
. An HPSG-based Parser
for

A\ltomatic
Knowledge ·Acquisition

Kentaro Torisawat Jun'ichi Tsujiit UDepartment of Information Science University of Tokyo Hongo 7-3-1 , Bunkyo-ku Tokyo, 113 , Japan {torisava , tsuj ii}Gis . s . u-tokyo . ac . jp
tCCL, UMIST PO BOX 88, Manchester M60 lQD U.K.

tsuj iilccl . umist . ac . uk

1 Introduction
Our aim is to build an HPSG [Pollard, 1993) based parser thc\t can be used as a compo­nen t of a knowledge acquisition(KA) system from unrestricted text[Horiguchi, 1995) . KA proceeds by using underspecified lexical en­try templates given to each part of speech for words. By filling out the underspecified parts of .them through unification, knowledge is ac­quired. Our contention is that we cannot give an ex­haustive set of specific CFG skeletons to �he parser prior KA, in order to obtain a wide cov­erage required for handling corpora. In our parser, rules with CFG skeletons, which are widely used in HPSG implementations such as [Carpenter, 1994] , are replaced with a few rule schemata and principles, whose examples are shown in Fig '. 1 and 2. They do not specify particular syntactic categories and can cover most of the linguistic constructions in corpora by relying on lexicalization and augmentation with definite clause programs. However, this replacement prevents us from using optimiza­tion techniques for conventional unification­based parsers. Our parser adopts a two-phased architec­ture. Phase 1 is a bottom-up parsing with compiled object-oriented code realizing only part of constraints in a full grammar. A full grammar is applied to completed parse trees in Phase 2. Applicaton of rule schemata and their prin­ciples is monotone because of monotonicity of unification. (i.e. for any feature struc­tures Fo ,F1 , F�, F{ , if Fo b Fi , F� b · F{ FoUF1 b FJuFf .) . If a sign S subsumes a sign S' and the application of principles or rule schemata -to S' succeeds, the application tb
S also succeeds and the results reserves their daughters' subsumption relation. Our basic

Rewritin,g Rule:
M<;>th�r(Ll]) - Non-Head((2]) Head([3])
Pnncipfes:

(head-feature ,au bcat-righ t ,semantic)
Mother. FS:

[l]

sign

syn adjunct l [4] [
subcat-right .L

]
subcat-left (7] f �gn

] h ad-dt [3] [
su1?cat-

.

righ(
i
aign], • • •1 e r syn adJunctl 4)

aubcat-left 7] �gn
] comp-dtr [2] [

suJ;>cat-righ() .
] syn adJunctl non-sign

subcat-left .L

Figure 1 : An example of a rule schema.
Name: AdJuncta

M[

o

:!:,� r =-�-;•adj:t]o [2] i]]
adjunct-dtr �3] [sign]

Definite Clause Program:
cancel-a-member([2] , [3] , [1]) . Figure 2: Adjuncts Principle

idea is that we can systematically weaken lex­ical entries and other grammar components by eliminating certain constraints in them so that they are compiled to simple objects and cheaper procedures without losing the ability of a full grammar. Although the compiled grammar overgenerates, illegitimate signs are removed in Phase 2 .
2 Compilation

Our compiler produces two items, Sign Objects, which are objects corresponding to signs, and Rule Methods, which play roles of rule schemata and principles. Both items are directly executed in Common Lisp Object System. Rule methods take sign objects rep­
resenting daughter signs as input and produce sign oh jects corresponding to mothers. Sign objects have slots corresponding to only part of feature structures. This reduction is justi­fied by monotonicity of unification. Each slot of a sign object contains a frag­ment of the feature structure or other Lisp objects converted from the feature structure, such as symbols representing types. Fig. 3
[
SLOT-NAME SLOT-VALUE)
SUBCAT-RIGHT ((E-LIST NIL #(FT Q #x92la82))))
SUBCAT-LEFT ((NIL NON-OBLIGATORY­
IGN #(FT Q #x92la9a))))

(ADJUNCTS2 (SIGN
#(FT O #x92170a)

. ((ADJUNCTl NON-SIGN :SINGLETON))
(SELECTING-FEATURE-SHARING

SUBCAT-LEFT
SUBCAT-LEFT)))

