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1 Introduction 

A fundamental concept of Head-Driven Phrase Structure Grammar (HPSG: (PS87, PS94] )  _is the notion of a SIGN. A SIGN is a structure integrating information from all levels of linguistic analysis such as phonology, syntax and semantics. This structure also specifies interactions between these levels by means of coreferences which indicate the sharing of information and how the levels constrain each other mutually. Such a concept of linguistic description is attractive for several reasons: 
• it supports the use of common formalisms and data structures on all levels of linguistics 
• it provides declarative and reversible interface specifications between the levels 
• all information is available simultaneously 
• no procedural interaction between linguistic modules needs to be set up 

Similar approaches especially for the syntax-semantics interface have been suggested for all major unification-based theories of grammar, such as LFG or CUG. For these theories and their underlying formalisms it was shown how to provide at least partial and underspecified sem.antic descriptions in parallel to syntax. (HK88) call such approaches codescriptive in contrast to the approach of description by analysis which is closely related to sequential architectures where linguistic levels correspond to components which operate on the basis of the (complete) analysis results of lower levels. Unification-based theories of grammar are expressed in feature-structure formalisms by equa­tional constraints. Semantic descriptions are expressed there by additional constraints. Though theoretically very attractive, codescription has its price: The grammar is difficult to modularize and there is a computational overhead when parsers use the complete descriptions. Problems of these kinds which were already noted by (Shi85) motivated the research described here. The goal is to develop more flexible ways of using codescriptive grammars than having them applied by a parser with full informational power. The underlying observation is that constraints in such grammars can play different roles: 
• "genuine" constraints which take effect as filters on the input. These relate directly to the grammaticality (wellformedness) of the input. Typically, these are the syntactic con­straints. 
• "spurious" constraints which basically build . representational structures. These are less concerned with wellformedness of the input but rather of the output for other components in the overall system. Much of semantic descriptions is of this kind. *This work was funded by the German Federal Ministry of Education, Science, Research and Technology (BMBF) in the framework of the Verbmobil Project under Grant 01 IV 1 01 K/1.  The responsibility for the contents of this study lies with the authors. We are grateful to three anonymous IWPT referees. 
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If the parser generated from such a grammar specification treats all constraints on a par it cannot distinguish between the structure building and the analytical constraints. Since unifi­cation based formalisms are monotonic, large structures are built up and have to undergo all the steps of unification, copying and undoing in the processor. The cost of these operations (in time and space) increase exponentially with the size of the structures. In the VERBMOBIL project ( [Wah93, KGN94] ) the grammar parser is used in the context of a speech translation system. The parser input consists of word lattices of hypotheses from speech recognition. The parser has to identify those paths in the lattice which represent a grammatically acceptable utterance. Parser and recognizer are incremental and interactively running in parallel. Even for short utterances the lattices can contain several hundred of word hypotheses and paths most of which are not acceptable grammatically. The basic idea presented here is to distribute the labour of evaluating the constraints in the grammar on several processes. Important considerations in the design of the system were: • increase in performance • maintenance of an incremental and interactive architecture of the system1 • minimize the overhead in communication between the processors Several problems must be solved for such a system. First, it must be able to work with partial (incomplete) analyses. Also, synchronization of the processors for the exchange of information about success and failure in analysis is necessary. In the following sections we will discuss these constraints in more detail. After that we will describe the communication protocol between the parsing processes. Then several options for creating subgrammars from the complete grammar will be discussed. The subgrammars repre­sent the distribution of information across the parsers. Finally, some experimental results will be reported. We used a mid-size German grammar written in the typed-feature formalism TDC ([KS94] ) which covers dialogs collected in VERBMOBIL. In this system principles of HPSG are defined as types which are inherited by the grammar rules. The grammar cospecifies syntax and seman­tics in the attributes SYN and SEM. To facilitate experimentation with distributed processing a slightly unconventional SIGN-structure was chosen. Additionally to the SYN- and SEM attributes for syntactic/semantic descriptions some features such as SUBCAT were singled out as control structures for the derivation processes which are shared by the subgrammars. Furthermore, unique identifiers for grammar rules and lexical entries had to be provided for the communica­tion between the parsers, as will be explained below. 
2 The Architecture The most important aspect for the distribution of analysis and for defining modes of interaction between the analysis processes (parsers) was that one of the processes was to work as a filter on the word lattices reducing the search space. The other component then would work only with successful analysis results of the other one. This means that the two parsers would not run really in parallel on the input word lattices. Rather one parser would be in control over the second one which would not be exposed directly to the word lattices. For reasons which will become obvious below we will call the first of these parsers the SYN -parser, the second one controlled by the SYN-parser, the SEM-parser. Another consideration to be taken into account is that the analysis should be incremental and time-synchronous. For the interaction of the parsers this implied that the SYN-parser must not send its results only when it is completely finished with its analysis , forcing the SEM-parser to wait .2 

1 The system alluded to here and below which provided the context of this work, was the INTARC-II-prototype 
of VERBMOBIL which was officially presented in April 1995. 

