
A Corpus-based Probabilistic Granunar with Only Two

Non-tenninals

Satoshi SEKINE Ralph GRISHMAN
Computer Science Department

New York University

715 Broadway, 7th floor

New York, NY 10003, USA

sekine,grishman@cs. nyu.edu

Abstract

The availabil i ty of large, syntactically-bracketed corpora such as the Penn Tree Bank
affords us the opportunity to automatically build or train broad-coverage grammars, and in
particular t.o train probabilistic grammars. A number of recent parsing experiments have
also indicated that. grammars whose production probabilities are dependent on the ,context
can be more effective than context-free grammars in selecting a correct parse.

To make maximal use of context, we have automatically constructed, from the Penn
Tree Bank version 2, a grammar in which the symbols S and NP are the only real non­
terminals, and the other non-terminals or grammatical nodes are in effect embedded into
the right-hand-sides of the S and NP rules. For example, one of the rnles extraded from the
tree bank would be S -> NP VBX JJ CC VBX NP [1] (where NP is a non-terminal and the
other symbols are terminals - part-of-speech tags of the Tr-ee Bank) . Tbe most common
structure in t.he Tree Bank a5sociat.ed with this expansion is (S ·NP (VP (VP VB.I (ADJ J J)
C C (VP VBX NP)))) [2] . So i f our parser uses rule [l] j n parsing a sentence, i t. will generate
structure [2] for the corresponding part of the sentence.

l. sing 94% of the Penn Tree Bank for training, we extracted 32,296 distinct rules (2:3 ,386
for S, and � .910 for NP) . We also built a smaller version of the grammar based ,on higher
frequency patterns for use a5 a back-up when the larger grammar is unable to produce
a parse due to memory limitation . We applied this parser to 1 ,989 Wall St1·eet Journal
sentences (separate from the training set and with no lirrnt on sentence length) . Of the
parsed sentences (1 ,899) , the percentage of no-crossing sentences is 33:9%, and Parseval
recall and precision are 73.43% and 72 .61 %.

1 Introduction

The availabili ty of large , syntactical ly-bracketed corpora such a5 the Univers ity of Pennsylvania
Tree Bank affords us the opportuni ty to automatically bui ld or train broad-coverage grammars .
Although it is inevitable that a structured corpus wi l l contains errors , statistical methods and
the size of the corpus may be able to ameliorate the effect of i ndividual errors . Aiso , because a
large corpus wi l l i nclude examples of many rare constructs, we have the potenitial of obtain ing
broader coverage than we might with a hand-constructed grammar . Furthermore , exper iments
over the past few years have shown the benefits of usi ng probabi l istic i nformation in pars ing ,
and the large corpus allows us to t rain the probabi l i ties of a grammar (8) {7] [l l] :(2) [4] ,(1 2] .

A number of recent parsing experiments have also indicated that grammars whose production
prob,:i b i l i ties are dependent on the context can be more effective than context-free grammars in
selecting a correct parse . This context sensit ivity can be acqu i red ea5i ly using a large corpus,
whereas human abi l i ty to compute such information is obviously l imited.. There have been

216

several attempts to build context-dependent grammars based on large corpora. (1 4] (1 1] (1 3] (2]
(4] (1 2] .

As i s evident from the two lists of citations , there has been considerable research involving
both probabilistic grammar based on syntactically-bracketed corpora and context-sensitivity.
For example, Black proposed 'History based parsing ' , a context-dependent grammar trained
using a large corpus (2] . History-based parsing uses decision-tree methods to identify the most
useful information in the prior context for selecting the next production to try. This approach ,
however, requires a hand-constructed grammar as a starting point .

Bod (4) has described how to parse directly from a tree bank . A new parse tree can be
assembled from arbitrary subtrees drawn from the tree bank ; the parser searches for the com­
bination with highest probability. This can , in principle, take advantage of arbitrary context
information . However , the search space is extremely large, so a full search is not practical , even
for a small tree bank (Bod proposes using Monte Carlo methods instead) . Results have been
reported only for a small tree bank of 7.50 ATIS sentences .

