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Abstract
We argue for a performance-based design of natural language grammars and their associated parsers in order to meet the
constraints imposed by real-world NLP. Our approach incorporates declarative and procedural knowledge about language and
language use within an object-oriented specification framework. We discuss several message-passing protocols for parsing and
provide reasons for sacrificing completeness of the parse in favor of efficiency based on a preliminary émpirical evaluation.

1 Introduction

Over the past decades the design of natural language grammars and their parsers was almost entirely based on competence
considerations (Chomsky, 1965). These hailed pure declarativism (Shieber, 1986) and banned procedural aspects of
natural language use out of the domain of language theory proper. The major premises of that approach were to consider
sentences as the primary object of linguistic investigation, to focus on syntactic descriptions, and to rely upon perfectly
well-formed utterances for which complete grammar specifications of arbitrary depth and sophistication were available. In
fact, promising efficiency results can be achieved for parsers operating under corresponding optimal laboratory conditions.
Considering, however, the requirements of natural language understanding, i.e., the integration of syntax, semantics, and
pragmatics, and taking ill-formed input or incomplete knowledge into consideration, their processing costs either tend to
increase at excessive rates or linguistic processing even fails completely.

As a consequence, the challenge to meet the specific requirements imposed by real-world texts has led many researchers
in the NLP community to re-engineer competence grammars and their parsers and to provide various add-ons in terms
of constraints (Uszkoreit, 1991), heuristics (Huyck & Lytinen, 1993), statistics-based weights (Chamiak, 1993), etc. In
contradistinction to these approaches, our principal goal has been to incorporate performance conditions already in the
design of natural language grammars, yielding so-called performance grammars. Thus, not only declarative knowledge
(as is common for competence grammars), but also procedural knowledge (about control and parsing strategies, resource
limitations, etc.) has to be taken into consideration at the grammar specification level proper. This is achieved by providing
self-contained description primitives for the expression of procedural knowledge. We have taken care to transparently
separate declarative (structure-oriented) from procedural (process-oriented) knowledge pieces. Hence, we have chosen
a formally homogeneous, highly modularized object-oriented grammar specification framework, viz. the actor model of
computation which is based on concurrently active objects that communicate by asynchronous message passing (Agha,
1990).

The parser whose design is based on these performance considerations forms part of a text knowledge acquisition
system, operational in two domains, viz. the processing of test reports from the information technology field (Hahn &
Schnattinger, 1997) and medical reports (Hahn et al., 1996b). The analysis of texts (instead of isolated sentences) requires,
first of all, the consideration of textual phenomena by a dedicated text grammar. Second, text understanding is based on
drawing inferences by which text propositions are integrated on the fly into the text knowledge base with reference to a
canonical representation of the underlying domain knowledge. This way, grammatical (language-specific) and conceptual
(domain-specific) knowledge are closely coupled. Third, text understanding in humans occurs immediately and at least
within specific processing cycles in parallel (Thibadeau et al., 1982). These processing strategies we find in human
language processing are taken as hints how the complexity of natural language understanding can reasonably be overcome
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by machines. Thus, text parsing devices should operate incrementally and concurrently. In addition, the consideration of
real-world texts forces us to supply mechanisms which allow for the robust processing of extra- and ungrammatical input.
We take an approach where — in the light of abundant specification gaps at the grammar and domain representation level
— the degree of underspecification of the knowledge sources or the impact of grammar violations directly corresponds to
a lessening of the precision and depth of text knowledge representations, thus aiming at a sophisticated fail-soft model of
partial text parsing.

