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Abstruct \Ve describe and evaluate experimentally a method to parse a tagged corpus without grammar modeling a natural language on context-free language . This method is based on the following three hypotheses . 1 )  Part-of-speech sequences on the right-hand side of a rewriting rule are less constrained as to what part-of-speech precedes and follows them than non-const ituent sequences. 2) Part-of-speech sequences directly derived from the same non-terminal symbol have similar environments .  3) The most suitable set of rewriting rules makes the greatest reduction of the corpus size . Based on these hypotheses , the system finds a set of constituent-like part-of-speech sequences and replaces them with a new symbol . The repetition of these processes brings us a set of rewriting rules , a grammar , and the bracketed corpus . 
1 Introduction A standard approach to a natural language analy_sis is to characterize it with a set of rules , a grammar . Given the difficulty in developing a grammar manually, it is necessary to build a method for automatic grammar induction . One of the most promising results_ of grammar inference is based on the inside-outside algorithm, which can be used to train a stochastic context-free grammar . It is an extension of the forward-backward algorithm. [Pereira and Schabes, 1992] and [Schabes et a l. ,  1993] proposed a method to infer the parameters of a stochastic context-free grammar from a partially parsed corpus and evaluated the results . [Brill , 1 993] describes another technique for grammar induction : "the system learns a set of ordered transformations and applies it to a new sentence ." These two methods pr_ofit from corpora annotated with syntactic structure , the Penn Tree­bank [Marcus and Santorini ,  1993] . Corpora in the Penn Treebank have two sorts of additional data:  the part-of-speech of each word and the syntactic structure of each sentence . The first stage of building a corpus is an automatic tagging or parsing and the second the manual correc­tion of errors . Since the accuracy of current parsers is not satisfactory, the manual correction of parsing results is an arduous task . As for tagging, however , the method of [Church , 1988] , applied to build the Penn Treebank ,  is reported a5 "95-99% correct , depending on the definition of correct" and another tagger developed by [Brill , 1992] marks almost the same accuracy. It follows that it is worth t rying to induce a grammar from corpora without syntactic structure , that is to say, to parse corpora using only part-of-speech information . Only a few attempts, however , have been made so far at grammar induction from an unbracketed corpus. [Magerman and Marcus , 1 990] proposes a parsing system using mutual information statistics and a manually written "dist ituent grammar ," a list of tag pairs which cannot be adjacent within a constituent , such as (prep n oun) . -[Brill and Marcus , 1 992] also proposes a technique 
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for grammar induction. 
The operations of extracting a grammar from a tagged corpus and applying it to the very 

same corpus is equal to the process of parsing the corpus without a grammar. In this paper, 
we propose a new method to parse a tagged corpus without a grammar based on the following 
three hypotheses : 

1 .  Part-of-speech sequences on the right-hand side of a rewriting rule are less constrained as 
to what part-of-speech precedes and follows them than non-constituent sequences . 

2 .  Part-of-speech sequences directly derived from the same non-terminal symbol have similar 
environments . 

3 .  The most suitable set of rewriting rules makes the greatest reduction of the corpus siz�. 

The initial state of the corpus is part-of-speech sequences. The algorithm finds a group of 
constituent-like part-of-speech sequences in the corpus and produces rewriting rules which have 
the part-of-speech sequences on the right-hand side and the same non-terminal symbol on the 
left-hand side . Applying these rewriting rules to the corpus, the algorithm makes the corpus 
shorter in terms of number of symbolic units , more parsed . The system repeats these processes 
until it cannot find any more part-of-speech constituent sequences . Then the system stops , with 
the corpus parsed and a set of rewriting rules , i .e .  a grammar, created . 

In subsequent sections, first we discuss the three hypotheses , secondly describe the algo­
rithm, thirdly present results and compare them -to other recent results in automatic phrase 
structure induction , and finally conclude this research and discuss future works·. 

2 Three Hypotheses 
In the theory of formal language, the rewriting rules determine whether a sequence of alphabets 
is a sentential form or not . Therefore the language, a set of sentential forms, reflects the 
characteristics of the rewriting rules . Since our method models natural language on context­
free language, a corpus is regarded as a set of sentential forms . It follows that a corpus r.eflects 
the characteristics of the rewriting rules of the natural language . In the following parts of this 
section , we present an example of the corpus we used , define some symbols for explanation and 
discuss the three hypotheses on the relation between a corpus and the rewriting rules derived 
from this point of view. 