In this paper we will present a parsing method which involves both probabilistic techniques
based on a syntactically-bracketed corpus and context sensitivity. We will describe a very simple
approach which allows us to create an efficient parser and to make use of a very large tree bank .

2 An "Ultimate Parser" and a Compromise

An "Ultimate parser" : parsing by look-up

Because of the existence of large syntactically-bracketed corpora and the ad vantage of context­
sensitive parsing , we can contemplate an ultimate parsing strategy - parsing by table look-up .
This approach is based on the assumption that the corpus covers most of the possible sentence
structures in a domain . In other words , most of the time, you can find the structure of any given
sentence in the corpus. If this assumption were correct , we could parse a sentence just by look­
up. The system first assigns parts-of-speech to an input sentence using a tagger , and then just
searches for the same sequence of parts-of-speech in the corpus . The structure of the matched
sequence is the output of the system . Now we will see if the assumption is correct . We investi­
gated the Penn Tree Bank corpus version 2, which is one of the largest syntactically-bracketed
corpora, but it turned out that this strategy does not look practical . Out of 4 ,72 1 9 sentences
in the corpus 1 , only 2 ,2:32 sentences (4 .7%) have exactly the same structure as another sentence
in the corpus . This suggests that , if we apply the above strategy, we would find a match , and
hence be able to produce a parse for only 4 .7% of the sentences in a new text .

C0111pr0111ise

We therefore have to make a compromise. Instead of seeking a complete match for the part­
of-speech sequence of an entire sentence, we introduce partial sequence matchings based on the
two important non-terminals in the Penn Tree Bank , S (sentence) and NP (noun phrase) . We
try to find a nested . set of S and NP fragments in the given sentence so that the whole sentence is
derived from a single S and then apply the look-up strategy for each fragment . In other words , at
first the system collects , for each instance of S and NP in the training corpus , its expansion into
S 's , NP 's , and lexical categories; this is , in effect , a production in a grammar with non-terminals
S and NP . It also records the ful l constituent structure for each instance . In analyzing a new
sentence, it tries to find the best segmentation of the input into S 's and NP 's ; it then outputs the
combination of thr structures of the chosen segments. To assure that this strategy is applicable,
we collected statistics from the Penn Tree Bank (Table 1) . From the table , we can see that there
are a considerable number of multiple occurrences of structures , and that a very small number
of structures covers a large number of instances in the corpus . The most frequent structures
for S and NP are shown just below . The numbers on the left indicate their frequency. Most of

1 We used 96% of the corpus which wi l l be used for the grammar training. We also processed minor modifi­
cations 1 -:3 , wh ich wi l l be described later.

217

Category II s NP
Total i nstances 88,92 1 ;35 1 , 1 1 :3

Distinct structures 24,465 9 , 7 1 1
Number of structures which

cover 50% of i nstances 1 1 4 7
percentage of i nstances covered by
structures of 2 or more occurrences 77 .2% 98. 1 %

percentage of i nstances
covered by top I O structures 27 .5% 57 .9%

Table 1 : Stati stics of S and NP structures

the symbols are from Penn Tree Bank2 ; symbols which we have introduced (for example , NNX
or VBX) are explained later.

6483 (S NP (VP VBX NP))
493 1 (S -NONE-)
4 188 (S NP (VP VBX (SBAR S)))
1724 (S NP (VP VBG NP)
1549 (S S , CC S)

36470 (NP D T NNX)
34408 (NP NP (PP IN NP)
32641 (NP NNPX)
27432 (NP NNX)
1773 1 (NP PRP)

Alt.hough we see that many structures are covered by the data in the corpus, there could
be ambiguities where two or more structures can be created from an identical part-of-speech
sequence . For example , the prepositional attachment problem leads to such ambiguities . The
survey on Penn Tree Bank shows us the percentage of the sequences which could be der ived
from S and NP \Vith different structures are 7% and 1 2% , respectively. The maximum number
of different structures for the same part-of-speech sequence are 7 for S and 1 2 for NP . However,
by taking the most frequent structure for each ambiguous sequence , we can keep such mistakes
to a minimum . We find that the errors caused by this are 8% and :3% for S and NP , respectively.
vVe believe these errors can be reduced by introducing lexical or semantic i nformation in the
parsing. This will be d iscussed later.

