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ABSTRACT 

In many conventional MT systems, the translation output of a machine translation system is 
strongly affected by the sentence patterns of the source language due to the one-way processing 
steps from analysis to transfer and then to generation, which tends to produce literal translation that 
is not natural to the native speakers. The literal translation, however, is usually not suitable for direct 
publication to the public unless a great deal of post-editing efforts is made. In this paper, we will 
propose a training paradigm for acquiring the transfer and translation knowledge in a corpus-based 
parameterized MT system from a bilingual corpus with a two-way training method. In such a 
training paradigm, the knowledge is acquired from both the source sentences and the target 
sentences. It is thus possible to avoid the translated output from being affected by the source 
sentence patterns. Training methods for adapting the parameter set to the various specific user styles 
are also suggested for the particular needs in restricted domains. Because it provides a flexible way 
to adapt the system to the various domains (or sublanguages), it is expected to be a promising par- 
adigm for producing high quality translation according to user preferred styles. 

1. Introduction 

Most traditional MT systems acquired their underlying knowledge with a one-way design 
paradigm, in which the underlying translation knowledge, in particular, the transfer knowledge, is 
largely derived based on the source sentences; as a result, the output translation is often strongly 
affected by the sentence patterns of the source language, and the output is usually too literal [Somers 
93, Su 93]. In addition, the system modules are mostly not in a parameterized form; consequently, 
it is hard to tune the system for a specific domain and thus unable to produce high quality translation 
in the subdomain, which is required in practical applications. In this paper, we will indicate the 
possibility for removing such source dependency under a parameterized MT architecture by using 
a two-way training method to acquire the translation and transfer knowledge automatically from a 
bilingual corpus. An MT system with output not biased by the source sentence pattern can thus be 
constructed with small cost. 

Another  advantage  of  training  the  system  parameters  (i.e., the  probabilities  in our case) from a 
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bilingual corpus is that it is possible to configure an MT system to fit the various styles in different 
applications with different sets of parameters. Such an approach, in contrast to the conventional 
analysis-transfer-generation architecture, make it possible for adapting itself to user's feedback by 
adjusting those parameters. 

To make an MT system parameterizable, the underlying language models have to be expressed 
in a form that is linguistically appropriate and computationally suitable for preference evaluation; 
and a set of quantitative formulations has to be developed for finding the most preferred candidate 
for the various analysis, transfer and generation phases. In this paper, a framework will be proposed 
for such a parameterization task through several different levels of normalization. 

It is also important that the parameters of a parameterized system could be easily acquired or 
trained. In this paper, special attention will be paid to construct such a system with a small annotated 
corpus. We will characterize such a training process as a two-end constraint optimization problem to 
reflect its attempts for two-way training from a bilingual corpus. Under such an optimization 
approach, the system designer could concentrate on the acquisition or compilation of lexicon 
knowledge and the tagging of shallow syntactic and semantic features of the lexicons. 

2. Why Parameterized MT Systems ? 

In many real world applications, the MT users or customers, like large international computer 
companies, do require that the MT system produces “publishable” translation (say, for computer 
manuals), instead of only readable or understandable messages (which might be suitable for 
information retrieval applications). Besides, such companies may have their own long established 
publishing style, which must be considered in order to win their contracts [Su 93]. A practical MT 
system, therefore, needs the capability to produce high quality translation and adapt itself to a 
user-specific style. 

High quality translation, however, in general, is possible only in a very restricted domain or for 
some sublanguages; it is hard for a practical MT system to have a wide coverage in applications yet 
retaining high quality translation. To produce the best possible output, most MT systems, therefore, 
would operate in a sublanguage and domain specific manner. (Even for a restricted domain, it is not 
easy to acquire the required fine-grained knowledge for producing fluent translation in the target 
language.) However, to operate an MT system economically, the amount of translation must be large 
enough, which means that an MT system must be able to operate in several domains at the same 
time. Therefore, a wide coverage is still a critical issue for a practical MT system. For these reasons, 
adapting an MT system to the various domains and producing publishable translation under such 
domains is thus probably the most promising strategy for operating a practical system. 

