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Abstract 

The availabil i ty of large, syntactically-bracketed corpora such as the Penn Tree Bank 
affords us the opportunity to automatically build or train broad-coverage grammars, and in 
particular t.o train probabilistic grammars. A number of recent parsing experiments have 
also indicated that. grammars whose production probabilities are dependent on the ,context 
can be more effective than context-free grammars in selecting a correct parse. 

To make maximal use of context, we have automatically constructed, from the Penn 
Tree Bank version 2, a grammar in which the symbols S and NP are the only real non­
terminals, and the other non-terminals or grammatical nodes are in effect embedded into 
the right-hand-sides of the S and NP rules. For example, one of the rnles extraded from the 
tree bank would be S -> NP VBX JJ CC VBX NP [1]  ( where NP is a non-terminal and the 
other symbols are terminals - part-of-speech tags of the Tr-ee Bank) .  Tbe most common 
structure in t.he Tree Bank a5sociat.ed with this expansion is  (S  ·NP (VP (VP VB.I (ADJ J J )  
C C  (VP VBX NP ) ) ) )  [2] . So i f  our parser uses rule [l] j n  parsing a sentence, i t.  will generate 
structure [2] for the corresponding part of the sentence. 

l. sing 94% of the Penn Tree Bank for training, we extracted 32,296 distinct rules (2:3 ,386 
for S, and � .910 for NP ) .  We also built a smaller version of the grammar based ,on higher 
frequency patterns for use a5 a back-up when the larger grammar is unable to produce 
a parse due to memory limitation . We applied this parser to 1 ,989 Wall St1·eet Journal 
sentences (separate from the training set and with no lirrnt on sentence length) .  Of the 
parsed sentences ( 1 ,899 ) ,  the percentage of no-crossing sentences is 33:9%, and Parseval 
recall and precision are 73.43% and 72 .61  %. 

1 Introduction 

The availabili ty of  large , syntactical ly-bracketed corpora such a5 the Univers ity of  Pennsylvania 
Tree Bank affords us the opportuni ty to automatically bui ld or train broad-coverage grammars . 
Although it is inevitable  that a structured corpus wi l l  contains errors , statistical methods and 
the size of the corpus may be able to ameliorate the effect of i ndividual errors . Aiso , because a 
large corpus wi l l  i nclude examples of many rare constructs, we have the potenitial of obtain ing 
broader coverage than we might with a hand-constructed grammar . Furthermore , exper iments 
over the past few years have shown the benefits of usi ng probabi l istic i nformation in pars ing ,  
and the large corpus allows us to t rain the probabi l i ties of a grammar (8) {7] [ l  l ]  :(2) [4] ,(1 2] .  

A number of recent parsing experiments have also indicated that grammars whose production 
prob,:i b i l i ties are dependent on the context can be more effective than context-free grammars in 
selecting a correct parse .  This context sensit ivity can be acqu i red ea5i ly using a large corpus, 
whereas human abi l i ty to compute such information is obviously l imited.. There have been 
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several attempts to build context-dependent grammars based on large corpora. ( 1 4] ( 1 1 ] ( 1 3] (2] 
(4] ( 1 2] .  

As i s  evident from the two lists of citations , there has been considerable research involving 
both probabilistic grammar based on syntactically-bracketed corpora and context-sensitivity. 
For example, Black proposed 'History based parsing ' ,  a context-dependent grammar trained 
using a large corpus (2] . History-based parsing uses decision-tree methods to identify the most 
useful information in the prior context for selecting the next production to try. This approach , 
however, requires a hand-constructed grammar as a starting point . 

Bod (4) has described how to parse directly from a tree bank . A new parse tree can be 
assembled from arbitrary subtrees drawn from the tree bank ; the parser searches for the com­
bination with highest probability. This can , in principle, take advantage of arbitrary context 
information . However , the search space is extremely large, so a full search is not practical , even 
for a small tree bank (Bod proposes using Monte Carlo methods instead) . Results have been 
reported only for a small tree bank of 7.50 ATIS sentences .  

In this paper we will present a parsing method which involves both probabilistic techniques 
based on a syntactically-bracketed corpus and context sensitivity. We will describe a very simple 
approach which allows us to create an efficient parser and to make use of a very large tree bank . 