2.1 Corpus and Symbol Definitions 

For our main experiment ,  we used part-of-speech (POS) sequences from the Wall Street 
Journal (WSJ ) in the Penn Treebank. Table 1 shows its POS tagset and Figure 1 is an example 

Nekoosa would n ' t  be a diversificat ion . 
NNP MD RB VB DT NN 
( ( ( Nekoosa ) would n ' t  ( be ( a diversif ication ) ) ) . ) 

Figure 1 :  An example sentence in WSJ 
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Table 1 :  Penn Tree bank POS tagset 1 .  cc Coordinating conjunction 2 1 .  RBR Adverb ,  comparative 
2 .  CD Cardinal number 22 .  RBS Adverb, superlative 3 .  DT Determiner 23.  RP Particle 4 .  EX Existential th ere 24. SYM Symbol 5 .  F W  Foreign word 25 .  TO to 
6 .  IN Preposition or subordinating 26 .  UH Interjection conjunction 27 .  VB Verb, base form 
7 .  JJ Adject ive 28 .  VBD Verb , past tense 
8 .  JJR Adjective, comparative 29.  VBG Verb, gerund or present 9 .  J JS  Adjective .  superlative participle 1 0 .  LS List item marker 30.  VBN Verb , past participle 1 1 . MD Modal 3 1 .  VBP Verb, non-3rd person singular 1 2 .  NN Noun , singular or  mass present 13 .  NNS Noun, plural 32.  VBZ Verb, 3rd person singular 14 .  NNP Proper noun, singular present 15 .  NNPS Proper noun, plural 33. WDT Wh-determiner 1 6 .  PDT Predeterminer 34. WP Wh-pronoun 17 .  POS Possessive ending 35 .  WP$ Possessive wh-pronoun 18 .  PRP Personal pronoun 36. WRB · Wh-adverb 19 .  PRP$ Possessive pronoun 37 .  Comma 20 .  RB Adverb 38 .  Sentence-final punctuation sentence from \VSJ . We use the POS information in the second line in this figure for grammar induction and the syntactic structure in the third line for evaluation . . Our method models natural language on context-free language, which is described by a grammar G = (N ,  T, P, S) ,  where l\r is the set of non-terminal symbols, T is the set of terminal symbols , P is the set of rewrit ing rules and S is the start symbol. Since our method regards the · corpus as a set of POS sequences , the set of terminal symbols T is equal to the part-of-speech tagset of the Penn Treebank. Non-terminal symbols are , however, introduced by the system and they aren 't elements of the syntactic tagset of the Penn Treebank. For the subsequent explanation , we make the follO\ving definitions : 