To construct such a system, it is important to consider the following issues: (1) what 
knowledge to use to produce fluent translation for a restricted domain, (2) how to acquire such 
knowledge, (3) how to adapt the output style to a particular customer, and (4) how to incorporate 
post-editor feedback on-line to avoid repeated errors and complaints from the post-editors. 

Traditional MT systems rely heavily on a large number of rules to practice the language 
processing needs. For instance, the major knowledge sources for a transfer-based MT system would 
include  lexicon  information,  analysis  grammar,  transfer  rules,  generation  grammar  and the rules for 
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disambiguation and semantic interpretation. Many such works are completed with huge human 
efforts. Therefore, the cost required to develop such a system with fine-grained knowledge is usually 
high in comparison to other software systems. It is therefore not feasible to construct different sets 
of rules for different applications due to the high cost. And it is not easy to keep them consistent 
across the various releases (or generations) of the system. Consequently, most rule-based MT's 
either operate in general domains but generate relatively poor output, or generate high quality 
translation in only one or two very restricted domains (e.g., the METEO system [Hutchins 86]). 
Such MT systems are, therefore, hard to get enough pay-back to support further research. To relieve 
the burden in knowledge acquisition above-mentioned, symbolic learning methods had also been 
tried to organize the linguistic knowledge. However, such approaches are usually awkward in 
handling uncertain knowledge and do not gain much success so far. 

In contrast to the conventional systems, a parameterized system architecture maybe a more 
practical solution. A parameterized system is characterized by a quantitative optimization criterion 
and a training mechanism for acquiring the language parameters (such as a set of probabilities or 
scores) from real text corpora. The training mechanism is simply an estimation process to get the 
parameter sets from a corpus according to some objective optimization criteria. Alternatively, the 
parameter sets could also be adjusted to reflect user preference under other optimization criteria; 
such a system could be characterized as a feedback-controlled parameterized MT system [Su 92b]. 
In contrast to other systems whose knowledge is either transformed from existing linguistics theory 
or acquired from symbolic learning methods, a parameterized system as characterized here could 
have the following potential advantages. 

First of all, parameter learning is usually easier and more objectively optimized than symbolic 
learning approaches, in which the underlying rules may not handle uncertainty or preference 
objectively. A parameter learning process usually involves only mathematical computation instead 
of complicated induction mechanisms. Therefore, the driving mechanism is simple and each 
learning step could be quantitatively controlled. Furthermore, the search path toward the best 
parameter set could be found easily by observing the dependency of the optimization criterion as a 
function of the parameters in the parameter space, and adjusting the parameters in the direction that 
is most likely to increase the value of the optimization function [Amari 67]. 

Secondly, the parameter sets could be easily adjusted for the various styles in different domains 
in a systematic way. The knowledge acquisition cost, in terms of man-years, is usually smaller. A 
parameterized system thus provides the potential benefits of using alternative sets of parameters for 
different applications, and leaves the driving mechanism, functional modules (or the knowledge 
base) the same. Therefore, a parameterized system is preferred in terms of knowledge acquisition 
cost and adaptability to different requirements. 

A parameterized system could usually be constructed by first properly normalizing the 
intermediate representations of the various modules and then extracting useful features from such 
normalized constructs. The architecture in Figure 1 shows such a parameterized system, where PT 
represents the parse tree, NF1 represents the first-level normal form (referred to as the 'normalized 
syntax tree'), NF2 represents the second-level normal form (or ‘semantic tree’) of a source (S) or 
target (T) sentence; the subscripts ‘s’ and ‘t’ stand for the source and target sentences respectively. 
P(X|Y) represents the conditional probability for X to  appear  given  that  Y  is  observed.  Such 
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parameters (conditional probabilities) are used to assign preference scores for disambiguation. (See 
the next section for more details.) 