2 An "Ultimate Parser" and a Compromise 

An "Ultimate parser" : parsing by look-up 

Because of the existence of large syntactically-bracketed corpora and the ad vantage of context­
sensitive parsing , we can contemplate an ultimate parsing strategy - parsing by table look-up . 
This approach is based on the assumption that the corpus covers most of the possible sentence 
structures in a domain . In other words , most of the time, you can find the structure of any given 
sentence in the corpus. If this assumption were correct , we could parse a sentence just by look­
up. The system first assigns parts-of-speech to an input sentence using a tagger , and then just 
searches for the same sequence of parts-of-speech in the corpus . The structure of the matched 
sequence is the output of the system . Now we will see if the assumption is correct .  We investi­
gated the Penn Tree Bank corpus version 2, which is one of the largest syntactically-bracketed 
corpora, but it turned out that this strategy does not look practical . Out of 4 ,72 1 9  sentences 
in the corpus 1 , only 2 ,2:32 sentences (4 .7%) have exactly the same structure as another sentence 
in the corpus . This suggests that , if we apply the above strategy, we would find a match , and 
hence be able to produce a parse for only 4 .7% of the sentences in a new text .  

C0111pr0111ise 

We therefore have to make a compromise. Instead of seeking a complete match for the part­
of-speech sequence of an entire sentence, we introduce partial sequence matchings based on the 
two important non-terminals in the Penn Tree Bank , S (sentence) and NP (noun phrase) . We 
try to find a nested . set of S and NP fragments in the given sentence so that the whole sentence is 
derived from a single S and then apply the look-up strategy for each fragment . In other words , at 
first the system collects , for each instance of S and NP in the training corpus , its expansion into 
S 's ,  NP 's ,  and lexical categories; this is ,  in effect , a production in a grammar with non-terminals 
S and NP . It also records the ful l  constituent structure for each instance . In analyzing a new 
sentence, it tries to find the best segmentation of the input into S 's and NP 's ;  it then outputs the 
combination of thr structures of the chosen segments. To assure that this strategy is applicable, 
we collected statistics from the Penn Tree Bank (Table 1 ) .  From the table , we can see that there 
are a considerable number of multiple occurrences of structures , and that a very small number 
of structures covers a large number of instances in the corpus . The most frequent structures 
for S and NP are shown just below . The numbers on the left indicate their frequency. Most of 

1 We used 96% of the corpus which wi l l  be used for the grammar training.  We also processed minor modifi­
cations 1 -:3 , wh ich wi l l  be described later. 
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Category II s NP 
Total i nstances 88,92 1 ;35 1 , 1 1 :3 

Distinct structures 24,465 9 , 7 1 1 
Number of structures which 

cover 50% of i nstances 1 1 4 7 
percentage of i nstances covered by 
structures of 2 or more occurrences 77 .2% 98. 1 %  

percentage of i nstances 
covered by top I O structures 27 .5% 57 .9% 

Table 1 :  Stati stics of S and NP structures 

the symbols are from Penn Tree Bank2 ; symbols which we have introduced (for example , NNX 
or VBX) are explained later. 

6483 (S NP ( VP VBX NP ) )  
493 1 ( S  -NONE- ) 
4 188 ( S  NP (VP VBX (SBAR S ) ) )  
1724 (S  NP (VP VBG NP ) 
1549 (S  S , CC S )  

36470 (NP D T  NNX ) 
34408 (NP NP ( PP IN NP ) 
32641 (NP NNPX )  
27432 (NP NNX ) 
1773 1  (NP PRP ) 

Alt.hough we see that many structures are covered by the data in the corpus, there could 
be ambiguities where two or more structures can be created from an identical part-of-speech 
sequence . For example , the prepositional attachment problem leads to such ambiguities . The 
survey on Penn Tree Bank shows us the percentage of the sequences which could be der ived 
from S and NP \Vith different structures are 7% and 1 2% ,  respectively. The maximum number 
of different structures for the same part-of-speech sequence are 7 for S and 1 2  for NP . However, 
by taking the most frequent structure for each ambiguous sequence , we can keep such mistakes 
to a minimum . We find that the errors caused by this are 8% and :3% for S and NP , respectively. 
vVe believe these errors can be reduced by introducing lexical or semantic i nformation in the 
parsing.  This will be d iscussed later. 