pos E T, syn E N, tag E N u T 
syn E N+ , pas E T+ , tag E (N u T)+ where x + = x- - {c}  generally. 2.2 C onstituent-like Part-of-speech Sequence The first step of this method is to extract se9uences of one ore more POS from the corpus to form the right-hand side of rewriting rules . The following is the first hypothesis according to which the system extracts const ituent-like POS sequences . • POS sequences on the right-hand side of a rewriting rule are less constrained as to what POS precedes and follows them than non-constituent sequences . To explain this hypothesis concretely, let us consider the following two different POS sequences : posa which appears on the right-hand side of a rewriting rule and posx = posx 1 · posx2 which 
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doesn 't appear in any rewriting rule . In this case , let us say that G may contain the following rewriting rules: l . syna ---+ posa 3 .  sync ---+ pose , · posx 1 2 .  synb ---+ sync · synd 4 .  syn'd ---+ posx2 · posd, These rules tell us that the POSs which precede or follow posa are more loosely restricted than those of posx . In fact ,  posa can appear where syna appears, while posx requires the last three rewriting rules to be produced, in the following way: synb ⇒ sync · synd => pose , · posx l · posx2 ·posd' 
"-.,.-' pos:r: In this case , the POS which can precede posx is restricted to the last POS of pose , and the POS which follows posx is restricted to the first POS of posd' . This is the foundation of the first hypothesis . As a measure of constituency of a particular POS sequence , we use the entropies of the probability distributions of the POSs which precede or follow it . These entropies are calculated using the following equations : H1 (pos) -L P(posi · pos I pos) log P(posi · pos I pos) Hr (pos) -L P(pos · posi I pos) log P(pos · posi I pos) We call H1 and Hr the left-side entropy and the right-side entropy respectively. The conditional probabilities P(posi · pos I pos) and P(pos · posi I pos) are computed from the frequencies of pos , posi · pos and pos · posi in the corpus using the following equations . P( . . I ) _ P(posi · pos) _ J (posi • pos) pos, pos pos - P(pos) - f(pos) ( . . I ) _ P(pos · posi )  _ f(pos · posi )  p pos pos, pos - P(pos) - f (pos) Therefore, n-gram statistics , the frequencies of all the symbol sequences appearing in the corpus , are applicable to compute the entropies . To calculate n-gram statistics for arbitrary n ,  we adopted the algorithm proposed in [Nagao and Mori , 1994] . Notice that n is more than one and does not exceed the length of the longest sentence in the corpus, because n-grams containing a symbol for final punctuation mark never appear in rewriting rules , except for ones with S on the left-hand side . In addition to entropy, we p ropose another measure of constituency : the ratio of delimiters which precede or follow the POS sequence in question. In our method the delimiters are sentence-final punctuation mark and comma. To extract constituent-like POS sequences from the corpus , we set threshold values for the entropies (Hmin ) and for the delimiter ratios (Pdmin ) - From the discussion above, the following four inequalities are the conditions for a constituent-like POS sequence: l . H1 (pos) 2: Hmin 2. Hr (pos) 2: Hmin 3 .  Pd1 (pos) = P( " ." · pos I pos) + P( " ," · pos I pos) 2: Pdmin 4 .  Pdr (pos) = P(pos · " ." I pos) + P(pos · " ," I pos) 2: Pdm in Under the conditions Hmin = 3 and Pdmin = 0 .05 ,  429 POS sequences are extracted . Table 2 shows 20 of them in order of frequency. 
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Table 2: Samples of extracted part-of-speech sequences 

f H1 Hr Pdr Pdr pos f H1 Hr Pdr Pdr pos 
54724 3 . 1  3 .3  0 . 16 0 . 19 NNP 13327 3 .6  3 .4 0 .06 0 . 08 VBN 
39375 3 .6 3 .6  0 .05  0 . 27 NNS 95 1 9  3.8 3 .5 0 .08 0 . 34 JJ -NNS 
23758 3 .2  3 . 5  0 .20 0 . 17 DT-NN 9385 3 .2  3 .2 0 .07 0 .22 IN -NNP 
20088 3 .3  3 .4 0 .24 0 .25 NNP-NNP 9278 3 .4 3 .5  0 . 09 0 .24 IN -DT-NN 
1 9055 3 . 1  3 .8  0 .09 0 .06 VBD 7753 3 .5 3 .0 0 .33 0 .05 PRP 
1 8460 4 . 2  4 .0  0 . 1 7  0 . 16 RB 7487 3 .0 3 .3 0 . 15 0 .25 DT-JJ -NN 
14550 3 .7  3 . 1  0 .06 0 . 1 7  CD 7296 3 .8 3 .5  0 .09 0 .33 NN -NNS 

2 .3  Similarity between Constituents 
The second step is to cluster the POS sequences extracted in the first step . The following is 

• � • • I. 

our second hypothesis , which gives a measure of this clustering . 

• POS sequences directly derived from the same non-terminal symbol have similar environ­
ments. 

To explain the background of this hypothesis , let us consider the case in which the grammar 
contains the following rewriting rules. 

This means that POS sequences which can appear to the left or right of the two POS sequences 
pos e 1 and pos e'2 are those which can also be found to the left or right of syne . It inust 
reasonably be expected tha·t two constituent-like POS sequences which are derived from a single 
non-terminal symbol will have similar probability distributions for the POSs which precede and 
follow them. We choose , as a measure of similarity to cluster extracted POS sequences , the 
Euclidean distance between two probability distributions . The clustering is composed of the 
following three processes ( see Figure 2 ) . 

1 .  Produce a graph whose nodes correspond to POS sequences and whose arcs correspond 
to the Euclidean distance between two POS sequences . 

,, � . 
2 .  Delete arcs whose value is greater than a threshold value (Dm in ) -

3 .  Decompose the graph into connected components by examining connectivity. 