We further assume that the parse trees are produced based on a phrase structure grammar G, the 
NF1 constructs are produced based on a set of normalization rules, NR1, and the NF2's are produced 
according to a second set of normalization rules, NR2. In addition, the reverse operations are 
directed by sets of generation rules of the various levels (GR2, GR1, and GR0), which specify the 
sets of possible NF1t, PTt and T’s that could be enumerated in the reverse direction of the analysis 
processes. In this flow, a “normal form” refers to a properly normalized intermediate representation. 
(Whenever appropriate, the term “normal form” will also include the parse trees in the following 
discussion.) 

Note that, in such a system, the phrase structure grammars, the normalization rules and the 
generation rules only produce possible parses or normalized constructs without involving in the 
disambiguation tasks; the system parameters (i.e., the conditional probabilities), on the other hand, 
play the major roles for disambiguation or selection of preferred constructs based on quantitative 
preference scores. 

 

Figure 1 Translation Flow for a Parameterized MT System 

3. Two-Way Design vs. One-Way Design 

As mentioned above, the target of an MT system is to produce fluent output that is natural to the 
native speakers of the target language. Under traditional transfer-based MT architecture, however, 
most output translations are strongly influenced by the sentence patterns of the source language and 
many literal translations are produced across the transfer phase [Somers 93, Su 93]. Such 
source-dependency is easily introduced to a transfer-based MT system in the stratified analysis, 
transfer and generation phases as described below. 

First, in the transfer phase, the transferred lexicon or structure for the target language is usually 
a locally modified version of the corresponding source lexicon and structure, because many 
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designers tend to use minimal numbers of local adjustments to get reasonable translations. As a 
result, the mapping may retain a large portion of the source information, such as the sentence pattern. 
The mapping, therefore, may minimize the required transfer operations, but may not optimize the 
translation quality; the output is usually only readable and is too literal for a native speaker. And, the 
target sentence generated may not fall within the range of the sentences produced by a native 
post-editor. 

Secondly, the designers usually design the transfer rules explicitly or implicitly based on the 
source training corpora. The transfer rules derived thus can produce readable translations for the 
training corpora. Such transfer rules, however, may not be fired correctly for the unseen sentences 
and thus produce illegal sentences. 

Finally, even though the target sentence generated is OK when judged sentence by sentence by 
the native speaker, it may not be in a preferred style under the discourse context, because most 
sentences are generated on a sentence-by-sentence basis and the generation grammar may not take 
the target text around the current sentence into consideration. 

Consequently, a traditional transfer-based MT system, in the transfer phase, may prefer a target 
construct that is biased by the source sentence pattern. In the generation phase, such style is 
inherited; a literal translation that is strongly influenced by the source sentence patterns is thus 
produced. In addition to source dependent, it is also hard to make the system reversible. Therefore, 
many target language information and modules may not be reused when it becomes the source 
language and vice versa. 

A system designed in this way will be characterized as a one-way design system. By one-way, 
we mean that almost all the translation knowledge is derived, explicitly or implicitly, based on the 
training corpus of the source language. A system that is characterized as a one-way system will not 
be able to learn proper transfer knowledge that governs the translation of the source sentences and 
the most preferred target sentences. The underlying transfer knowledge acquired in this way thus 
may not be able to generate the most preferred target sentences. 

Many transfer-based system may fall within this category due to the inherent operation of the 
stepwise analysis, transfer and generation flow. Of course, a transfer-based system could be made 
a two-way system by changing the knowledge acquisition procedure with a bilingual corpus. The 
famous statistical MT framework in [Brown 90] could be regarded as a two-way system with the 
above characterization since the translation knowledge is trained from a bilingual corpus. However, 
because it trains the translation knowledge in the surface string level, and does not use any 
normalized construct at a higher syntactic or semantic level, it has some disadvantages in 
implementing a large scale system [Su 92a, Chang 93]. Notably, the parameter space for such a 
system will be extremely large, where some of the parameters may be used simply to learn some of 
the known syntactic or semantic constructs. Furthermore, it lacks the capability in dealing with long 
distance dependency beyond a small window size. 