Frorn these statistics ,  we can conclude that many stru ctures of S and NP can be covered by 
the data in the Penn Tree Bank .  This result supports the idea of the parsing with two non­
terrn inals, S and NP which segment the input ,  and the stru cture ins ide the segment is basically 
decided by table look-up .  However ,  because we introduce non-terminals and hence introduce 
ambiguities of segment boundary, the overall process becomes more l ike parsi ng rather than j ust 
table look-up.  

3 Grammar 

( ;u ided hy the considerations in the last section , we try to bui ld a grammar automatically frorn 
the Penn Tree Bank .  The grammar has symbols S and NP as the only non-terminals , and the 
other non-terminals or grammatical nodes in the Tree Bank are in effect embedded into the 
right-hand-sides of the S and NP ru les. For example,  the following is one of the extracted ru les . 

S -> NP VBX JJ  CC VBX NP 
: structure " ( S < 1>  (VP (VP <2> ( ADJ <3> ) ) <4> (VP <5> <6> ) ) ) 1 1

; 

( where S and NP are non-terminals and the other symbols in the ru les are terminals - part-of­
speech tags of the Penn Tree Bank ) . By this rule ,  S is replaced by the sequence NP VBX JJ CC 

2 Some category symbols defined in  the Penn Tree Ban k :  VBP:  non-3rd singu lar present-tense verb, VBZ:  :3rd­
person singu lar present-tense verb, VBD: past-tense verb, VBG: present-particle verb, HIP: singular proper nou n ,  
RIPS : p lural proper n o u n  , HB: singu lar or mass noun ,  IRS : plural nou n ,  CD: cardi nal number, FW: foreign word , 
SYM: symbo l ,  CC: coord inating conj unction, II :  preposition and subordinate conj unction. 
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VBX NP , and in addition the rule creates a tree with grammatical non-terminals, VP 's and ADJ .  When the parser uses the rule i n  parsing a sentence, i t  will generate the associated structure. For example, F igure I shows how the sentence "This apple pie looks good and is a real 
treat "  is parsed . The first three words and the last three words in the sentence are parsed as 

�1 OT NN NN VBX 

s 

VP VP 
ADJ 
JJ cc This apple pie looks good and 

VP 
� VBX DT JJ NN 

IS a real treat 
Figure 1 :  Example of parsed tree usual , using the rules, NP -> DT NN NN ( Rule- 1) and NP -> DT JJ NN ( Rule-2) , respectively. The remainder is parsed by the s ingle rule, S -> NP VBX J.J CC VBX NP ( Rule-3) . This rule constructs the entire structure under the root S. The whole tree is generated based on the three rules, although there are more than three grammatical non-terminals in the tree . Minor modification We made four kinds of minor modification to the grammar, in order to improve its coverage and accuracy. First , the punctuation mark at the end of each sentence is deleted . This is to keep consistency at the end of sentences , which sometimes have a period, another symbol or no punc­tuation . Second , similar categories, in terms of grammatical behavior, are merged into a single category. This reduces the number of grammar rules and increases coverage of the grammar. For example , present tense and past tense verbs play a similar role in determining grammatical structure .  Third , sequences of particular categories are collapsed into single instances of the category. For example ,  sequences of numbers, proper nouns or symbols are replaced automati­cally by a single instance of number, proper noun or symbol . This modification also works to reduce the number of grammar rules. F inally, we know that the Penn Tree Bank project tried to reduce the number of part-of-speech categories in order to ease the tagging effort . The Penn Tree Bank manual [ 1 0] says that they combine categories, in cases where finer distinctions can be recovered based on lexical information . So, by introducing new categories for a set of words which have different behavior from the other words in the same category, we can expect to get more information and more accurate parses. The following is  the list of modifications in the grammar: 1 .  Delete punctuation at the end of sentences 2. Merge Categories 

VBX= (VBP , VBZ , VBD ) , NNPX= (NNP , NNPS ) ,  NNX= (NN , NNS ) 
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:3 .  Collapse sequence into s ingle instance 
NNP , CD , FW , SYM 

4. Introduce new categor ies 
(QOF = of ; 
(QSNC = Subordinating conjunction which introduce sentence (although, because , · if ,-
once,  that , though , unl e s s ,  whether , while) ; 
©DLQ = Pre-quantifier adverbs (about . all ,  any , approximately ,  around, below, even , 
f irst , j ust , next . not , only ,  over , pretty ,  second, so ,  some , too) 

Tagging 

As the first step in parsing a sentence , one or more part-of-speech tags are assigned to each 
input. token , based on the tags assigned to the same token in the training corpus. (Note that this 
introduces ambiguity. ) Each tag has a probabil i ty which wil l  be used in the score calculation in 
parsing. The probabil ity i s  based on the relative frequency of the tag assigned to the token in 
the corpus.  We set  the threshold for. the probabil ity to 5% in order to make the parser efficient . 
Tags wi th smaller probabil i ty than the threshold are discarded . 