Each connected component corresponds to a cluster and the nodes to their elements . Table 3 
shows the result of clustering under the conditions Hm in = 3 ,  Pdm in = 0 .05 and Dm in = 0 .25 .  
In this table , "area'' i s  a value given to each cluster which is  calculated by summing the product 
of the length and the frequency of each element 1 . 2.4 Selecting Rewriting Rules 

After clustering , a new set of rewritill'g rules can be obtained from any cluster by putting 
each of the POS sequences on the right-hand si�e of a rule and introducing a new single non­
terminal symbol on the left-hand sides . Next , the system applies them to reduce the corpl.ls for 

1 More precisely, the frequency of shorter sequences is reduced by considering their overlap with longer ones. 
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Figure 2 :  Clustering part-of-speech sequences ( Dmin = 0 .25) further extraction of rewriting rules which may contain non-terminal symbols on their right­hand side . It_ is possible , however, that two or more rewriting rules will conflict with each other. Let us consider the following two rewriting rules made from the first element of the second cluster in Table 3 and the third element of the third cluster , where syn2 and syn3 are non-terminal symbols introduced for the second cluster and the third cluster respectively. 
syn2 --+ DT · N N 

syn3 --.. IN · DT · NN In this case , rule (2)  can be represented using rule ( 1 ) ,  as follows . 
( 1 )  

(2) 

Considering cases like this, we can conclude that changing all the clusters into rewriting rules and applying them to the corpus would disturb the appropriate extraction of rewriting rules . For this reason, the system selects only one cluster from the output of the second step . We 
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Table 3 :  An example of result of clustering 

area f Hz Hr pos area f Hz Hr pos 
20260 19055 3 . 1  3 . 8  VBD 803 1 7  6553 3 .2 3 .4 IN -NN 

1 20-5 3 .2  3 . 8  RB -VBD 3722 3 . 1  3 .6 IN -NNS 
86473 23758 3 .2  3 . 5  DT - N N  9278 3 .4 3 . 5  IN -DT-NN 

3905 3 .0 3 .7  DT -NNS 1499 3 .6 3 .7 IN -DT-NNS 
2 1 37 3 . 1  3 . .  s PRPS -NN  1771  3 . 1  3 .3 JN .JJ -NN 
7487 3 . 0 3 . 3  DT -JJ -NN 2555 3 .2 3 . 3  IN -JJ -NNS 
1 102 3 . 1  3 . 7  DT -JJ -NNS 1326 3 .4 3 . 3  IN -DT-NN -NN  
1 106 3 .2  3 .5  DT- \ N  ·IN -DT -NN 3283 3 .0 3 .5 IN -DT-JJ -NN 

'·area . .  i s  a value given to  each cluster which i s  calculated by  summing 
the product of the length and the frequency of each element . 

chose the --area·' of the cluster as the measure for select ing the best cluster .  This is based on 
the th ird hypot hesis presented below . 

• The most suit able set of rewriting rules makes the greatest reduction of the corpus size . 

One may expect that a large value for area means that the rewriting rules of the cluster are 
basic symbol sequences which appear regardless of t heir global environment . And the larger 
t heir area is . the more their applicat ion ,vill reduce the number of symbols in the corpus. 

3 Algorithm 

\\"e developed a system. ba5ed on t he hypotheses discussed in the previous section , which 
ext racts a set of rewrit ing rules from a corpus and applies them to the corpus. The system 
executes the following four processes repeatedly : 

1 .  Compute n-gram statist ics on t he corpus , 

2 .  Ext ract part-of-speech sequences whose frequency is more than f m in and which meet the 
conditions H min = 3 and Pdm i n  = 0 .05. 

3. Cluster the part-of.:speech sequei1ces and select a cluster to produce a set of rewriting 
rules , 

4 .  Rewrite the corpus : applying the rewriting rules . 

In the experiment ,  t he initial value of f m in is equal to 2 ,000. If no POS sequence is extracted 
in the second process , f m in is mul t iplied by 0.9 and the second process is repeated with the 
new fm in · If fm in becomes less than 50 , the system stops . Below , we describe more precisely 
the la5t two processes . 

3 . 1  Produce Rewriting Rules 

As we described above , the system extracts constituent-like POS sequences and clusters them 
depending on their distributional similarit y. Next it selects the cluster which has the largest 
,:area'' in the corpus to produce rewriting rules . The last process is to select a non-terminal 
to  put on the left side of rewriting rules . There are two cases, depending on the number of 
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POS sequences in the cluster which consist of a single non-terminal symbol . If there is exactly 
one, that non-terminal symbol is put on the left-hand side to produce rewriting rules, and the 
rewriting rule which would have that non-terminal symbol on both sides is erased . In the other 
case, i .e .  the number of POS sequences composed of a single non-terminal symbol is zero or 
more than one , the system introduces a new non-terminal symbol and puts it on the left-hand 
side to produce rewriting rules . 