2 The Grammar

The performance grammar we consider contains fully lexicalized grammar specifications (Hahn et al., 1994). Each lex-
ical item is subject to configurational constraints on word classes and morphological features as well as conditions on
word order and conceptual compatibility a head places on possible modifiers. Grammatical conditions of these types are
combined in terms of valency constraints (at the phrasal and clausal level) as well as textuality constraints (at the text
level of consideration), which concrete dependency structures and local as well as global coherence relations must satisfy.
The compatibility of grammatical features including order constraints (encapsulated by methods we refer to as SYNTAX-
CHECK) is computed by a unification mechanism, while the evaluation of semantic and conceptual constraints (we here
refer to as CONCEPTCHECK) relies upon the terminological and rule-based construction of a consistent conceptual rep-
resentation. Thus, while the dependency relations represent the linguistic structure of the input, the conceptual relations
yield the targeted representation of the text content (for an illustration, cf. Fig. 7).

In order to structure the underlying lexicon, inheritance mechanisms are used. Lexical specifications are organized
along the grammar hierarchy at various abstraction levels, e.g., with respect to generalizations on word classes. Lexical-
ization of this form already yields a fine-grained decomposition of declarative grammar knowledge. It lacks, however,
an equivalent description at the procedural level. We therefore provide lexicalized communication primitives to allow for
heterogeneous and local forms of interaction among lexical items.

Following the arguments brought forward, e.g., by Jackendoff (1990) and Allen (1993), there is no distinction at the
representational level between semantic and conceptual interpretations of texts. Hence, semantic and domain knowledge
specifications are based on a common hybrid classification-based knowledge representation language (for a survey, cf.
Woods & Schmolze (1992)). Ambiguities which result in interpretation variants are managed by a context mechanism of
the underlying knowledge base system.

Robustness at the grammar level is achieved by several means. Dependency grammars describe binary, functional
relations between words rather than contiguous constituent structures. Thus, ill-formed input often has an (incomplete)
analysis in our grammar. Furthermore, it is possible to specify lexical items at different levels of syntactic or semantic
granularity such that the specificity of constraints may vary. The main burden of robustness, however, is assigned to a
dedicated message-passing protocol we will discuss in the next section.

3 The Parser

Viewed from a parsing perspective, we represent lexical items as word actors which are acquainted with other actors
representing the heads or modifiers in the current utterance. A specialized actor type, the phrase actor, groups word actors
which are connected by dependency relations and encapsulates administrative information about each phrase. A message
does not have to be sent directly to a specific word actor, but will be sent to the mediating phrase actor which forwards
it to an appropriate word actor. Furthermore, the phrase actor holds the communication channel to the corresponding
interpretation context in the domain knowledge base system. A container actor encapsulates several phrase actors that
constitute alternative analyses for the same part of the input text (i.e., structural ambiguities). Container actors play
a central role in controlling the parsing process, because they keep information about the textually related (preceding)
container actors holding the left context and the chronologically related (previous) container actors holding a part of the
head-oriented parse history.

Basic Parsing Protocol (incl. Ambiguity Handling). We use a graphical description language to sketch the message-
passing protocol for establishing dependency relations as depicted in Fig. 1 (the phrase actor's active head is visualized
by €P). A searchHeadFor message (and vice versa a searchModifierFor message if searchHeadFor fails) is sent to the
textually preceding container actor (precedence relations are depicted by bold dashed lines), which simultaneously directs
this message to its encapsulated phrase actors. At the level of a single phrase actor, the distribution of the searchHeadFor
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"Zenon sells this printer" "for $2,000"

Figure 1: Basic Mode (incl. Structural Ambiguities)

message occurs for all word actors at the “right rim” of the dependency tree (depicted by @®). A word actor that receives
a searchHeadFor message from another word actor concurrently forwards this message to its head (if any) and tests in its
local site whether a dependency relation can be established by checking its corresponding valency constraints (applying
SYNTAXCHECK and CONCEPTCHECK). In case of success, a headFound message is returned, the sender and the receiver
are copied (to enable alternative attachments in the concurrent system, i.e., no destructive operations are carried out), and a
dependency relation, indicated by a dotted line, is established between those copies which join into a phrasal relationship
(for a more detailed description of the underlying protocols, cf. Neuhaus & Hahn (1996)). For illustration purposes,
consider the analysis of a phrase like “Zenon sells this printer” covering the content of the phrase actor which textually
precedes the phrase actor holding the dependency structure for “for $2,000”. The latter actor requests its attachment as
a modifier of some head. The resultant new container actor (encapsulating the dependency analysis for “Zenon sells this
printer for $2,000” in two phrase actors) is, at the same time, the historical successor of the phrase actor covering the
analysis for “Zenon sells this printer”.