To change the system architecture from one-way design toward two-way design, the transfer 
knowledge should thus be trained from both properly normalized source and target knowledge 
representations, which should both fall within the range of the sentences that will be produced by the 
native post-editors,  according  to  the  discourse  context  of  the source language and target language 
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respectively. The following flow shows the general idea for training a two-way system. The bold 
arrows at the right hand side emphasize that the intermediate representations for the target language 
are directly derived from the target sentences in an aligned bilingual corpus. 

 
Figure 2 Two-Way Training Flow for a Parameterized MT System 

Note that, the translation flow still follows the analysis, transfer and generation steps, but the 
training procedure for knowledge acquisition is different from the one-way design system. The 
arrow symbols indicate that the PT’s, NF1’s and NF2’s for both the source and target sentences are 
derived from the source and target sentences respectively, based on their own phrase structure 
grammars and normalization rules. Therefore, all such intermediate representations are guaranteed 
to fall within the range of the sentences that will be produced by the native speakers of the source and 
target languages; the transfer phase only select those preferred candidates among such constructs. 
In addition, the transfer parameters are estimated based on such intermediate representations and the 
transfer knowledge is derived from both the source and target sentences of an aligned bilingual 
corpus. More detailed information will be given in section 6. 

In particular, (1) the target normal forms are directly derived from the target grammar, not a 
deformed version from the source grammar, and (2) the mapping between the source and target 
normal forms are tuned to generate the sentences which reflect the preferred style of a particular 
user. 

4.   Architecture of a Parameterized MT System 

The various steps of normalization are required to reduce the number of parameters required to 
characterize the whole parameterized MT system. The following sections show an example of such 
normal forms in an undergoing project of the BehaviorTran bidirectional MT system [Su 90, Chen 
91, Chang 93, Hsu 94]. An architecture that implements the above parameterized bidirectional MT 
system could be characterized with the following modules. 
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4.1 Syntactic Parsing 

The first module is a syntactic parsing module, including morphological processing, which 
produces the parse tree (PT) of the input sentence according to the phrase structure grammar of the 
source language. This module provides the syntactic information for the input sentences. An 
example syntax tree is shown in the following figure. ( “To meet spectrum analyzer specifications, 
allow a 30 minutes warm-up before attempting to make any calibrated measurements.”) 

 

Figure 3 Example: a Syntax Tree for a Source Sentence 

Note that, a phrase structure grammar with a wide coverage may produce many nodes which 
simply represent the various bar levels of a special constituents (such as the V2, V1, N2, N1 
constructs) or  some  recursive  constructs  (such  as  the N* constructs). Such nodes could be 
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normalized without losing much information in a practical system. 

4.2 Syntactic Normalization 

Many parse trees that are syntactically identical could be normalized to a normalized syntax 
tree to reduce the size of the possible parameter space. Such syntactic variants may result from a 
writing convention, function words, or non-discriminative syntactic information. For instance, some 
punctuation marks, excessive nodes for identifying the various bar levels in the phrase structure 
grammar could be deleted or compacted without losing the syntactic relations among constituents. 
A normalized version of the above syntax tree is shown as follows. We shall call such a normalized 
syntax tree acquired in the first normalization stage as an NF1 tree. 

 
Figure 4 Example: an NF1 Tree (Normalized Syntax Tree) 

In the current example, the syntax tree is greatly compacted by retaining only the major syntax 
structure; a large number of nodes are compacted and re-labelled with representative node labels. 

4.3 Semantic Normalization 

In semantic analysis, it is desirable that different syntactic structures that are semantically 
identical could be mapped to the same semantic normal form to further reduce the size of the 
possible parameter space; discriminative features are then extracted from such normalized 
constructs for further processing. For instance, it is desirable to normalize the English tense, modal 
and type information as a feature vector attached to the sentence (or proposition), and normalize the 
various propositions to a hierarchical feature structure (such as a case frame) to encode the case 
information, like Agent, Action, Goal, Purpose, and so on. Two sentences with different voices 
(e.g., active voice vs. passive voice) may also be normalized to a standard form. A normalized 
semantic tree (referred to as an NF2 tree) of this kind is shown in the following figure. 
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Figure 5 Example: an NF2 Tree (Normalized Semantic Tree) 
The PROP (Proposition) frame, for instance, are filled with the Action (V_ACTN) being performed, 
the Agent (AGENT) who conducted the action, as well as the TIME, GOAL and PURPose for 
conducting the action. Note that the surface linear order of the nodes is no more retained in such a 
normal form. 