Frorn these statistics , we can conclude that many stru ctures of S and NP can be covered by
the data in the Penn Tree Bank . This result supports the idea of the parsing with two non­
terrn inals, S and NP which segment the input , and the stru cture ins ide the segment is basically
decided by table look-up . However , because we introduce non-terminals and hence introduce
ambiguities of segment boundary, the overall process becomes more l ike parsi ng rather than j ust
table look-up.

3 Grammar

(;u ided hy the considerations in the last section , we try to bui ld a grammar automatically frorn
the Penn Tree Bank . The grammar has symbols S and NP as the only non-terminals , and the
other non-terminals or grammatical nodes in the Tree Bank are in effect embedded into the
right-hand-sides of the S and NP ru les. For example, the following is one of the extracted ru les .

S -> NP VBX JJ CC VBX NP
: structure " (S < 1> (VP (VP <2> (ADJ <3>)) <4> (VP <5> <6>))) 1 1

;

(where S and NP are non-terminals and the other symbols in the ru les are terminals - part-of­
speech tags of the Penn Tree Bank) . By this rule , S is replaced by the sequence NP VBX JJ CC

2 Some category symbols defined in the Penn Tree Ban k : VBP: non-3rd singu lar present-tense verb, VBZ: :3rd­
person singu lar present-tense verb, VBD: past-tense verb, VBG: present-particle verb, HIP: singular proper nou n ,
RIPS : p lural proper n o u n , HB: singu lar or mass noun , IRS : plural nou n , CD: cardi nal number, FW: foreign word ,
SYM: symbo l , CC: coord inating conj unction, II : preposition and subordinate conj unction.

218

VBX NP , and in addition the rule creates a tree with grammatical non-terminals, VP 's and ADJ . When the parser uses the rule i n parsing a sentence, i t will generate the associated structure. For example, F igure I shows how the sentence "This apple pie looks good and is a real
treat " is parsed . The first three words and the last three words in the sentence are parsed as

�1 OT NN NN VBX

s

VP VP
ADJ
JJ cc This apple pie looks good and

VP
� VBX DT JJ NN

IS a real treat
Figure 1 : Example of parsed tree usual , using the rules, NP -> DT NN NN (Rule- 1) and NP -> DT JJ NN (Rule-2) , respectively. The remainder is parsed by the s ingle rule, S -> NP VBX J.J CC VBX NP (Rule-3) . This rule constructs the entire structure under the root S. The whole tree is generated based on the three rules, although there are more than three grammatical non-terminals in the tree . Minor modification We made four kinds of minor modification to the grammar, in order to improve its coverage and accuracy. First , the punctuation mark at the end of each sentence is deleted . This is to keep consistency at the end of sentences , which sometimes have a period, another symbol or no punc­tuation . Second , similar categories, in terms of grammatical behavior, are merged into a single category. This reduces the number of grammar rules and increases coverage of the grammar. For example , present tense and past tense verbs play a similar role in determining grammatical structure . Third , sequences of particular categories are collapsed into single instances of the category. For example , sequences of numbers, proper nouns or symbols are replaced automati­cally by a single instance of number, proper noun or symbol . This modification also works to reduce the number of grammar rules. F inally, we know that the Penn Tree Bank project tried to reduce the number of part-of-speech categories in order to ease the tagging effort . The Penn Tree Bank manual [1 0] says that they combine categories, in cases where finer distinctions can be recovered based on lexical information . So, by introducing new categories for a set of words which have different behavior from the other words in the same category, we can expect to get more information and more accurate parses. The following is the list of modifications in the grammar: 1 . Delete punctuation at the end of sentences 2. Merge Categories

