; } ; p {} ;
COMP {} ;

186