4.4 Target Semantic Tree Selection 

Given the normalized semantic tree (NF2 tree) of the source sentence, a proper semantic tree 
of the target sentence could be selected, among the set of target semantic trees that could be derived 
from the target grammar under the various discourse context; the selection could be made based on 
the input source intermediate construct NF2 with some preference score. Optionally, the discourse 
context and user feedback could be included to select the best mapping among all legal NF2’s of 
the target language. Again, emphasis is placed on the set of legal NF2’s that could be derived from 
the target grammar, instead of a deformed version of the source NF2, to eliminate source 
dependency. And the process is a ‘selection’ process rather than a ‘derivation’ or ‘transfer’ process 
from the source semantic tree. By selection, the target NF2 is only selected from legal target NF2’s; 
therefore, the generated target sentence will not be an illegal one. Furthermore, the selection process 
can also be based on the features derived from the source NF2 tree, rather than the NF2 tree itself as 
the ‘transfer’ operation usually does. 

 
Figure 6 A Preferred Target Semantic Tree Selected from Legal NF2 Trees. 

In the above example, the selected target NF2 does not differ much from the source NF2 due to the 
2 level normalizations. The major change here is the transfer of word senses in the two languages 
(where a sense is represented with a pair of angle brackets). 

4.5 Normalized Structure Generation 

Give a target NF2 that is derivable from the target grammar, the next step would be to choose 
an appropriate normalized syntax tree for generation. As in the above phase, we could include 
discourse context and user feedback in this phase to select the tense, mode, voice, type for the 
sentence, and the most appropriate lexicon for the content words. An NF1 tree of the target sentence 
generated in this way will contain the major skeletal structure for the target sentence. The following 
example shows such a skeletal syntax tree. 
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Figure 7 Normalized Syntax Tree for the Target Sentence 

Note again that, the generation step here is actually accomplished by a selection process from 
a set of legal normalized syntax trees which are derivable from the target grammar. The normalized 
syntax trees thus generated are still kept within the language defined by the target grammar in a 
normalized form. Therefore, the final translation output will not be deformed to produce unnatural 
translation. 

4.6 Surface Structure Generation 

After the normalized syntax tree is generated, the final syntactic structure could be produced by 
patching required constituents in a complete syntax tree. The following syntax tree shows one such 
example. (In this simple case, only two punctuation marks are patched here.) 

 

Figure 8 Target Syntax Tree 

4.7 Morphological Generation 
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4.8 Parameterization Examples Based on the Normalized Constructs 

Note that, the above-mentioned normal forms (including the syntax trees) may not be directly 
used as the atomic units for parameterization. Instead, only some features in the various constructs 
will be extracted for disambiguation or selection in the processing steps. In syntax tree 
disambiguation, for instance, it was proposed to decompose a syntax tree into sets of terminal and 
nonterminal symbols which characterize the snapshots of the various parsing steps, and use the 
transition probabilities between such sets for evaluating the syntactic scores for the various parses 
[Su 9la]. In resolving the attachment problem, it was proposed to use a 4-tuple consisting of the 
features for the main verb, the preposition, and the two noun phrases as the feature vector for 
disambiguation [Liu 90]. Such parameterization techniques will not be addressed in this paper. 
Interested readers are referred to some such research [Su 88, Liu 90, Su 9la, Chang 92, 93]. Since 
we are interested in the training of the translation and transfer knowledge, without loss of generality, 
we will regard the normal forms as our atomic units throughout this paper. 

5. Translation Model 

To make it more clear on how such a system removes the source dependency and provides 
adaptability to different language styles, the following models show the baseline formulations. 

