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Abstract

This paper describes a new approach to word sense disambiguation (WSD) based on
automatically acquired "word sense division. The semantically related sense entries in a
bilingual dictionary are arranged in clusters using a heuristic labeling algorithm to provide a
more complete and appropriate sense division for WSD. Multiple translations of senses serve as
outside information for automatic tagging of bilingual corpora and acquisition of WSD rules.
We describe and implement a WSD method using the English-Chinese bilingual version
(LecDOCE) of the Longman Dictionary of Contemporary English (LDOCE). For this purpose,
we draw on information about topics and topical sets in the Longman Lexicon of Contemporary
English (LLOCE) to represent and disambiguate LecDOCE senses. Example sentences and
their translations from LecDOCE are employed as training materials for WSD, while further
examples from the Brown corpus are used for testing. Quantitative results of disambiguating 12
words are also presented.

1. Introduction

Word sense disambiguation (WSD) has been found useful in many NLP applications, including information
retrieval (McRoy 1992; Krovetz and Croft 1992) and machine translation (Brown et al. 1991; Dagan et al.
1991; Dagan and Itai 1994). Recent work on computational linguistics have paid increasing attention to
WSD (Lesk 1986; Schiitze 1992; Gale et al. 1992; Yarowsky 1992 and 1995; Luk 1995). Given a
polysemous word in running text, the task of WSD involves examining contextual information to determine
the intended sense from a predefined set. If the set of senses is chosen to be possible translations of the
word of interest, the WSD becomes the problem of lexical selection (Dagan et al. 1991; Dagan and Itai
1994) in machine translation (MT) process. WSD methods can be characterized by how word senses are
divided and by how WSD knowledge is represented and acquired.

Word sense is an abstract concept frequently based on subjective and subtle distinctions in topic,
register, dialect, collocation, part-of-speech and valency (McRoy 1992). Researchers have experimented
with various knowledge sources for WSD system, including (1) the defining words in every-day dictionaries
(Lesk 1986; Cowie et al. 1992; Luk 1995), (2) indicative words in the context of words listed under a
thesaurus category acquired from corpus (Yarowsky 1992; Chen and Chang 1994), (3) bilingual corpora or
monolingual corpora in the target language (Gale, Church and Yarowsky 1992; Dagan et al. 1991; Dagan
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and Itai 1994), (4) automatic induced clusters with sublexical representation (Schiitze 1992), and (5) hand-
crafted lexicon containing knowledge from multiple sources (McRoy 1992).

This study is motivated by several observations. First, word-based approaches trained on
dictionaries or corpora offer limited coverage for unrestricted text. Lesk (1986) described a word-sense
disambiguation technique that is based on the number of overlap between words in a dictionary definition
and words in the local context of the word to be disambiguated. The author reported that WSD
performance ranged from 50 to 70%. On the other hand, the performance of corpus-trained word-based
models (Yarowsky 1992 and 1995; Gale, Church and Yarowsky 1992) were shown to be very effective.
However, Luk (1995) pointed out that these methods were tested on technical writing or text in a limited
domain, therefore it remains doubtful whether these models can perform as well for text with all kinds of
genre such as the Brown corpus.

With a set of programs described in this paper, we try to find out whether it is possible to exploit the
existing machine readable lexical resources to put to use in automatic acquisition of knowledge bases of
word sense division and disambiguation. Furthermore, we also experimented with the concept-based
approach to see if it can provide broader coverage, while maintaining comparable high precision. We hope
to achieve a degree of generality, so it is possible to resolve word sense ambiguity, even for a word found in
a particular unfamiliar context in terms of word overlapping. For instance, the sense of "bank” in the
context of "vole" (see Table 1) is arguably difficult to disambiguate, even with a very large training corpus.
Consider the sentences that contains the word "bank” among some 25,000 example sentences in LecDOCE
(Proctor 1988). The intended sense of "bank"” in these sentences is predominately FINANCE. Table 1
provides further details for other sentences which are related to the GEOGRAPHY sense of "bank," taking
note of the indicative context and the Chinese translation of "bank."”