The structural ambiguity inherent in the example is easily accounted for by this scheme. The criterion for a structural
ambiguity to emerge is the reception of at least two positive replies to a single searchHeadFor (or searchModifierFor)
message by the initiator. The basic protocol already provides for the concurrent copying and feature updates. In the
example from Fig. 1, two alternative readings are parsed, one phrase actor holding the attachment to the verb (“sells™),
the other holding that to the noun (“printer”). The crucial point about these ambiguous syntactic structures is that they
have conceptually different representations in the domain knowledge base. In the case of Fig. 1 verb attachment leads to
the instantiation of the PRICE slot of the corresponding SELL action, while the noun attachment leads to the corresponding
instantiation of the PRICE slot of PRINTER.

Robustness: Skipping Protocol. Skipping for robustnes purposes is a well known mechanism though limited in its
reach (Lavie & Tomita, 1993). But in free word-order languages as German skipping is even vital for the analysis of
entirely well-formed structures, e.g., those involving scrambling or discontinuous constructions. For brevity, we will
base the following explanation on the robustness issue and refer the interested reader to Neuhaus & Broker (1997). The
incompleteness of linguistic and conceptual specifications is ubiquitous in real-world applications and, therefore, requires
mechanisms for a fail-soft parsing behavior. Fig. 2 illustrates a typical “skipping” scenario. The currently active container
addresses a searchHeadFor (or searchModifierFor) message to its textually immediately preceding containeractor. If both
types of messages fail, the immediately preceding container of the active container forwards these messages — in the
canonical order — to its immediately preceding container actor. If any of these two message types succeeds after that
mediation, a corresponding (discontinuous) dependency structure is built up. Furthermore, the skipped container is moved
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"totally" "over-priced"

"totally” "Zenon sells this printer over-priced"

Figure 2: Skipping Mode

to the left of the newly built container actor. Note that this behavior results in the reordering of the lexical items analyzed
so far such that skipped containers are continuously moved to the left. As an example, consider the phrase “Zenon sells
this printer” and let us further assume “totally” to be a grammatically unknown item which is followed by the occurrence
of “over-priced” as the active container. Skipping yields a structural analysis for “Zenon sells this printer over-priced”,
while “totally” is simply discarded from further consideration. This mode requires an extension of the basic protocol
in that searchHeadFor and searchModifierFor messages are forwarded across non-contiguous parts of the analysis when
these messages do not yield a positive result for the requesting actor relative to the immediately adjacent container actor.

Backtracking Protocol. Backtracking to which we still adhere in our model of constrained concurrency accounts for a
state of the analysis where none of the aforementioned protocols have terminated successfully in any textually preced-
ing container, i.e., several repeated skippings have occurred, until a linguistically plausible barrier is encountered. In
this case, backtracking takes place and messages are now directed to historically previous containers, i.e., to containers
holding fragments of the parse history. This is realized in terms of a protocol extension by which searchHeadFor (or
searchModifierFor) messages, first, are reissued to the fextually immediately preceding container actor which then for-
wards these messages to its kistorically previous container actor. This actor contains the head-centered results of the
analysis of the left context prior to the structural extension held by the historical successor.! Attachments for heads or
modifiers are now checked referring to the historically preceding container and the active container as depicted in Fig. 3a.