Score Calculation 

Frequency of word w with tag t 
Pt ag ( t l w ) = ----------­F1·equency of word w ( 1 )  

The formulae for the probabil i ty of an indiv idual rule Pru te. and the score of a parsed tree Stre.e. 

are the following. The probabil ity of a rule, X - > Y, where Y i s  a sequence , is  based on the 
frequency with which X dominates Y in  the corpus, and the frequency of the non-terminal , 
X .  The score for a parse tree is the product of probabi li ty of each rule used to build the tree 
together with square of probabil ity of the tag for each word in the sentence. The square factor 
results in putting more weight on tag-probabil ity over rule-probabil ity, which produce better 
results than balancing the weights . The best parsed tree has the h ighest score among the trees 
possibly deri ved from the input . 

F1'equen cy with which X is expanded as Y 
Prn 1e. (X - > Y ) = -----------------­

F1·equency of X 

Stre. t  (T) = II II ( Ptag ( t lw ) )  2 

R: rules in T t :  tags in T 

Backup Grannnar 

( 2 )  

( 3 )  

Although we  built a parser which can handle a large grammar, as described in  the next section ,  
i t  is  unable to parse some long sentences , because of computer memory l imitations . So we 
prepared a smaller grammar, for use in case the larger grammar can ' t  parse a sentence . The 
small grammar consists of the rules having frequency more than 2 in the corpus . Because the 
number of rules is small , pars ing is rarely blocked by space l imitations . The parsed result of this 
grammar is used only when the larger grammar does not produce a parse tree. Table 2 shows 
the numbers of rules in the larger grammar(G-0 ) and the smaller grammar {G-2) . The number 
of rules in G-0 is smaller than the number of 'distinct structures ' shown in Table 1 ,  because if 
there are several structures associated with one sequence , only the most common structure is 
kept .  

4 Parser 

It  is  not ea.r;y to handle such a large grai:nmar. For example, a s imple LR parser would need a 
huge table ,  while a s imple chart parser would need a large number of active nodes . We therefore 
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Category Grammar-0 Grammar-2 
s 23 ,386 2 ,478 

NP 8 ,9 1 0  2 ,087 Total 32 , 296 4 ,565 Table 2: Number of rules developed a chart parser which can handle a large grammar. The key technique is that it factors grammar rules with common prefixes. Actually, the grammar rules are stored like a finite state automaton . As the grammar has thousands of rules which start from, for instance, OT, a simple chart parser has to have that same number of active nodes when it find a determiner in the input sentence . However, since active nodes indicate grammar rules which can be extended after that point , we can replace the thousands of nodes by a single pointer which points to the corresponding node in the grammar automaton . Because this node has an arc to all the possible successors , it is equivalent to thousands of active nodes in a conventional chart. Also , because we try to find only the best (highest possibility) parse tree , we can eliminate inactive nodes whose score is lower than another inactive node of the same category and span . The limits for active nodes and inactive nodes are set to 3 ,000 ,000 and 1 0 ,000,  because of memory limitations . 
5 Experiment For our experiments , the WSJ corpus of the Penn Tree Bank is divided into two portions . One is used for training (96%) and the other part is used for testing . The training corpus is used to extract grammar rules and the test corpus contains 1 ,989 sentences. The parsing results are shown in Table :3 . Here , "G-0" is the parsed result using the grammar with all the produced Grammar number of no parse space sentence run time sentence exhausted length (sec ./sent . )  G-0 1 989 20 293 1 9 . 9  1 3 . 6  G-2 1 989 1 72 42 22 .2  8 . 1  Table 3 :  Parsing Result rulPs , "G-2" is the grammar with rules of frequency more than 2. "No parse" means the parser can 't get S for the whole structure , "space exhausted" means that the node space of the parser is exhausted in the middle of the parsing . "Sentence length" is the average length of parsed sentences , and the run time is the parse time per sentence in seconds using a SPA RC 5. Although the average run time is quite high , more than half of the sentences can be parsed in less than :3 seconds while a small number of sentences take more than 60 seconds . We can see that the number of "no parse" sentences with G-2 is larger than that with G-0 . This is because there are fewer grammar rules in G-2 , so some of the sequences have no matching pattern in the grammar . It. is natural that the _number of sentences which exhaust memory is larger for G-0 than for G-2 , because of the larger number of rules . Next, the evaluation using parseval method on parsed sentences is shown in Table 4 .  "Parse­val" is the measurement of parsed result proposed by Black et .al .  [ l] . The result in the table is the result achieved by the G-0 grammar, supplemented by the result using the G-2 grammar, if the larger grammar can't generate a parse tree . These numbers are based only on the sentences which parsed ( 1 ,899 out of 1 ,989 sentences; in other words 90 sentences are left as unable-to­be-parsed sentences even using the back-up method) . Here , "complete match" means that the result is exactly the same as the corresponding tree in the Penn Tree Bank . "No-crossing" is the 
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Total sentences 
No-crossing 
Ave.crossing 