Table 1. Example sentences in LecDOCE containing a GEOGRAPHY sense of “bank”

Example Sentences Translation of “ bank”
a bank vole. &x (i)
a ribbon of mist along the river bank, A (an)
a smal] excavation in the river bank, A (an)
He sat down and rested on a mossy bank in the woods, i3 (bienpo)
The air became moister as we descended the hill towards the river bank. i (bien)
The Dogger Bank in the North Sea can be dangerous for ships. . ## (shazhou)
The hunter recognized the footprints of a deer near the river bank. X (an)
the left bank of the stream. X (an)
The men built banks of earth to bold back the rising flood waters. W (tifang)
The Romans founded a great city on the banks of this river. & (an)

First, observe that this sample of sentential context for the GEOGRAPHY sense of "bank" is so small
that it does not include a whole lot of re-occurring words, except for the word "river” Therefore, it is very
difficult to guarantee broad coverage, when disambiguation is dependent on word overlaps. However, it is
evident that even with a sample as small as this, there are many re-occurring topics or concepts such as
GEOGRAPHY ("stream,"” "sea,” "lake," "earth,” "flood," "water,” "woods," "hill," "river," "to flow,"
and "fo overflow"), DIRECTION ("north,"” "south,” "east," and "west"), POSITION ("left," "right," and
"side"), and ANIMALS ("vole" and "deer"). The data seems to indicate that a class-based approach will
be effective for WSD.

Second, the translations are quite diversified; six distinct translations for ten instances of "bank”
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reflecting subtle sense difference. The data show that using a single hand-picked translation (Gale, Church
and Yarowsky 1992) to label bilingual training data will result in high precision but low applicability. For
instance, using the translation, “52” (an), as condition for labeling “bank” as GEOGRAPHY results in
100% precision and 50% coverage for the bilingual sentences shown in Table 1.

Table 2. Example sentences in LDOCE containing a Geography sense of “bank”

Sense Definition Translation
land along the side of a river, lake, etc. X (an) ; ¥ ()
earth which is heaped up in a field or garden, often making a border or division Wik (tigeng)

a slope made at bends in a road or race-track, so that they are safer for cars to goround | i3k (bienpo)
= SANDBANK # 3 (shazhou)

A comprehensive dictionary such as LDOCE, usually provides quite sufficient information about such
subtle sense distinction. For instance, the LDOCE lists twelve senses for the word “bank”; four of which
are related to the GEOGRAPHY sense of “bank.” Table 2 provides further details. If we can identify
and merge such closely related senses, their translation can then be collected to be used in broad and precise
labeling of bilingual training corpora for WSD. For instance, if all four senses in Table 2 can be labeled as
GEOGRAPHY, then we can collect Chinese characters in their translation as a tuple, [“E,” “8&,” “H,”
SE7 87 “HE,” “Y,” “W™. With this tuple, the word “bank” in all ten example sentences in Table 1
will be labeled correctly as GEOGRAPHY.

The rest of the paper is organized as follows. We begin by giving the details of material used,
including the characteristics of definition sentences in LecDOCE and the organization of words in LLOCE.
Next, a set of four algorithms for (1) labeling LecDOCE senses, (2) tagging bilingual corpora, (3)
acquisition of WSD rules, and (4) rule-based WSD, are described. Examples demonstrating the
effectiveness of the algorithms are given for illustration. After describing the algorithm, the experimental
results for a twelve-word test set are presented. Moreover, the proposed method is compared with other
approaches in computational linguistics literature. Finally, concluding remarks are made.

2. Labeling dictionary senses

The labeling of dictionary definition sentences with a coarse sense distinction like the set labels in LLOCE is
a special form of the WSD problem. No simple method can solve the general problem of WSD in
unrestricted text. We will show that this labeling task is made simpler for several reasons. For instance,
consider the definition sentences for the first few senses of "bank” in LecDOCE as shown in Table 1.