If the valency constraints are met, a new phrase actor is formed (cf. Fig. 3b) necessarily yielding a discontinuous anal-
ysis. A slightly modified protocol implements reanalysis, where the skipped items send reSearchHeadFor (or reSearch-
ModifierFor) messages to the new phrase actor, which forwards them directly to those word actors where the discontinuity
occurs. As an example, consider the fragment “the customer bought the silver” (with “silver” in the noun reading, cf.
Fig. 3a). This yields a perfect analysis which, however, cannot be further augmented when the word actor “notebook” asks
for a possible attachment.? Two intervening steps of reanalysis (cf. Fig. 3b and 3c) yield the final structural configuration
depicted in Fig. 3d.

Prediction Protocol. The depth-first approach of the parser brings about a decision problem whenever a phrase cannot be
integrated into (one of) the left-context analyses. Either, the left context and the current phrase are to be related by a word
not yet read from the input and, thus, the analysis should proceed without an attachment? Or, depth-first analysis was
misguided and a backtrack should be invoked to revise a former decision with respect to attachment information available
by now.

1 Any container which holds the modifying part of the structural analysis of the historical successor (in Fig. 3a this relates to “the” and “silver”) is
deleted. Hence, this deletion renders the parser incomplete in spite of backtracking.

2Being an arc-eager parsing system, a possible dependency relation will always be established. Hence, the adjective reading of “silver” will not be
considered in the initial analysis.

3This effect occurs particularly often for verb-final languages such as German.
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"the" "silver"

"the customer bought" "notebook"

_ @_ _ "silver"

"The customer bought the silver” “notebook” "The customer bought the silver notebook"

Figure 3: Backtracking Mode

Prediction can be used to carry out a more informed selection between these alternatives. Words not yet read, but
required for a complete analysis, can be derived from the input analyzed so far, either top-down (predicting a modifier) or
bottom-up (predicting a head). Both types of prediction are common in phrase-structure based parsers, e.g. Earley-style
top-down prediction (Earley, 1970) or left-corner strategies with bottom-up prediction (Kay, 1986). Since dependency
grammars, in general, do not employ non-lexical categories which can be predicted, so-called virtual words are constructed
by the parser, which are later to be instantiated with lexical content as it becomes available when the analysis proceeds.

Whenever an active phrase cannot attach itself to the left context, the head of this phrase may predict a virtual word as
tentative head of a new phrase under which it is subordinated. The virtual word is specified with respect to its word class,
morphosyntactic features, and order restrictions, but is left vacuous with respect to its lexeme and semantic specification.
In this way, a determiner immediately constructs an NP (cf. Fig. 4a), which can be attached to the left context and may
incrementally incorporate additional attributive adjectives until the head noun is found (cf. Fig. 4b).* The virtual word
processes a searchPredictionFor protocol initiated by the next lexical item. The virtual word and this lexical item are
merged iff the lexical item is at least as specific as the virtual word (concerning word class and features) and it is able to
govern all modifiers of the virtual word (cf. Fig. 4c).

This last criterion may not always be met, although the preédiction, in general, is correct. Consider the case of German
verb-final subclauses. A top-down prediction of the complementizer constructs a virtual finite verb (designated by (®),
which may govern any number of NPs in the subclause (cf. Fig. 5a). If the verbal complex, however, consists of an
infinite full verb preceding a finite auxiliary, the modifiers of the virtual verb must be distributed over two lexical items.?
An extension of the prediction protocol accounts for this case: A virtual word can be split if it may govern the lexical
item and some modifiers can be transferred to the lexical item. In this case, the lexical item is subordinated to a newly

4This procedure implements the notion of mother node constructing categories proposed by Hawkins (1994), which are a generalization of the notion
head to all words which unambiguously determine their head. The linguistic puzzle about NP vs. DP is thus solved. In contrast to Hawkins, we also
allow for multiple predictions.