Parseval ( recall) 
Parseval (precision) 

1 899 
643 (33 .9%) 

2 .64 
73.43% 
72.6 1 %  

Table 4 :  Evaluation Result 

number of sentences which have no crossing brackets between the result and the corresponding 
tree in the Penn Tree Bank. "Ave.crossing" is the average number of crossings per sentence. 

I t  is not easy to compare these numbers between systems, because some conditions of the 
test sentences, length , complexity, etc. , affect the result. However, roughly speaking, these 
numbers are rnmparable to or better than the score of so-called traditional grammar, or hand­
made grammars. For example, Black [:3] <;:ited the best non-crossing score using a traditional 
grammars as 4 1  % and the average of several systems as 22%. 

6 Future work 
Analyzing the errors made by the parser, we found that a considerable number of unparsed 
sentences ( including no-parse and memory-exhausted sentences) and wrongly parsed sentences 
contain special symbols, l ike ' : ' , '-', T or ' ) ' . Our strategy to enumerate structures, is not good 
at. parsing sentences which have rare tokens l ike these symbols. Furthermore , there are some odd 
sentences involving these symbols. For example, there are sentences which have an unbalanced 
parenthesis, because of incorrect division of the text into sentences or multiple sentences within 
a single pair of parentheses. In order to parse these sentences, we believe, special pre-treatments 
are needed .  

As  was mentioned earlier, there are several part-of-speech sequences which could generate 
several different structures. One source of ambiguity is annotator's inconsistencies, which we 
can ·t deal with . Another major source is attachment problems, such as prepositional attachment 
or conj unctive (and , or) attachment.  Although it is well known that some of these ambiguities 
are unsolvable using only the context within the sentence, many of them are heavily related to 
the lexical or semantic information within the sentence. We have been conducting research on 
automatically acquiring these selectional constraints, and we are planning to incorporate this 
semantic knowledge into the parser [9j , ( 1 5] .  

I ntroducing lexical information i n  the parser i s  also useful for other kinds of the structural 
disambiguation . We showed this in minor modification 4, by introducing new categories based 
on l exicon . However . the method we used to choose the candidates depended on human intuition . 
We a.re considering creating an automatic method to identify those words for which it is beneficial 
to make a new category. 

7 Conclusion 
We developed a corpus-ba5ed probabilistic grammar whose rules are extracted from syntactically­
bracketed corpora. The grammar has only two non-terminals, S and NP . The rules of the 
grammar contain grammatical non-terminal within · the tree. This feature introduces context­
sensitivity for the terminals. 

Corpus-ba5ed grammar generation has a significant advantage over building a grammar by 
hand , particu larly if we aspire to a high degree of coverage. Once we have a syntactically­
bracketed corpus for a new domain ,  a grammar can be automatically created for that domain. 
While building syntactically-bracketed corpora is not so easy, large-scale corpora have been 
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successfully constructed by teams of coders; building a very-broad-coverage grammar by hand has proven much more challenging. We conducted an experiment using two grammars derived from a tagged corpus . The accu­racy is about the same or better than with a conventional grammar. As this grammar uses only part-of-speech information , we may be able to improve it by incorporating lexical or semantic information . 
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