3.2 Rewrite Corpus 

After having produced a set of rewriting rules , the system applies them to every sentence 
in the corpus . At this point ,  there are two problematic situations . The first one is that a 
rewriting rule is applicable in more than one way. For example, suppose that the rewriting rule 
is syn 1 ---+- tag1 · tag1 and the following symbol sequence exists in the corpus : 

. . .  tag1 · tag1 · tag1 . . .  

The rule is applicable to both the first and the last tag1 · tag1 at the same time. To handle 
cases like this , the system applies each rewriting rule simply from left to right .  

The second case i s  that two or  more rewriting rules conflict with each other. For example , 
suppose that there are two rewriting rules such as 

and the following symbol sequence exists in the corpus : 

. . .  tag1 · tag2 · tag3 . . .  

(3) 

(4) 

In this case both of the rules are applicable . To avoid this conflict , the system applies rewriting 
rules in the order of the length of their right-hand side . In this example , only rule ( 4) is applied . 

4 Results 

We conducted experiments on the sentences in WSJ , which are composed of the POS tags in 
Table 1. The corpus contains 24,678 sentences and 549,247 tags . The average sentence length 
is , therefore, 22 .3 tags . Figure 3 shows the distribution by length of sentences in the corpus . 

We ran two experiments with different threshold values for the distance between two distri­
butions (Exp. 1 ,  Dmin = 0.20 and Exp. 2, Dmin = 0.25) . The output of each experiment is 
the final state of the corpus and the extracted rewriting rules. 

4.1 Accuracy of Parsing 

First we discuss the final state of the corpus, which can be regarded as the parsing results. 
Figure 4 shows an example of a parsed sentence , where the symbols starting with "NT" are the 
non-terminal symbols introduced by the system. 

For the evaluation of our experiments we have chosen the measure called "crossing paren­
thesis accuracy" which arose out of a parser evaluation workshop [Black et al. , 1991 ] .  The 
measure is the percentage of POS constituents as output by our system which do not cross any 
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const ituents as parsed in the Penn Treebank . Table 4 shows the crossing parenthesis accuracy 
of our method . In this table, "right linear" means the right binary branching structure and 
''left linear" means the ieft binary branching structure. 

Table 4 :  Result 

# rules # N  C.P.A.  
right linear - - 56.3% 
left linear - - 24.3% 

Exp . 1 956 19 73 .7% 
Exp . 2 594 25 74.8% 

C .P .A .  = Crossing Parenthesis Accuracy 

Since this method parses the corpus by applying rewrit ing rules which are extracted only 
from the POS �equence i.nformation , it ·is quite natural that the a�curacy is less than that of 
gra�mar infer�nce methods profiting from syntactic structure information [Pereira and Schabes , 
1992] [Schabes e t  a { ,  1993] [Brill : 1 993] . In addition to the difference in source inform�tion , it 
must be noted that those methods were tested only on relatively short sentences , while in our 
experiments sentence length is not limited . From this viewpoint one may say that the accuracy 
of our method is sufficiently promising. 

We must draw attention to another difference between our method and the others . They 
simply bracket sentences and are not able to introduce non-terminal symbols , while our method 
is able to infer non-terminal symbols without any information but a corpus. 
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NNP NNP RB VBZ VBN 

s 

· �T002 

NT001 r---;.T003 ___,___ I .... I 
DT JJ NN IN NNP 

Mr. Hahn also · has engineered a surprising turnaround of Georgia-Pacific 

Figure 4 :  An example of a parsed sentence (Exp . 2) 

4.2 Evaluation of Rewriting Rules 

The other output of our system is a set of rewriting rules . Its quantitative evaluation is so 
difficult that w� cqmpare them w�th a general English grammar. 

Table 5 shows some . rewriting rules extracted in Experiment 2. Almost all the rules here 
are comprehensible from ·the viewpoint of general English grammar: NT00l represents noun 
phrase, NT002 prepositional phrase and, so on . The interesting thing in this table is that the 
rewriting rules whose left-hand side is NT006 have various combinations of noun phrases and/or 
prepositional phrases on their right-hand side . They must be considered as verbal case frames. 
This indicates that it is possible to extract types of verbal case frames, which is defined a priori 
in various attempts· at automatic case frame acquisition [Brent and Berwick ,  1 99 1] [Brent ,  1991] 
[Manning, 1993] . 