First of all, only simple words are used in the definitions. Furthermore, the text generation schemes
are rather regular. The scheme that lexicographers used in generating above definitions is similar to the
DEFINITION scheme described in McKeown (1985). A DEFINITION scheme begins with a genus term
(i.e., conceptual parent or ancestor of the sense), followed by the so-called differentia which consists of
words semantically related to the sense to provide specifics about the sense. Those relations have been
shown to be very effective knowledge sources for WSD (McRoy 1992). For the most part, those relations
exist conveniently among words under the same topic or across topics of cross reference in LLOCE. For
instance, most of the above mentioned words are listed under the same topic Ld (Geography) of intended
label Ld099, or its cross reference Me (Places). Therefore, these definitions can be disambiguated very
effectively on the base of similarity between the defining keywords and the words lists in LLOCE.
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2.1. Organizing information in LLOCE

In this work, the labels used for tagging dictionary definitions are taken from the LLOCE (McArthur 1992),
The category of LLOCE is organized mainly according o subject matier. Nearly 2,500 sets of related
words in LLOCE are organized according to 14 subjects and 129 topics (TOP). Cross references (REF)
between sets, topics, and subjects are also given to show various inter-sense relations not captured within
the same topic. The cross references in LLOCE are primarily between topics.

The sets under which the word is listed in LLOCE are considered as initial candidates for labeling.

For instance, the candidates for labeling senses of “bank” are the following 4 sets:

Jel04 (banks, exchange, etc.), Jel(06 (banking and saving),

Ld099 (river banks), and  Nj295 (bending and leaning).
The set label Jel 04 (as well as Jel06) is listed under the topic Je (Banking, Wealth, and Investment), while
Ld099 and Nj295 are listed under Ld (Geography) and A (Action and Position) respectively.  For instance,
there is a REF link (in Fig. 1) from topic Je to topic De (Belonging and Owning, Getting and Giving)
(McArthur 1992). To facilitate measurement of similarity between a definition sentence and a topic, we
use TOP; to denote the list of words under a LLOCE topic S, while REF; denotes that under cross
references of S.  For instance, the label Jel04 (as well as Jel06) is associated with a list of words from its
tOpiC (TOP Tel04 ) and cross reference {REF}.106 = TOP, o

TOPs04 = TOP;, = {affluent, budget, cut down, deficit, economize, fortune, giro,

income, keep, luxury, maintenance, needy, pay, windfall, amenity, ... }
REF;i0a = TOPp, = {bring back, contribution, doff, equip, facility, keep, yield, ... }.

People Building Location
T Yoo Ro¥e RO
Organization Govemment | Owning Material Banking Geograph | Travel \Flace
O o - 0 0 0 0 O 0 ()
4

O Ssus e

-« g cross-reforence

Figure 1. Subjects, topics, sets, and cross reference between topics in LLOCE.
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3. The algorithms

We sum up the above descriptions and outline the procedure for the four algorithms in the following
subsections.

11, Labeling dictionary entries

Algorithm 3.1 Labeling sense entries in MRD.

Step 1: Given a head word A, read its definition, DEF;, from LecDOCE.

Step 2: For each definition D of DEF, , tag each word in D with POS information.

Step 3: Remove all stop words in D 1o obtain a list of keyword-POS pair, KEYp,

Step 4: Lookup LLOCE for headword % to obtain a list of sets SET;, that contain #. For each S in
SETh, compile a set of words TOPs that listed under the topic of S and REF; the set of words
listed under its cross references. .

Step 5: Compute similarity Sim (D, S) based on Dice Coefficient for all definitions D € DEF;, and
labels 8 e SETh
Sim(D, )= z 2xwy x (In(k, TOPg )+ v In(k, REFg))

keKEY, |7OPg UREFg| + |KEYp)|

where KEYp = the set of POS-keyword pairs in definition D,
Y = the overall relevancy of cross references to a topic,
Wy = |/the degree of ambiguity of the keyword £,
In(a,B) =1,ifaeB,
In(a, B) =0,ifa¢B.