5We here assume the finite auxiliary to govern the subject (enforcing agreement), while the remaining complements are governed by the infinite full
verb.
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Figure 4: Predicting and merging a noun

created virtual word (indicated by () in Fig. 5b) governing the remaining modifiers. Since order restrictions are available
for virtual words, even non-projectivities can be accounted for by this scheme (cf. Fig. 5b).6

Although prediction allows parsing to proceed incrementally and more informed (to the potential benefit of increased
efficiency), it engenders possible drawbacks: In underspecified contexts, a lot of false predictions may arise and may dra-
matically increase the number of ambiguous analyses. Furthermore, the introduction of additional operations (prediction,
split, and merge) increases the search space of the parser. Part of the first problem is addressed by our extensive usage of
the word class hierarchy. If a set of predictions contains all subclasses of some word class W, only one virtual word of
class W is created.

Text Phenomena. A particularly interesting feature of the performance grammar we propose is its capability to seamlessly
integrate the sentence and text level of linguistic analysis. We have already alluded to the notoriously intricate interactions
between syntactic criteria and semantic constraints at the phrasal and clausal level. The interaction is even more necessary
at the text level of analysis as semantic interpretations have an immediate update effect on the discourse representation
structures to which text analysis procedures refer. Their status and validity directly influence subsequent analyses at the
sentence level, e.g., by supplying proper referents for semantic checks when establishing new dependency relations. In
addition, lacking recognition and referential resolution of textual forms of pronominal or nominal anaphora (Strube &
Hahn, 1995), textual ellipses (Hahn et al., 1996a) and metonymies (Markert & Hahn, 1997) leads to invalid or incohesive
text knowledge representation structures. These not only yield invalid parsing results (at the methodological level) but also
preclude propertext knowledge acquisition (at the level of system functionality). Hence, we stress the neat integration of
syntactic and semantic checks during the parsing process at the sentence and the text level. We now turn to text grammar
specifications concerned with anaphora resolution and their realization by a special text parsing protocol.

The protocol which accounts for local text coherence analysis makes use of a special actor, the centering actor, which
keeps a backward-looking center (C}) and a preferentially ordered list of forward-looking centers (Cy) of the previous
utterance (we here assume a functional approach (Strube & Hahn, 1996) to the well-known centering model originating
from Grosz et al. (1995)). These lists are accessed to establish proper referential links between an anaphoric expres-
sion in the current utterance and the valid antecedent in the preceding ones. Nominal anaphora (cf. the occurrences of
“the company” and “these printers” in Fig. 6) trigger a special searchNomAntecedent message. When it reaches the
Cy list, possible antecedents are accessed in the given preference order. If an antecedent and the anaphor fulfill certain

6Non-projectivities often arise, e.g. due to the fronting of a non-subject relative pronoun. As indicated by the dashed line in Fig. 5b and Sc, we
employ additional projective relations to restrain ordering for discontinuities.
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"weilihn Zenon __" "entwickelt"
because it ACC Zenon developed

"weil ihn Zenon entwickelt __" "hat"
because Zenon __ developed it has

Figure 5: Predicting and splitting a verb

grammatical and conceptual compatibility constraints, an antecedentFound message is issued to the anaphor, and finally,
the discourse referent of the antecedent replaces the one in the original anaphoric expression in order to establish local
coherence. In case of successful anaphor resolution an anaphorSucceed message is sent from the resolved anaphor to
the centering actor in order to remove the determined antecedent from the C list (this avoids illegal follow-up refer-
ences). The effects of these changes at the level of text knowledge structures are depicted in Fig. 7, which contains the
terminological representation structures for the sentences in Fig. 6.