VBX= (VBP , VBZ , VBD) , NNPX= (NNP , NNPS) , NNX= (NN , NNS)

219

:3 . Collapse sequence into s ingle instance
NNP , CD , FW , SYM

4. Introduce new categor ies
(QOF = of ;
(QSNC = Subordinating conjunction which introduce sentence (although, because , · if ,-
once, that , though , unl e s s , whether , while) ;
©DLQ = Pre-quantifier adverbs (about . all , any , approximately , around, below, even ,
f irst , j ust , next . not , only , over , pretty , second, so , some , too)

Tagging

As the first step in parsing a sentence , one or more part-of-speech tags are assigned to each
input. token , based on the tags assigned to the same token in the training corpus. (Note that this
introduces ambiguity.) Each tag has a probabil i ty which wil l be used in the score calculation in
parsing. The probabil ity i s based on the relative frequency of the tag assigned to the token in
the corpus. We set the threshold for. the probabil ity to 5% in order to make the parser efficient .
Tags wi th smaller probabil i ty than the threshold are discarded .

Score Calculation

Frequency of word w with tag t
Pt ag (t l w) = ----------­F1·equency of word w (1)

The formulae for the probabil i ty of an indiv idual rule Pru te. and the score of a parsed tree Stre.e.

are the following. The probabil ity of a rule, X - > Y, where Y i s a sequence , is based on the
frequency with which X dominates Y in the corpus, and the frequency of the non-terminal ,
X . The score for a parse tree is the product of probabi li ty of each rule used to build the tree
together with square of probabil ity of the tag for each word in the sentence. The square factor
results in putting more weight on tag-probabil ity over rule-probabil ity, which produce better
results than balancing the weights . The best parsed tree has the h ighest score among the trees
possibly deri ved from the input .

F1'equen cy with which X is expanded as Y
Prn 1e. (X - > Y) = -----------------­

F1·equency of X

Stre. t (T) = II II (Ptag (t lw)) 2

R: rules in T t : tags in T

Backup Grannnar

(2)

(3)

Although we built a parser which can handle a large grammar, as described in the next section ,
i t is unable to parse some long sentences , because of computer memory l imitations . So we
prepared a smaller grammar, for use in case the larger grammar can ' t parse a sentence . The
small grammar consists of the rules having frequency more than 2 in the corpus . Because the
number of rules is small , pars ing is rarely blocked by space l imitations . The parsed result of this
grammar is used only when the larger grammar does not produce a parse tree. Table 2 shows
the numbers of rules in the larger grammar(G-0) and the smaller grammar {G-2) . The number
of rules in G-0 is smaller than the number of 'distinct structures ' shown in Table 1 , because if
there are several structures associated with one sequence , only the most common structure is
kept .

4 Parser

It is not ea.r;y to handle such a large grai:nmar. For example, a s imple LR parser would need a
huge table , while a s imple chart parser would need a large number of active nodes . We therefore