Elsewhere , however, the grammar contains some inappropriate rewriting rules , as follows: 

NT002 _. IN · J J R · N N S · N N S 

It would be better to represent this by the following rules instead . 

NT002 _. IN ·  NT00l NT00l _. JJR · N NS · N NS 

It is tme . that there are _some rewriting rules like this in the grammar but, as we mentioned 
above, almost all the non-terminal symbols are comprehensible. Since our method assumes 
simple �on text-free language as the model and extracts a grammar based on hypotheses deduced 
from its characteristics , tpese results l�ad to the conclusion that structural features of langu_age 
ca11 be fXtracted usi11g simple statistical methods . 

It should . also be added _that it is difficult to evaluate a grammar because the evaluation 
depends on the language model of the parsed corpus to _be compared . 

5 Conclusions 

In this paper, we hav_e described a new method to parse a tagged corpus without grammar, 
modeling a natural language on context-free language. We proposed the following three hy­
potheses. 
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Table 5: Some rewriting rules extracted in Experiment 2 

NT00l PRP$ · NNS · NNS NT005 VBN · NT002 
NT00l PDT · DT · NNS · NN NT005 - VBG · NT00l 
NT00 l - NNP - NNP - POS - NN NT005 - PRP · MD ·  VB · NT002 
NT00 l - DT · VBG · NNS · NNS NT006 - VB Z · NT005 · NT005 
NT00l - DT - JJ  · NN NT006 - V BZ · NT005 · NT002 
NT002 TO · NT00 l NT006 V BZ · NT005 · NT00l 
NT002 TO · VB · NT00l NT006 - V BZ · NT005 
NT002 ---- TO · VB : 1VNS NT006 --!- V BZ · NT002 · NT005 
NT002 RB · TO · NT00l NT006 - VBZ · NT002 
1VT002 IN · 1VT00 l NT006 - V BZ · N-Y00 l  · NT00l 
NT002 IN · RB · NT00l NT006 - V BZ · NT00l 
NT002 IN - NNS - NN NT006 - V BD · NT005 · NT005 
NT002 TO · NT003 NT006 - VBD - NT002 
�vroo2 RB · i\!T002 1VT006 - MD · VB · NT00l 
NT002 RB · IN · NT003 NT006 - MD · VB · NT00l 
ST002 IN · NT003 NT007 - VBZ - VBN - VBN 
NT003 NNP - NN P - NNP NT007 - MD - VB 
:VT003 NNP - NNP NT008 - NNS - NT006 
?-.fT003 NT003 · CC ·  NT003 NT008 N NS · V BP · NT005 
1VT004 NN - lv·N NT008 - NNS - VBP - NTO0l 
NT004 JJ - NN - 1\fN NT009 ---- NT004 · NT00S 
1VT005 NT002 · VB N · NT002 NT009 - NT003 · J J · NT00S 
NT005 NT00 l · NT002 NT0lO  - WRB · PRP · NT006 
NT005 NT00l · V BN · NT002 NT010  - V BG · NT004 · NT006 
NT005 NT00l · VBG · NT002 NT010  - VBG - NT004 

1. POS sequences on the right-hand side of a rewriting rule are less constrained as to what 
POS precedes and follows them than non-constituent sequences . 

2 .  POS sequences directly derived from the same non-terminal symbol have similar environ­
ments .  

3 .  The most suitable set of  rewriting rules makes the  greatest reduction of  the corpus size. 

Then , we developed an algorithm based on these hypotheses which extracts rewriting rules 
and parses tl�e sentences at the same time. The correctness of these hypotheses has been 
experimentally attested by the evaluation of the extracted grammar and parsing accuracy. 

The method we have proposed in this paper is a bottom-up approach to grammar infer­
ence . On the other hand, a top-down approach such as [Magerman and Marcus, 1 990] may also 
be important for grammar induction . Clustering techniques , e.g. [Hindle , 1 990] and subcat­
egorization techniques , e .g. [Brent , 1991] may bridge the gap between these two approaches . 
Combining these techniques including tagging techniques , larger amounts of syntactic informa­
tion can be retrieved from unbracketed corpora or even from untagged corpora. 
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