
PARSING IN DIALOGUE SYSTEMS USING

TYPED FEATURE STRUCTURES

Rieks op den Akker, Hugo ter Doest , Mark Moll and Anton Nijholt Dept. of Computer Science, University of Twente P.O. Box 217, 7500 AE Enschede e-mail: {infrieks , terdoest ,moll , anijholt}�cs . utwente . nl
1 Abstract

The analysis of natural language in the context
of keyboard-driven dialogue systems is the cen­
tral issue addressed in this paper. A module that
corrects typing errors, performs domain-specific
morphological analysis is developed. A parser for
typed unification grammars is designed and im­
plemented in C++; for description of the lexicon
and the grammer a specialised specification lan­
guage is developed. It is argued that typed unifica­
tion grammars and especially the newly developed
specification language are convenient formalisms
for describing natural language use in dialogue sys­
tems. Research on these issues is carried out in the
context of the ScHISMA project, a research project
in linguistic engineering; participants in SCHISMA
are KPN Research and the University of Twente.

2 · The Preprocessor MAF As we postponed the development of a spo­ken interface to the SCHISMA system, we con­centrate here on the analysis of keyboard in­put. Thus the input of the MAF module is the. character string typed in by the client. The MAF module is best seen as the preprocessor of
I

Ct.11!!•"1' KEYBOARD �'l'L'T

Figure 1 : Global architecture of SCHISMA

the ScHISMA system. It handles typing errors and detects certain types of phrases (proper names that occur in the database, date and time phrases, number names, etc.) . The latter task of MAF is especially important, since it extracts information crucial for the continua­tion of the dialogue from the input string. Output of the MAF module is a word graph. We define a word graph here as a directed graph having as its nodes the positions in the input string identified as (possible) word boundaries. Nodes are numbered starting with 0 for the leftmost boundary; that is the po­sition left to the first input character. A pair (index1 , index2) is an edge of the graph if index1 and index2 are word boundaries, index1 < index2 and the words enclosed be­tween index1 and index2 are identified as one text unit; that is one or more words are identi­fied by MAF as a lexical item to be provided to the parser as a whole. In addition, the MAF module labels the edges of the graph with a value m that indicates the quality of the recog­nition (and maybe correction) performed. On the implementation level this means that the MAF module has as output a col­lection of items (rd, m) where rd is a 3-tuple
(f struct, index1 , index2) , f struct a typed fea­ture structure, index1 and index2 indices on the word level as explained above, and m is a value indicating the plausibility of rd as a representation of (part of) the input string. The architecture of the MAF module is quite simple: an error correcting module accepts the input string, processes it, sends its output to some tagging modules and these send their output to the module for morphological anal­ysis and lexicon lookup. The error correcting module ERROR out­puts a word graph that is provided to the tag­ging modules PROPER, NUMBER, DATE and

10

TIME that scan the graph for phrases that have special meaning in the SCHISMA domain. In addition, the word graph is provided to the MORPH/LEX module. For performing the er­ror correction ERROR has access to a large dic­tionary (typically 200,000 words) . The tag­ging modules look for phrases in the input string that carry particularly important in­formation for the dialogue; especially the de­tection of proper names referring to database items, phrases indicating date and time infor­mation and number names is aimed at here· ' for detecting proper names referring to the database the PROPER module needs access to the ScHISMA database. The output of the tag­gers then is provided to the MORPH/LEX mod­ule; MORPH/LEX creates items for the parser out of the tag information provided by the tag­gers and it searches the word graph for words that appear in the domain-specific lexicon and for which domain-dependent semantic infor­mation is recorded in it. For details on the tagging modules and the phrases they recognise we refer to (Op den Akker et al. 1995) . Also the ERROR and MORPH/LEX module are treated in depth there.
3 The Specification Language To specify a language it is necessary to have a metalanguage. Almost always the usage of a specification language is limited to only one grammar formalism. This is not necessarily a drawback, as such a specification language can be better tailored towards the peculiarities of the formalism. For example, Carpenter's ALE is a very powerful (type) specification language for the domain of unification-based grammar formalisms. But apart from expres­siveness of the specification language, the ease with which the intended information about a language can be encoded is also important. An example of a language that combines expres­siveness with ease of use is Alshawi's Core Lan­guage Engine. Unfortunately the Core Lan­guage Engine (CLE) does not support typ­ing. Within our project a type specification language has been developed that can be po­sitioned somewhere between ALE and CLE. This specification language (called T:FS) can be used to specify a type lattice, a lexicon and a unification grammar for a head-corner parser. The notation is loosely based on CLE,

though far less extensive. For instance the ' usage of lambda calculus is not supported. The following example shows how a type lat­tice can be specified.
TYPE(performance ; entity ; <conatr> ; <QLF>)
TYPE(play ; performance ; <conatr> ; <QLF>)
TYPE(concert ;performance ; <conatr> ; <QLF>)
TYPE(muaical ;play , concert ; <constr> ; <QLF>)
TYPE(ballet ; concert : <constr> ; <QLF>) A type specification consists of four parts: a type id for the type to be specified, a list of supertypes, a list of constraints and a formula expressing the semantics for the new type. For each type <constr> should be replaced with PATR-n-like path equations and <QLF> should be replaced with the semantics in a quasi­logical form. The idea is that the constraints are only necessary during parsing and the se­mantics are passed on to be used after parsing. The next example shows how typing can make some grammar rules superfluous.
TYPE(perfphrase ; nounphrase ; ;)
RULE(nounphraae --> •perfphrase• ;

<nounphraae kind> = <perfphraae kind> ,
<nounphraae sem> = <perfphraae sem>) The asterisks mark the head in the grammar rule. Both the type and rule specify that a performance phrase is a kind of noun phrase. By path equations QLF expressions can be passed on to other constituents. In the follow­ing example a possible quasi-logical form for a phrase is given:

the opera performance on the 4th of January
EXISTS I (opera(I) J1ID date (I ,4-1-96)) The opera predicate comes from the QLF part of the opera type and the date predicate is generated by parsing the time phrase. Another grammar rule combines these predicates and binds the variable x. It also possible to bind unbound variables

to a certain value. This can be done in the specification of a subtype, a word as well as a grammar rule.
References Op den Akker, R. , Ter Doest, H., Moll, M., and Nijholt, A. (1995). Parsing in dia­logue systems using typed feature struc­tures. Memoranda Informatica 95-25, De­partment of Computer Science, Univer­sity of Twente.

1 1