4 Preliminary Evaluation

Any text understanding system which is intended to meet the requirements discussed in Section 1 faces severe performance
problems. Given a set of strong heuristics, a computationally complete depth-first parsing strategy usually will increase
the parsing efficiency in the average case, i.e., for input that is in accordance with the parser's preferences. For the
rest of the input further processing is necessary. Thus, the worst case for a depth-first strategy applies to input which
cannot be assigned any analysis at all (i.e., in cases of extra- or ungrammaticality). Such a failure scenario leads to an
exhaustive search of the parse space. Unfortunately, under realistic conditions of real-world text input these cases occur
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"Zenon announced its new XColor laser printers."

Cb =Zenon@1

"T he company claims these printers print at up to 3ppmin color."

Figure 6: Anaphora Resolution Mode
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Figure 7: Sample Output of Text Parsing

quite often. Hence, by using a computationally complete depth-first strategy one merely would trade space complexity
for time complexity.

To maintain the potential for efficiency of depth-first operation it is necessary to prevent the parser from exhaustive
backtracking. In our approach this is achieved by two means. First, by restricting memoization of attachment candidates
for backtracking (e.g., by retaining only the head portion of a newly built phrase, cf. footnote 1). Second, by restricting
the accessibility of attachment candidates for backtracking (e.g., by bounding the forwarding of backtracking messages to
linguistically plausible barriers such as punctuation actors). In effect, these restrictions render the parser computationally
incomplete, since some input, though covered by the grammar specification, will not be correctly analyzed.
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4.1 Performance Aspects

The stipulated efficiency gain that results from deciding against completeness is empirically substantiated by a comparison
of our PARSETALK system, henceforth designated as PT, with a standard chart parser,” abbreviated as CP. As the CP
does not employ any robustness mechanisms (one might,e.g., incorporate those proposed by Mellish (1989)) the current
comparison had to be restricted to entirely grammatical sentences. We also do not account for prediction mechanisms the
necessity of which we argued forin Section 2. For the time being, an evaluation of the prediction mechanisms is still under
way. Actually, the current comparison of the two parsers is based on a set of 41 sentences from our corpus (articles from
computer magazines) that do not exhibit the type of structure requiring prediction (cf. Fig. 5 and the example therein). For
40 of the test sentences® the CP finds all correct analyses but also those over-generated by the grammar. In combination,
this leads to a ratio of 2.3 of found analyses to correct ones. The PT system (over-generating at a ratio of only 1.6) finds 36
correct analyses, i.e., 90% of the analyses covered by the grammar (cf. the remark on 'near misses' in Section 4.2). Our
preliminary evaluation study rests on two measurements, viz. one considering concrete run-time data, the other comparing
the number of method calls.

number of speed-up factor
samples | min—max | average
25 1.14.2 2.8
10 5.1-8.9 6.9
6 10.9-54.8 45.2

Table 1: Ratio of run times of the CP and the PT system, chunked by speed-up.

The loss in completeness is compensated by a reduction in processing costs on the order of one magnitude on the
average. Since both systems use the identical dependency grammar and knowledge representation the implementation
of which rests on identical Smalltalk and LOOM/Common Lisp code, a run time comparison seems reasonable to some
degree. For the test set the PT parser turned out to be about 17 times faster than the CP parser (per sentence speed-up
averaged at over 10). Table 1 gives an overview of the speed-up distribution. 25 short to medium long sentences were
processed with a speed-up in a range from 1.1 to 4.2 times faster than the chart parser averaging at 2.8. Another 10 longer
and more complex sentences show the effects of complexity reduction even more clearly, averaging at a speed-up of 6.9
(of arange from 5.1 to 8.9). One of the remaining 6 very complex sentences is discussed below.

Accordingly to these factors, the PT system spent nearly two hours (on a SPARCstation 10 with 64 MB of main
memory) processing the entire test set, while the CP parser took more than 24 hours. The exorbitant run times are largely
a result of the (incremental) conceptual interpretation, though these computations are carried out by the LOOM system
(Mac Gregor & Bates, 1987), still one of the fastest knowledge representation systems currently available (Heinsohn et al.,
1994).