2 Another problem in incremental processing is that it is not known in advance when the utterance is finished 
or a new utterance starts. To deal with this, prosodic information is taken into account. ·This will not discussed 
here. 
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Interactivity is another aspect we had to consider. The SEM-parser must be able to report back to the SYN-parser at least when its hypotheses failed. This would not be possible when the SEM-parser has to wait till the SYN-parser is finished. This requirement also constraints the exchange of messages. Incrementality and interactivity imply a steady exchange of messages between the parsers. An important consideration then is that the overhead for this communication does not outweigh the gains of distributed processing. This consideration rules out that the parsers should com­municate by exchanging their analysis results in terms of resulting feature structures. There are no good ways of communicating feature structures across distinct processes except as (large) strings. This means that the parsers would need the possibility to build strings from feature structures and parse strings into feature struct�res. Also, on each communication event the parsers would have to analyze the structures to detect changes, whether a structure is part of other already known structures etc. It is hard to see how this kind of communication can be interleaved with normal parsing activity in efficient ways. In contrast to this, our approach allows to exploit the fact that the grammars employed by the parsers are derived from the same grammar and thereby similar in structure. This makes it possible to restrict the communication between the parsers to information about what rules were successfully or unsuccessfully applied. Each parser then can reconstruct on his side the state the other parser is in: how its chart or analysis tree looks like. Both parsers try to maintain or arrive at isomorphic charts. The approach allows that the parsers never need to exchange analysis results in terms of structures as the parsers should always be able to reconstruct these if necessary. On the other hand, this reconstructibility poses constraints on how the codescriptive grammar can be split up in subgrammars. The requirements of incrementality, interactivity and efficient communication show that our approach does not emulate the description by analysis-methodology in syntax-semantics inter­faces on the basis of codescriptive grammars. 
3 The Parsers The SYN-parser and the SEM-parser are agenda driven chart parsers. For speech parsing the nodes represent points of times and edges represent word hypotheses and paths in the word lattice. The parsers communicate by exchanging hypotheses, bottom-up hypotheses from syntax to semantics . and top-down hypotheses from semantics to syntax. • Bottom-up hypotheses are emitted by the SYN-parser and sent to the SEM-parser. They undergo verification at the semantic level. A bottom-up hypothesis describes a passive edge ( complete subtree) constructed by the syntax parser and consists of the identifier of the rule instantiation that represents the edge and the completion history of the constructed passive edge. Having passive status is a necessary but not sufficient condition for an edge to be sent as hypothesis. Whe�her a hypothesis is sent depends also on other criteria such as its score. In the actual system the SYN-parser is a probabilistic chart parser using a statistic language model as additional knowledge source ( [HW94]). • Top-Down hypotheses result from activities of SEM-parser trying to verify bottom-up­hypotheses. To keep the communication efforts low only failures are reported back to the SYN-parser by sending simply the hypothesis ' identifier. This should start a chart. revision process on the SYN-parser's side.3 

The central data structure by which synchronization and communication between the parsers is achieved is that of a completion history containing a record on how a subtree was completed. Basically it tells us for each edge in the chart which other edges are spanned. The nodes in the chart correspond to points in time and edges to time intervals spanned. In contrast to standard chart parsing gaps may occur between two consecutive edges. The relaxation of this constraint helps to reduce the number of bottom-up-hypotheses. 3This revision process is currently under investigation. 
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Completion histories are described by the following BNF: 
edge_id := " E" INTEGER 
rule_id := " R" INTEGER 
node_id := " N "  INTEGER 
edgeJist := rule_id ( (rule_id node_id node_id) I edge_id)*  
completion..history := (edgeJist M)*  

E ,  R, N and M are delimiters and INTEGER is  an integer used as identifier. E marks an identifier 
for a subtree which has already been sent as hypothesis (hypothesis' identifier) to SEM-parser, 
R an identifier for the rule used to build the subtree, N the nodes in the subtree and M delimits 
a list of edges representing the completion history of a completed part of the current edge. The 
following example illustrates a complex completion history: 

R 1 R 4  R 2  
R O  

R 10052 N 0 N 1 R 10032 N 1 N 2 M R 10275 N 2 N 3 R 103 1 1  N 3 N 4 M R l N 0 N 2  R 4 N 2 N 4  M R 2 N 0 N 4  E 1 M 
·!;- .:-: 

• • • # 

. This protocol allows the parsers efficiently to exchange information a�out the structure of 
their chart without having to deal, with explicit analysis results as feature structures. 