Figure 3: A compiled lexical entry

250

sign

syn [

bead . {
maj Aux] subcat-left (lll

adjunctl - - 2] sign

. head 3 !Jla · Y . . adJunct2 [syn [[] [m� mflmt1ve
]

]
subcat-left {[lll
adjunctl {4Jnon-aign

Figure 4: An original lexical entry
shows the sign object compiled from the lex­
ical entry in Fig. 4. In this sign object, the
ADJUICTS2 slot contains the type sign and a
head-feature •<FT I #x92170a) , which rep­
resents the feature structure denoted by the
tag [3] in Fig. 4. The third element repre­
sents the constraint that the ADJUJJCTS2 value
of a selected sign must be non-sign. This also
corresponds to the feature structure tagged as
[4] in Fig. 4. The fourth element is a com­
mand to transfer the subcat-left value of a
selected sign to the mother's same slot. This
transfer is represented by the structure shar­
ing [1] in the original lexical entry.

A rule method contains only part of the
constraints realized in principles and rule
schemata. This reduction of constraints cor­
responds to the elimination of feature struc­
tures, structure sharings and part of a defi­
nite clause program in a rule method or its
principles. The soundness of this reduction
can be proven by monotonicity of unifica­
tion. Furthermore, some unification evoked
by structure sharing is replaced by simple as­
signements of slot values. For example, most
feature raising is performed by assignments.
This replacement does not affect the sound'­
ness of our compilation because any two fea­
ture structures always subsume their unified
one. If a sign object is created by the code
containing assignement instead of unification,
it subsumes the sign object created as the re­
sult of unification a unification. Thus, a sign
object with rule methods always subsume the
sign to be created by the original grammar.

Rule schemata with their principles are cat­
egorized as 1) rule schemata to use selecting
features, such as SUBCAT, which are feature
structures to be unified with another sign.
and 2) rule schemata to transfer selecting fea­
tures such as a rule schema augmented with a
trace principle. The first category is divided
further into three according to the type of the
selecting features (singleton, list or set)in a
rule schema.

The compiler generates rule methods by fill­
ing out a template which is prepared for each
type of rule schemata with references to a rule
schema and its principles. The differences
among code templates reflect the differences
of the definite clause programs to be evoked

in application of each type of rule schemata.
For example, Cancel-a-member in Fig. 2 is
the program for using selecting features of set
type. The behaviour of such important parts
of the definite clause programs are reflected
directly in the templates. The following is the
template for a rule schema for the list type
selecting features.
(laabcla (selector selectee)

(if (and (selecting-feature-unifiable!
(<selecting-feature>

selector)
Hlectee)

<other-UJ1ifiabilit7-checking>)
(let ((-,ther-sign (create-sign)))

<feature-raising>
<e•aluate-atructure-llhariDg-cC1111U1Dds>
aother-aip)

nil))
The rule method takes daughter sign ob-

jects, which are bound to the variables
selector and selectee in the argument list ,
and produces their mother sign object bound
to the variable mother-sign.

3 Conclusion

For the rule schemata presented in Fig. 1 ,
the compiled code is about 43 times as fast as
the application of the rule schemata and its
principles. For a 25 word sentence, bottom­
up parsing with the compiled code followed
by the applications of the original grammar to
the completed parse trees was 3.1 times as fast
as the parsing with only the original grammar.
The required storage was 370% less than that
of the original.

Linguistically well-defined grammar for­
malisms such as HPSG have been regarded
as inappropriate for dealing with unrestricted
real-world text. In order to build feasible sys­
tems, researchers have relied on more proce­
dural grammar whose well-defined-ness is dif­
ficult to show. However, by using our compi­
lation technique, we will be able to develop a
robust and efficient HPSG-based parser which
can be a component of a practical system.

References

[Carpenter, 1994] Carpenter, B. and Penn,
G. (1994) . The Attibute Logic Engine
User's Guide. Carnegie Mellon University.

[Horiguchi, 1995] Horiguchi, K. , Torisawa,
K. , and Tsujii, J . (1995) . Automatic ac­
quisition of content words using an HPSG­
based parser. to be submitted.

[Pollard, 1993] Pollard, C. and Sag, I. A.
(1993) . Head-Driven Phrase Structure
Grammar. CSLI Publications.

251