Step 6: Assign to D the label S such that Stm (D, S) is maximized and greater than a certain threshold.

Step 7: If all initial candidates to be dissimilar in Step 6, a second sweep is executed with the number
of candidates expanded to include all topical set in LLOCE.

3.2 Labeling training data

Algorithm 3.2 Labeling training a bilingual corpus.

Step 1: For each L € LAB, , compute 7Ty as follows where 77, = {C |Lp=L , D e DEF, and C €
v}

Step 2: For each E of the example sentences containing b, and its translation in Chinese Gy and a
label L € LAB, , compute similarity Sim (Cg, L) based on Dice Coefficient.

] 2xIn(c,C,)
Sim(Cg,L)= ) —————=—
=0 200 +1C)
Step 3: Label » in E with the label L such that Sim (Cg, L) is maximized and greater than a certain
threshold.
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3.3 Acquisition of WSD rules
Algorithm 3.3  Acquisition of decision rules for WSD

Step 1. Initialize the quadruple table, COL to an empty list.
Step 2. For each example sentence E containing /# with a POS of p, let KEY; be the list of keywords in
E and each K in KEY; is labeled with a topical set label Lk using Algorithm 3.2.
Step 3. For each K € KEY; and K # A, insert the following quadruples into COL
. p, K. Ly)
(hs P, LK: Lh)
(h, p, topic(Lx), L), where topic(Ly) is the topic of Ly

Step 4. For each tuple (h, p, ¢, L) in COL, compute logatithmic hkelihood ratio as follows:
. Count(h, p,c, L
R, (h,p,c,L) = log 2.0 1)
Count(h,p,c,L)
where L is a label other than L
Count(h, p, ¢, L) = the number of instances of (h, p, ¢, L) in COL

Count(h, p, ¢, L) = the number of instances of (b, p, ¢, L) in COL
Step 5. For all tuples in COL, remove the tuple with Ry, smaller than a certain threshold.
Step 6. Sort the list of tuples in COL by bead word and by log-likelihood ratio in descending order.

3.4 Word Sense Disambiguation
Algorithm 3.4 Word Sense Disambiguation

Step 1. Initiahze the quadruple table, QUAD  to an empty list.

Step 2: For an input sentence INP containing h, tag each word in INP with POS information.

Step 3: Remove all stop words in JNP to obtain a list of keyword-POS pair, XEYne.

Step 4: Let LAB;, be the topical set labels acquired to represent the word sense division of # with POS
p, using Algorithm 3.1. For each h, K € KEYpep (K = h) and L € LABy, insert (b, p, K, L),
(h,p, K’ L), and (h, p, K”, L) into the QUAD, where p is the POS of 5 in INP and X’ € SET(K)
and K”=TOP(K’).

Step 5: For a polysemous word / in INP, find the quadruple (A, p, ¢, L) € QUAD that maximizes the
following score:
Score(h, p, ¢, L) = Count(h, p, ¢, L) x Ru(h, p, ¢, L)
where Count(h, p, ¢, L) = the number of instances of (4, p, ¢, L) in QUAD.
Step 6. K Score(h, p, ¢, L) is greater than a preset threshold, then report that the sense of & is L.
Otherwise, report the most frequent sense label for the word /2 with POS p.