Since the SEM-parser does not work directly on linguisiic input but is fed by ·the SYN-parser 
there are some differences to ordinary chart-parsing. The SEM-parser uses a two-level agenda­mechanism. The low-level agenda manages the bottom-up hypotheses from the syntax. It is 
currently a queue, that is, hypotheses are treated in a FIFO manner. The high-level _ agenda 
is an agenda as known from chart parsers with scanning, prediction and combination tasks. 
What is special here is that the structure of the high-level-agenda is guided mainly_ by the 
low-level-agenda. Since the SEM-parser is controlled by the SYN-parser there are two parsing 
modes: 

• non-autonomous parsing: The parsing process consists mainly of constructing the tree 
described by the completion history by using the semantic counterparts of the rules which 
led to the syntactic hypothesis. If this fails because of semantic constraints this is reported 
back to the SYN-parser. 

• quasi-autonomous parsing: If no syntactic hypotheses are present the parser extends the 
chart on its own using its rules by completion and prediction steps. Obviously, this is 
only possible after some initial information by the SYN-parser, since the SEM-parser is not 
directly connected to the input utterance. 

We ignore here that SYN-parser and SEM-parser also receive hypotheses from prosody about 
phrase boundaries and utterance mood which . also influence the parsing process. 

4 Compilation of Subgrammars 
In the following sections we discuss possible options and problems for the · distribution of in­
formation in a cospecifying grammar. In our · approach the question arises in the form that we 
have to specify which of the parsers uses what information. This set of information is what we 
call a subgrammar. These subgrammars are generated from a common source grammar. 

4. 1 Reducing Representational Overhead by Separation of Syntax 

and Semantics 

An obvious choice for splitting up the grammar was to separate the linguistic levels (strata) , 
such as syntax and semantics. This choice was also motivated by the observation that typically 
the most important constraints on grammaticality of the input are in the syntactic part while 
most of the semantics was purely representational. 4 A straightforward way to achieve this is 4This must be taken cum grano salis as it depends on how a specific gram�ar draws the line between syntax and semantics: selectional constraints; e.g. for ·verb arguments, typically are part of semantics and are true constraints. Also, semantic constraints would have a much larger impact if, for instance, agreement constraints would be considered as semantic, too, as [PS94] suggest . 
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by manipulating grammar rules and lexicon entries: for the SYN-parser, we delete recursively the information under the SEM attributes and similarly cle� the SYN attributes to obtain the subgrammar for the SEM-parser. We abbreviate these subgrammars by Gsyn and Gsem and the original grammar by G. This methodology reduces the size of the structures for the SYN,-parser for lexical entries to about 30% of the complete structure. One disadvantage of this simple approach is that coreferences between the linguistic levels syntax and semantics-which will be referred to as the core/ erence skeleton-disappear. This might lead to several problems which we address in Section 4.2. Sections 4.3 then discusses possible solutions. Another, more sophisticated way to keep the structures small is due to the type expansion mechanism in TD£ ([KS95] ) .  Instead of destructively modifying the feature structures before­hand, we can employ type expansion to let SYN or SEM unexpanded. This has the desired effect that we do not lose the coreference constraints and furthermore are free to expand parts of the feature structure afterwards. We will discuss this feature in Section 4.4. In the actual system this option was not available as its SYN-parser ( (HW94] ) employed a simpler formalism which does not provide type expansion. Therefore the TD£ (sub-)grammar had to be expanded beforehand in order to transform the structures to that formalism. 
4.2 Problems 