5.1 Optimization Criterion of the Translation Model 

Given a source sentence Si, the Bayesian decision to get the best target sentence Ti would 
correspond to finding the target sentence that maximizes the conditional probability P(Ti|Si). To 
reduce the large number of possible parameters, it is usually essential to normalize syntactically or 
semantically identical constructs into a normalized form as shown in the above section; and in many 
cases, it is desirable to decompose such normalized forms into atomic units which only depend on 
local context [Chang 93]. If we take all the previous normal forms acquired in the translation 
process into account, the problem is to find the best target sentence Ti that maximizes the following 
conditional probability : 
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relative ratio between different counts. 

A practical problem is: such annotated corpora may not exist due to the high construction cost, 
or the amount of annotated corpora is limited, which may induce large estimation errors. Since an 
un-annotated bilingual corpus is much easier to set up than a fully annotated corpus, one promising 
solution to such a problem is to train the parameters only with a bare bilingual corpus, and consider 
such an optimization procedure as a two-end constraint optimization problem. By two-end 
constraint, we mean that we are given only a parallel corpus of the source sentence (Si) and the 

preferred target translation (Ti), including the preferred lexicon information, the functional forms 

of the syntax structures (defined by a phrase structure grammar) and the functional forms of the 
semantic trees. Here, we have only the two-end constraints on the given (S,T) pairs; the other 
intermediate representations are left unspecified. We want to find the best parameter set that 
maximizes the likelihood for the preferred target sentences to be generated by the source sentences. 

6.2 A Viterbi Training Approach 

In the case that the bilingual corpus is un-annotated, the parameters can be acquired by 
unsupervised learning methods, like the EM algorithm [Dempster 77]. The general steps of an EM 
algorithm are to enumerate all possible alternative analyses for each sentence pair, then estimate the 
expected number of occurrence of different constructs based on all the alternative analyses. The 
parameters that maximize the optimization function are specified by a function of those expected 
numbers of occurrences, and this set of parameters is regarded as the optimal parameter set in the 
current iteration; it is then used to evaluate the path scores for the next iteration. Such process is 
repeated until the parameters converge. Because of the large number of possible combinations of the 
intermediate forms, a Viterbi training approach [Rabiner 86] is preferred, instead of the EM 
approach, for the two-end parameter training problem: 

1. Initial Selection: For each (Si, Ti) pair, we derive all possible parse trees, NF1 trees 
and NF2 trees for Si and Ti, respectively. And randomly choose a path along the 
derivation process from the sentences toward the NF2 trees. The source and target 
NF2 trees randomly selected in this way are considered a transfer pair for the 
translation. 

2. Estimation: The parameters, estimated with the Maximum Likelihood Estimator 
(MLE) for the system, are estimated from the corresponding transfer pairs, parse 
trees and normal forms along the selected translation path. The parameters are 
uniquely determined once the translation paths are specified. 

3. Re-selection: Compute the translation scores for the various possible paths, which 
specify the combination of parse tree, NF1 and NF2, with the new parameters 
acquired in step 2. and select the path with the largest translation score. 

4. Re-estimation: go to step 2,  unless the parameters converge to a particular 
stopping criterion. 

Several variants could be adopted to make the above procedure better. For instance, the Initial 
Selection step could start with a small annotated bilingual corpus as the seed [Su 94b]. This 
annotated seed corpus is then mixed with the other untagged corpus for estimation. In addition, to 
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eliminate the large search space in the above process, some of the low-score combinations could be 
eliminated from consideration as the process proceeds; the number of truncated candidates could be 
a time increasing function as the parameters are estimated better and better. 

6.3 Feedback Controlled System with Adaptive Training 

Although the above estimation procedure maximizes the likelihood for the source sentences in 
the training corpus to generate the target sentences, it does not mean that they are most preferred by 
all users under all context. In fact, different customers may have their own preferred styles of 
translation; therefore, different users will measure the translation quality differently, based on their 
own preference. This means that we need a way to adapt the parameters to minimize a 
user-specified 'distance' measure between the translation output of the system with a user preferred 
translation. In other words, the user feedback should be included to the system to adjust the system 
parameters so that the user style could be respected in the translation output. The following figure 
shows such a system for incorporating user feedback. 