3.5 Illustrative examples

We illustrate how the algorithms function using the sense entries for the word “bank™ and an example
sentence containing “bank.” Table 3 shows the results of running Algorithm 3.1 on the sense entries of
“bank” in LecDOCE. Table 4 shows the collective transiations for entries receiving the same label.
Algorithm 3.2 is illustrated by using an example containing “bank.” The results of preprocessing and
tagging an LecDOCE example are shown in Table 5. This sentence gives rise to the quadrples shown in
Table 6 afier being processed using Algorithm 3.3,  The resulting decision list for “bank” after Algonthm
3.3 is finished is shown in Table 7.
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Table 3. Results of Algorithm 3.1 Table 6: Quadruples representing boolean functions

Sense D POS | Label L, | Chinese Word | POS | Context | Sense
bank.lm.1| n Ld099 ) 3.3 Word Label
bank.1n2 | n Ld099 W bank|! n interest | Jel0O4
bank 1n3 | n Ha026 -~ -9 word level | bank| n account | Jel04
bank.}n4 | n Ld0o9 it& bank| n accrue Jel04
bank 105 | Ld099 |} &M bank | n Jel12 | Jel04
bak2v2} v 1 Nj235 | WA#Y setlevel | bank] n | Jel05 | Jelod
bank.4n.l1{ n Jel04 #B45 -

- topic level bank} n Je Jel04
bank.4n.2 | n Jel04 L Bl bank | = Nd Te104
bank4.n3 | n Jel04 EE
bank.5.v.1 | v Jel06 HRBAT
bank.5.v.2 | v Jel106 #&

Table 4. Translation Tuples for “bank”

Tabel L POS Tcanslation tuple TT Table 7. ‘The Decision List for “bank’
- - Collocation| POS | Sense ) #Cor |#Err] Ry
Ld099 | n K-35 w38 ik 7 M
Ha Cl n Jel04] 21 | O | 444
026 | n — 3 W 3
. Je n JelO4] 20 | O | 4.39
Nj235 | v B X
. , Th n Jel04| 19 | O | 4.34
Jeloa | m MATHAMAKER
Tel04 HABAE R rob n Jelga| 11 | 0 | 3.81
- M money n | Jetod] 10 [ 0137
t Jel04| 9 { 0 | 3.61
Table 5. Results of Running Algorithm 3.2 account t n 4 7€
- river n Ldo99| 7 1 0 | 3.37
Example The interest on my bank account . .
accrued over the years. cnqunal n Jelod| 5 ) 0 | 3.04
Translation | RIBFT4E P 60 #) & & 5 A H police n Jelo4| 4 1 0| 2.83
$u. thief n Jel04| 4 | 0| 2.83
Labeled interest/Jel12  bank/Jel(4 interest n Je104 3 0 i 256
Keywords account/Je105  accrue/Nd092 work n Jel04] 3 | 0} 256
3.6 Experiments and Evaluation

Experiments were performed using two test sets of sentences containing 12 polysemous words used in recent
WSD experiments (Yarowsky 1992; Luk 1995). Table 8 displays a word by word performance of the
WSD algorithm, The results show that the algorithm can disambiguate 92% of the instances of these
words with a precision rate of 94% in close test of examples drawn from LecDOCE. The open test
consisting of sentences from the Brown corpus showed that 88% of the instances are disambiguated with a
precision rate of 84%, compared to the precision rate of 77% for the Definition-Based Concept Co-
occurrence (DBCC) approach by Luk (1995). Table 8 provides further details. These results show that
with much less data and simpler training procedure, the method described above can offer higher precision
in WSD for text containing many types of genres. However, there are still room for improvement in the
arca of coverage. Ewvidence have shown that by exploiting the constraint of so-called “one sense per
discourse,” (Yarowsky 1993) and the strategy of bootstrapping (Yarowsky 1995), it is possible to boost
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coverage, while maintaining about the same level of precision. We are currently putting together an
experiment to show that this observation holds out for our WSD method.