220

Category Grammar-0 Grammar-2
s 23 ,386 2 ,478

NP 8 ,9 1 0 2 ,087 Total 32 , 296 4 ,565 Table 2: Number of rules developed a chart parser which can handle a large grammar. The key technique is that it factors grammar rules with common prefixes. Actually, the grammar rules are stored like a finite state automaton . As the grammar has thousands of rules which start from, for instance, OT, a simple chart parser has to have that same number of active nodes when it find a determiner in the input sentence . However, since active nodes indicate grammar rules which can be extended after that point , we can replace the thousands of nodes by a single pointer which points to the corresponding node in the grammar automaton . Because this node has an arc to all the possible successors , it is equivalent to thousands of active nodes in a conventional chart. Also , because we try to find only the best (highest possibility) parse tree , we can eliminate inactive nodes whose score is lower than another inactive node of the same category and span . The limits for active nodes and inactive nodes are set to 3 ,000 ,000 and 1 0 ,000, because of memory limitations .
5 Experiment For our experiments , the WSJ corpus of the Penn Tree Bank is divided into two portions . One is used for training (96%) and the other part is used for testing . The training corpus is used to extract grammar rules and the test corpus contains 1 ,989 sentences. The parsing results are shown in Table :3 . Here , "G-0" is the parsed result using the grammar with all the produced Grammar number of no parse space sentence run time sentence exhausted length (sec ./sent .) G-0 1 989 20 293 1 9 . 9 1 3 . 6 G-2 1 989 1 72 42 22 .2 8 . 1 Table 3 : Parsing Result rulPs , "G-2" is the grammar with rules of frequency more than 2. "No parse" means the parser can 't get S for the whole structure , "space exhausted" means that the node space of the parser is exhausted in the middle of the parsing . "Sentence length" is the average length of parsed sentences , and the run time is the parse time per sentence in seconds using a SPA RC 5. Although the average run time is quite high , more than half of the sentences can be parsed in less than :3 seconds while a small number of sentences take more than 60 seconds . We can see that the number of "no parse" sentences with G-2 is larger than that with G-0 . This is because there are fewer grammar rules in G-2 , so some of the sequences have no matching pattern in the grammar . It. is natural that the _number of sentences which exhaust memory is larger for G-0 than for G-2 , because of the larger number of rules . Next, the evaluation using parseval method on parsed sentences is shown in Table 4 . "Parse­val" is the measurement of parsed result proposed by Black et .al . [l] . The result in the table is the result achieved by the G-0 grammar, supplemented by the result using the G-2 grammar, if the larger grammar can't generate a parse tree . These numbers are based only on the sentences which parsed (1 ,899 out of 1 ,989 sentences; in other words 90 sentences are left as unable-to­be-parsed sentences even using the back-up method) . Here , "complete match" means that the result is exactly the same as the corresponding tree in the Penn Tree Bank . "No-crossing" is the

221

Total sentences
No-crossing
Ave.crossing

Parseval (recall)
Parseval (precision)

1 899
643 (33 .9%)

2 .64
73.43%
72.6 1 %

Table 4 : Evaluation Result

number of sentences which have no crossing brackets between the result and the corresponding
tree in the Penn Tree Bank. "Ave.crossing" is the average number of crossings per sentence.

I t is not easy to compare these numbers between systems, because some conditions of the
test sentences, length , complexity, etc. , affect the result. However, roughly speaking, these
numbers are rnmparable to or better than the score of so-called traditional grammar, or hand­
made grammars. For example, Black [:3] <;:ited the best non-crossing score using a traditional
grammars as 4 1 % and the average of several systems as 22%.

6 Future work
Analyzing the errors made by the parser, we found that a considerable number of unparsed
sentences (including no-parse and memory-exhausted sentences) and wrongly parsed sentences
contain special symbols, l ike ' : ' , '-', T or ') ' . Our strategy to enumerate structures, is not good
at. parsing sentences which have rare tokens l ike these symbols. Furthermore , there are some odd
sentences involving these symbols. For example, there are sentences which have an unbalanced
parenthesis, because of incorrect division of the text into sentences or multiple sentences within
a single pair of parentheses. In order to parse these sentences, we believe, special pre-treatments
are needed .

As was mentioned earlier, there are several part-of-speech sequences which could generate
several different structures. One source of ambiguity is annotator's inconsistencies, which we
can ·t deal with . Another major source is attachment problems, such as prepositional attachment
or conj unctive (and , or) attachment. Although it is well known that some of these ambiguities
are unsolvable using only the context within the sentence, many of them are heavily related to
the lexical or semantic information within the sentence. We have been conducting research on
automatically acquiring these selectional constraints, and we are planning to incorporate this
semantic knowledge into the parser [9j , (1 5] .