Obviously, the biggest advantage of our method is that unification and copying becomes faster during processing, due to the smaller structures. We can even estimate the speed-up in the best case, viz., quasi-linear w.r.t. input structure if only conjunctive structures are used. Clearly, if many disjunctions are involved, the speed-up might even be exponential. However, the most important disadvantage of the compilation method is that it no longer guarantees correctness , that is, the subgrammar(s) might accept utterances which are ruled out by the full grammar. This is due to the simple fact that certain constraints are neglected in the subgrammars. If at least one such constraint is a filtering constraint , we automatically enlarge the language accepted by this subgrammar w.r.t. complete grammar. Clearly, completeness is not affected, since we do not add further constraints to the subgrammars. At this point, let us focus on the estimation above, since it is only a best-case forecast. Sure, the structures become smaller; however, due to the possible decrease of filter constraints, we must expect an increase of hypotheses in the parser. And in fact, our experimental results in Section 5 show that our approach has a different impact on the SYN-parser and the SEM-parser ( see Figure 1 ) .  Our hope here, however, is that the increase of non-determinism inside the parser is compensated by the processing of smaller structures (see [MK91) for more arguments on this theme). In general, even the intersection of the languages accepted by G syn and G sem does not yield the language accepted by G, but only the weaker relation £(G) C £(Gsyn ) n £(Gsem ) holds. This behaviour is an outcome of our compilation schema, namely, cutting reentrancy points. Thus, even if an utterance S is accepted by G with analysis f s (feature structure) , we can be sure that the unification of the corresponding results for G syn and G syn will subsume f s :  
f S :5 f Ssyn I\ f S sem - Let us mention further problems. First, termination properties might change in case of the subgrammars. Consider a subgrammar which contains empty productions or unary rules. As­sume that such rules were previously "controlled" by constraints that are no longer present. Obviously, if a parser is not restricted through additional, non-grammatical constraints, the iterated application of these rules could lead to an infinite computation, i.e., a loop. This was sometimes the case during our experiments. Second, recursive rules could introduce infinitely many solutions for a given utterance. Theo­retically, this might not pose a problem, since the intersection of two infinite sets of parse trees might be finite. However in practice this problem is hard to avoid. 
4.3 Solutions 

In this section, we will discuss three solution to the problems mentioned in the last section. 
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Feedback Loop. Although semantics construction is driven by the speech parser, the use of different subgrammars suggest that the speech parser should also be guided by the SEM-parser. This can be achieved by sending back falsified hypotheses. Because hypotheses are uniquely identified in our framework, we must only send the integer that identifies the falsified chart edge. How�ver, such an approach presumes that the SYN-parser is able to revise its chart ( cf. [Wir92] ). This idea is currently under implementation. Coref Skeleton. In order to guarantee correctness of the analysis , we might unify the results of both parsers with the corresponding coref skeletons at the end. This strategy will not be pursued here since it introduces an additional processing step during parsing. It would be better to employ type expansion here in order to let SYN or SEM unexpanded so that coreferences can be preserved. Exactly this treatment will be investigated in the next section. Full-Size Grammar The most straightforward way to guarantee correctness is simply by employing the full-size grammar in one of the two parsers. This might sound strange, but recall that we process speech input so that even a s·mall grammar constrains possible word hypotheses. We suggest that the SEM-parser should operate on the full-size grammar since the speech parser directly communicates with the word recognizer and must process an order of magnitude more hypotheses than the SEM-parser. Because the SEM-parser passes its analysis on to the semantic evaluation module, it makes further sense to guarantee correctness here. This has been the final set-up during our experiments. 
4.4 Improvements This section investigates several improvements of our compilation approach which solve the problems mentioned before. Identifying Functional Strata Manually. Normally, the grammarian "knows" which in­formati9n needs to be made explicit . Hence, instead of differentiating between the linguistic strata SYN and SEM, we let the linguist identify which constraints filter and which only serve as a means for representation ( cf. [Shi85] ) . In contrast to the separation along linguistic levels this approach adopts a functional view cutting across linguistic strata. On this view, the syntactic constraints together with e.g. semantic selection constraints would constitute a subgramniar. Bookkeeping Unifications. A semi-automatic way to determine true constraints w.r.t . a training corpus is simply by bookkeeping feature unification. Features that occur only once on top of the input feature structures do not specialize the information in the resulting structure ( actually the values of these features) . Furthermore, features typed to T ( top; = [ ]) do not constrain the result. For instance 

This unification indicates that only the path A needs to be made explicit , since its value is more specific than the corresponding input values: s A v � s and s A v � v.  Partial Evaluation. Partial evaluation, as known from logic programming ( [War92]) , is a method of carrying out part of the computation at compile time that would otherwise normally be done at run time, hence improving run time performance of logic programs. Analogous to partial evaluation of definite clauses, we can partially evaluate annotated grammar rules, since they drive the derivation. Take for instance· the following grammar rule in TD.C: 
np-det-rule : = 

max-head-1-rule --> < det-cat-type , n-bar-cat-type > .  