 

Figure 9 Feedback Controlled Parameterized MT Architecture 

The differences between the preferred output translation Ti* of a particular user for an input 
sentence Si and  its  corresponding  outputs Tij produced by the MT system is taken into consideration. 
The difference or error (ε) between the two translations is then used to define a distance measure 
between them; a cost associated with such a distance can be defined, and an amount of adjustment 
to the parameters involved in the score evaluation could be computed; the various parameters related 
to the score evaluation are then adjusted accordingly. Such a process will repeat until the preferred 
translations have the highest score so that the distances of the preferred translation and the best 
translation produced by the MT system could be minimized. (The time indices t and t-1 reflect such 
an iterative nature of the training procedure). Alternatively, the parameters could be further adjusted 
until the scores of the preferred translations exceed their competitors by a prescribed margin to 
enhance the robustness of the system [Su 91b, 94a]. 

Such an adaptive learning method, generally characterized as a probabilistic descent method 
[Amari 67, Juang 92, Su 91b, 94a], had been applied to some natural language processing 
applications [Chiang 92, 94a, 94b, 95, Lin 92, Su 91b, 94a]. It is observed to have increased the 
discrimination power and robustness of the system. In the current proposal, it is adopted to 
incorporate the individual user style into the parameter sets trained from the previous Viterbi 
training procedure. 

The  distance  measure  and  the  cost  function  could  be defined differently, according to user 
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preference. For instance, one can use the differences of the translation scores, as defined in section 
5, between the preferred output translation and the translations produced by the MT system as the 
distance measure, and define the cost to be nearly one when the distance is large and a cost to be 
nearly zero when the distance is small [Amari 67]. In this way, we could minimize the global 
sentence error rate of the system as measured by a particular user or customer. Alternatively, one 
could also use other distance measures, for instance, the number of editing operations required to 
correct the translation output to the preferred style. With such a distance measure, the number of 
editing strokes could be minimized [Su 92b]. Therefore, such a distance measure is particularly 
useful for handling user feedback from on-line post-editors. 

In real applications, there are two major types of users, whose feedback need to be handled 
differently. The first kind of users are the customers who use an MT system for translating a large 
volumes of text material and whose complaints about the translation output are feedback in batch. 
The other kind of users are those post-editors, whose complaints need to be resolved on-line. We 
therefore have two different modes to include user feedback into the system. In the first case, the 
user feedback should be gathered in batch and the parameters are adjusted with all the problematic 
translations jointly considered. Such a batch mode operation is called training by epoch [Schalkoff 
92], In the latter case, the parameters are changed as each new user feedback or complaint is given. 
Such an on-line mode of operation is referred to as training by sample [Schalkoff 92]. 

With the above training methods, it is possible to resolve the two-end constraint optimization 
problem to estimate the underlying parameter sets without much human efforts in constructing the 
annotated corpora. Besides, a feedback controlled parameterized MT system, as proposed here, is 
feasible for producing translation output that will not be strongly influenced by the source language; 
particular user-specific requirements could also be properly included without changing the system 
modules for such adaptation. 

7. Concluding Remarks 

In this paper, we propose a feedback controlled parameterized MT system that respects the 
native styles of the target language as well as user specified styles. A new architecture is proposed 
for implementing such a system. The training method for estimating the parameters of the system, 
based on a two-way design philosophy, is also exploited to acquire the underlying translation and 
transfer knowledge from a bilingual corpus. With such a paradigm, many traditional transfer-based 
MT modules could be parameterized to gain more flexibility and better performance. With the 
superiority in knowledge acquisition, adaptability, optimality and bidirectionality, this new 
architecture is expected to play an important role in designing the MT systems of the next 
generation. Currently, we are making the BehaviorTran MT system [Su 90, Chen 91, Chang 93], 
which was used for translation services for international computer companies, evolve toward such 
a new architecture. 
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