I ntroducing lexical information i n the parser i s also useful for other kinds of the structural
disambiguation . We showed this in minor modification 4, by introducing new categories based
on l exicon . However . the method we used to choose the candidates depended on human intuition .
We a.re considering creating an automatic method to identify those words for which it is beneficial
to make a new category.

7 Conclusion
We developed a corpus-ba5ed probabilistic grammar whose rules are extracted from syntactically­
bracketed corpora. The grammar has only two non-terminals, S and NP . The rules of the
grammar contain grammatical non-terminal within · the tree. This feature introduces context­
sensitivity for the terminals.

Corpus-ba5ed grammar generation has a significant advantage over building a grammar by
hand , particu larly if we aspire to a high degree of coverage. Once we have a syntactically­
bracketed corpus for a new domain , a grammar can be automatically created for that domain.
While building syntactically-bracketed corpora is not so easy, large-scale corpora have been

222

successfully constructed by teams of coders; building a very-broad-coverage grammar by hand has proven much more challenging. We conducted an experiment using two grammars derived from a tagged corpus . The accu­racy is about the same or better than with a conventional grammar. As this grammar uses only part-of-speech information , we may be able to improve it by incorporating lexical or semantic information .
8 Acknowledgments The work reported here was supported by the Advanced Research Projects Agency under con­tract DABT63-93-C-0058 from the Department of the Army. Also, we would like to thank our colleagues at NYU and the member of Penn Tree Bank Project.
References (l] E . Black , et .al . "A procedure for Quantitatively Comparing the Syntactic Coverage of En­glish Grammars" Proc. of Fourth DARPA Speech and Natural Language Workshop (1 99 1) [2] E.Black , F .Jelinek , .J . Lafferty, D .Magerman, R.Mercer, S .Roukos "Towards History-based Grammars: Using Richer Models for Probabilistic Parsing" A CL-93 (1 993) [:3] E. Black "Parsing English By Computer: The State Of the Art" A TR International Work­

shop on Speech Translation (1 993) [4] R .Bod "Using an Annotated Corpus as a Stochastic Grammar" EA CL-93 (1 993) [5] E. Br i ll "Automatic Grammar Induction and Parsing Free Text: A Transformation-Based Approach" A CL-93 (1 993) [6] T . Briscoe , J .Carroll "Generalized Probabilistic LR Parsing of Natural Language (corpora) with Unification-Based Grammars" Computational Linguistics Vol. 19,No. 1 (1 993) [7] M .Chi taro, R.Grishman "Statistical parsing of messages" In proceedings of the Speech and
Natural Language Workshop (1 990) [8] R.Garside, F . Leech "A Probabilistic Parser" EA CL-85 (1 985) [9] R.Grishman , .J .Sterling "Generalizing Automatically Generated Selectional Patterns"
COLING-94 (1 994) (1 0] M . Marcus, B .Santorini , M .Marcinkiewicz "Building a large annotated corpus of English : the Penn Tree bank" in the distributed Penn Tree Bank Project CD-ROM, Linguistic Data Consortium, University of Pennsylvania. [l I] D . M agerman , C .Weir "Efficiency, Robustness and Accuracy in Picky Chart Parsing" A CL-
.92 (I 992) [1 2] D . Magerman "Statistical Decision-Tree Models for Parsing" A CL-95 (1 995) (1 :3] Y .Shabes , R.Waters "Lexicalized Context-Free Grammars" A CL-93 (1 993) (1 4] R.Simmons, Y .Yu "The Acquisition and Application of Context Sensitive G rammar for English" A CL-91 (1 99 1) (1 5] S .Sekine, S .Ananiadou , .J ..J .Carroll , .J .Tsujii : "Linguistic Knowledge Generatol'." COLING-
92 (1 992)

223