max-head- 1-rule, det-cat-type, and n-bar-cat-type are types which participate in type inheritance and abbreviate complex typed feature structure. Partial evaluation means here to substitute type symbols through their expanded definitions. Because a grammar contains finitely many rules of the above form and because the daughters (the right hand side of the rule) are type symbols (a:nd there are only finitely many of them) , this partial evaluation process can be performed off-line. Now, only those features are made 
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number of sentences: 56 average length: 7.6 
SynSem Syn Sem · Sem-1 SynSem-1 

% % % % run time: 30.6 15:2 50 45.8 150 51 .8  169 32. 1 105 #readings: 1 .7  2 . 1  123 1 .8  105 4.2 247 3 .8 224 #hypotheses: 53.0 58. 1 1 10 81 .3  153 *4.2 *4.6 #chart edges: 192.0 215.0 112 301 . 1  156 361 .7  188 227.7 1 19 
Figure 1 :  Experimental results of SYN/SEM separation. The two last columns indicate the per­formance in incremental mode. * indicates the number of top-down hypotheses which are sent back by the feedback loop to the SYN-parser (see Section 4 .3) . The percentage values are relative to SynSem. 
explicit which actively participate in unification during partial evaluation. In contrast to the previous method, partial evaluation is corpus-independent . 

Type Expansion. We have indicated earlier that type expansion can be fruitfully employed to preserve the coref skeleton. Type expansion can also be chosen to expand parts of a feature structure on the fly at run time. The general idea here is as follows. Guaranteeing that the . lexkon entries and the rules are consistent, we let everything unexpanded unless we are enforced to make structure explicit . As was the case for the previous two strategies, this is only necessary if a path is introduced in the resulting structure which value is more specific than the value(s) in the input structure(s) . The biggest advantage of this approach is obvious-only those constraints must be touched which are involved in restricting the set of possible solutions. Clearly, such a test should be done every time the chart is extended. The cost of such tests and the on-line type expansions need further investigation. 
5 Experimental Results 

This section presents experimental results (Fig. 1 )  of our compilation method which indicate that the simple SYN / SEM separation does not match the distinction between true and spurious constraints. The measurements have been obtained w.r.t . a corpus of 56 sentences from 4 dialogs . For the measurements we used as SYN-parser a simple bottom-up chart-parser. Also, no language model was used, nor other information from acoustics. The column Syn shows that parsing with syntax only takes 50% of the time of parsing with the complete grammar (SynSem) . The number of readings, hypotheses , and chart edges only slightly increase here. Surprisingly however, by employing G sem only, run time efficiency de­creases massively (Sem: 150%) ,  due to the increase in the number of hypotheses (153%) . This indicates that most of the filtering constraints are specified in the syntax. Consequently, the incremental version of semantics construction (Sem-1) is in total even more worse, due to the incremental behaviour of the SEM-parser, namely, to create readings as early as possible and to pass these results immediately on. SynSem-1 depicts the measurements for the incremental version of the SEM-parser with the full-size grammar G. The apparent increase in the number of readings in the incremental mode is a bit misleading. Since in absence of information about the length of the utterance in incremental mode the parser used as sole criterion for a reading that there is an edge from the start to the current point of time which represents a maximal, saturated sign. This means for instance that it will always emit the sentence topic in verb-second sentences as a separate reading. Also, if a sentence ends with a sequence of free adjuncts, the parser will assume as many readings as there are adjuncts . So a sentence like I have a meeting on monday with John in incremental mode will get the following sequence of partial pseudo- "readings" : J, I have a meeting, I have a meeting on monday, I have a meeting on monday with John. In general, there is only a small overhead in incremental mode because we are operating over a chart which allows to reuse the parts already analyzed. 
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In the context of the INTARC-II system with word lattice parsing the combination of running the SYN-parser with the syntactic part of the grammar on the word lattices and running the SEM-parser with the full grammar (Synsem-1) proved to be quite efficient. That the SEM-parser has to deal with larger analysis structures in this setup was by far made up for by the fact that it had much lesser hypotheses to evaluate than the SYN-parser on the word lattice. 
6 Conclusions Linguistic theories like HPSG provide an integrated view on linguistic objects by providing a framework with a uniform formalism for all levels of linguistic analysis. All information is integrated in a single information structure, the SIGN . Though attractive from a theoretical point of view, it raises questions of computational tractability. We subscribe to that integrated view on the level of linguistic descriptions and specifications. On the other hand, from a com­putational view, we think that for special tasks not all that information is useful or required, at least not all at the same time. In this paper we described first attempts to make a more flexible use of integrated linguistic descriptions by splitting them up into subpackages that ·are handled by special processors. We also devised an efficient protocol for communication between such processors. First results have been encouraging. On the other hand, we addressed a number of problems and possible solutions. Only further research can show which one to prefer. 
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