While the chart parser is completely coded in Smalltalk, the PT system is implemented in Actalk (Briot, 1989) — an
extension of Smalltalk which simulates the asynchronous communication and concurrent execution of actors on sequential
architectures. Thus, rather than exploiting parallelism, the PT parser currently suffers from a scheduling overhead. A more
thorough comparison abstracting from these implementational considerations can be made at the level of method calls. We
here consider the computationally expensive methods SYNTAXCHECK and CONCEPTCHECK (cf. Section 2). Especially
the latter consumes large computational resources, as mentioned above, since for each syntactic interpretation variant a
context has to be built in the KB system and its conceptual consistency must be checked continuously. The number of
calls to these methods is given by the plots in Figs. 8 and 9. Sentences are ordered by increasing numbers of calls to
SYNTAXCHECK as executed by the CP (this correlates fairly well with the syntactic complexity of the input). The values
for sentences 39-41 in Fig. 8 are left out in order to preserve a proper scaling of the figure for plotting (39: 14389, 40=41:
27089 checks). A reduction of the total numbers of syntactic as well as semantic checks by a factor of nine to ten can be
observed applying the strategies discussed forthe PT system, i.e., the basic protocol plus skipping and back#racking.

TThe active chart parser by Winograd (1983) was adapted to parsing a dependency grammar. No packing or structure sharing techniques could be
used since the analyses have continuously to be interpreted in conceptual terms. We just remark that the polynomial time complexity known from chart
parsing of context-free grammars does not carry over to linguistically adequate versions of dependency grammars (Neuhaus & Broker, 1997).

8The problem caused by the single missing sentence is discussed in Section 4.2.
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Figure 9: Calls to CONCEPTCHECK
4.2 Linguistic Aspects

The well-known PP attachment ambiguities pose a high processing burden for any parsing system. At the same time, PP
adjuncts often convey crucial information from a conceptual point of view as in sentence 40: Bei einer BlockgroBe, die
kleiner als 32 KB ist, erreicht die Quantum-Festplatte beim sequentiellen Lesen einen Datendurchsatz von 1.100 KB/s bis
1.300 KB/s. [For a block size of less than 10 KB, the Quantum hard disk drive reaches a data throughput of 1.100 KB/s to
1.300 KB/s for sequential reading]. Here, the chart parser considers all 16 globally ambiguous analyses stemming from
ambiguous PP attachments.

Apart from the speed-up discussed above the PT parser behaves robust in the sense that it can gracefully handle cases
of underspecification or ungrammaticality. For instance, sentence 36 (Im direkten Vergleich zur Seagate bietet sie fiir
denselben Preis weniger Kapazitit. [In direct comparison to the Seagate drive, it (the tested drive) offers less capacity for
the same price.]) contains an unspecified word 'weniger' (i.e. 'less') such that no complete and correct analysis could be
produced. Still, the PT parser was able to find a 'near miss', i.e., a discontinuous analysis skipping just that word.

A case where the PT parser failed to find the correct analysis was sentence 39: Die Gerduschentwicklung der Festplatte
ist deutlich hoher als die Gerduschentwicklung der Maxtor 7080A. [The drive's noise level is clearly higher than the noise
level of the Maxtor 7080A]. When the adverb 'deutlich’ (i.e. 'clearly') is processed it is immediately attached to the
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matrix verb as an adjunct. Actually it should modify "hoher' (i.e. 'higher'), but as it is not mandatory no backtrack is
initiated by the PT parser to find the correct analysis.

5 Conclusion

The incomplete depth-first nature of our approach leads to a significant speed-up of processing approximately in the order
of one magnitude, which is gained at the risk of not finding a correct analysis at all. This lack of completeness resulted
in the loss of about 10% of the parses in our experiments and correlates with fewer global ambiguities. We expect to find
even more favorable results for the PT system when processing the complete corpus, i.e., when processing material that
requires prediction mechanisms.
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