Table 8: performance of the WSD algorithm

Test set #1: LecDOCE examples Test set #2: Brown Corpus

Word Class-based WSD Class-based WSD DBCC (Luk)

Total | #Cor #Err Prec | Total |#Cor | #Emr Prec Precision Rate
bass 5 5 0 100% 15 14 1 93% 94%
bow 13 13 0 100% 21 17 4 81% 78%
cone 3 2 1 67% 12 12 0 100% 100%
duty 18 17 1 94% 77 74 3 96% 59%
|_galley 3 3 0 100% 8 6 2 75% 100%
interest 98 88 10 90% 79 53 26 68% 49%
issue 16 16 0 100% 67 47 20 69% 59%
mole 3 3 0 100% 2 1 1 50% 67%
sentence 4] 41 0 100% 35 28 7 86% 84%
slug 5 4 1 80% 18 15 3 83% 80%
star 36 34 2 94% 40 37 3 93% 53%
taste 35 33 2 4% 57 57 0 100% 98%
Average 276 259 17 94% 431 | 361 70 84% T7%

4. Discussion

Work in sense disambiguation can be categorized by the way word senses are represented and how sense-
indicative factors are acquired and recorded. Recently, researchers have turned to machine readable
dictionaries (MRD) in order to save labor-intensive effort in representing word sense and WSD knowledge
(McRoy 1992). The sense number in the on-line LDOCE dictionary has been used to represent word
senses (Lesk 1986). This approach has the advantage of having definition and example sentences
explicitly associated with a certain word sense, so proto-typical words in the indicative context of a certain
word sense can obtained directly. However, as noted by Dolan (1994), dictionary dichotomy of meaning is
in general too fine to be adequate for word sense representation and disambiguation. Performance is
understandably low (50-70%), given that word distinction is very fine-grained.

Gale, Church and Yarowsky (1992) reported a disambiguation method that uses bilingual corpus.
Six words including "duty,” "drug,” "land," "language," "position," and "sentence" are studied. Their
method relies on two translations in French for each word to tag training material for WSD. For instance,
a sentence contains an instance of "duty” is tagged with the TAX sense, if the translation contains the
French word "droit,"” and the OBLIGATION sense if the translation contains "devoir.” The content words
in the 100-word context of the ambiguous words are taken as contextual indicators of word sense. The
average precision is 90% for two-way sense disambiguation. Dagan et al. (1994) also used translations in
a bilingual lexicon to represent both word sense and contextual indicators. The authors show that the use
of corpus in English is very effective in resolve sense ambiguity of sentences in Hebrew. Experimental
results shows that 70% of the polysemous words are applicable for disambiguation. About 92% of these
applicable polysemous words are disambiguated correctly.

Yarowsky (1992) used the major categories in Roget's thesaurus as its sense tags. The statistical
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approach of the disambiguation method is the concordance set, the collection of the words in the 100-word
context of a Roget category in Grolier's Encyclopedia. An average 92% accuracy rate was reported for 12
polysemous words for 3-way disambiguation on the average.

In most of the above-mentioned works, the sense division is either determined by hand or is taken
directly from an existing source faulted with gaps. We have shown that the fine-grained senses in MRD
can be used to fill gaps in the topical sets in LLOCE to arrive at a more complete and appropriate sense
division for WSD. We experimented with the inclusion of conceptual relation for enhancement on
coverage. Directly comparing methods is often difficult. Nevertheless, it is evident that in comparison
our algorithms are simpler, take up less time and space overhead, and most importantly require no human
intervention in all phases of WSD (sense division, tagging of training material, deduction of rules). This
assumption seems to hold out, for experiments have shown that with a much smaller training corpus, the
algorithms still provide broad-coverage sense disambiguation at comparable level of precision for text with
many types of genres.

5. Conclusions and Future Work

The proposed method herein takes advantages of a number of linguistic phenomena: (1) Division of senses
is primarily along the line of subject and topic. (2) Rather rigid schemes of text generation and predictable
semantic relations are used to define senses in MRDs such as LDOCE. (3) The implicit links between
instances of many of these relations are available in a thesaurus such as LLOCE. (4) Word senses seems
to form semantic clusters that are effective knowledge sources for WSD.

This work also underscores the effectiveness of concept-based approach to WSD. Relation between
concepts can be acquired efficiently from tagged bilingual corpora for broad and precise WSD.
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