PANGLYZER: SPANISH LANGUAGE ANALYSIS SYSTEM

David Farwell Steve Helmreich Wanying Jin Mark Casper
Jim Hargrave Hugo Molina-Salgado Fuliang Weng

Computing Research Laboratory
New Mexico State University

ABSTRACT

The purpose of this paper is to describe the functions and procedures of the eight
components of the Panglyzer Spanish analyzer of the knowledge-based engine of the
Pangloss machine translation system. The Panglyzer follows a multi-pass approach
consisting of preprocessing, part-of-speech tagging, phrase recognition, proper name
classification, phrase analysis, clause recognition, clause analysis and reading ranking.

Introduction

The function of the Spanish analysis component of the PANGLOSS system, or PANGLYZER, is
to provide for each clause in the input text a set of possible meaning representations ranked on the basis
of likelihood. These are then handed to an augmentor which either interactively or automatically selects
a representation from among the set of possibilities and fills in various sorts of information to produce a
reading that is compatible with the context and that can act as a basis for generation.

The approach has been to develop the system in a bottom up manner focusing on providing layer
after layer of increasingly abstract analysis in a multi-pass process. This multi-pass architecture allows
for semi-independent module construction, incremental development, and is amenable to robust perfor-
mance. Each level of analysis is based on a focussed type of knowledge and, to the extent possible,
exploits proven techniques. The levels alternate between recognition (segmentation) modules and anal-
ysis modules. For example, the preprocessor segments text into words while the part-of-speech tagger
analyzes their part of speech. Since a high premium has been placed on robustness, we are following
an iterative approach to design which relies on rapidly producing an initial prototype and then following
a short test and revise cycle. Thus, at this point, all but the deepest level of analysis produces through-
put and the on-going objective is to improve the accuracy of that throughput from one test cycle to the
next

System Architecture

The architecture of the PANGLYZER is a by-product of the bottom up approach to development
described above. It consists of eight components that sequentially process the data. The first is a Pre-
processor which converts a text length input ASCII character string into a file of PROLOG data struc-
tures and then builds PROLOG strings corresponding to the sentences of the input text. The second is a
Spanish Part-of-Speech Tagger which provides a standard data structure for each item of an input

56

PROLOG string which includes a part of speech, relevant inflectional information, and position index.
The third component is the Phrase Recognizer which groups contiguous elements of the input part-of-
speech tagged string into phrase length chunks, inserting brackets around the chunks and assigning
phrasal categories. The fourth component is a Proper-Noun Classifier which, operating over the entire
text, assigns a semantic category such as personal name, place name, company name, and so on, along
with relevant inflectional information to each element of the input tagged as a proper noun. The fifth
component, the Phrase Analyzer, provides a set of possible semantic representations for each phrase of
the input string. The sixth component is a Clause Recognizer which groups contiguous sets of phrase
analyses in the input string into clause length chunks, inserting labeled brackets indicating clause types
around the chunk and indexing its positions within the clause. The seventh component, the Clause Ana-
lyzer, assigns syntactic dependency relations such as head, subject-of, object-of, circumstantial-
modifier-of, and so on to the various constituent phrases of each clause. The eighth component is the
Reading Ranker which provides a likelihood score for each possible combination of phrase analyses
given their contexts within the clause.
1. Preprocessor

The function of the Preprocessor is to convert a Spanish input text, in the form of an ASCII file,
into a file of data structures. First, the input ASCII file is converted into a file of PROLOG strings each
of which contains a single atom corresponding to a word or punctuation mark in the input text. In
regard to the example text,

Al momento de su venta a Iberia, VIASA contaba con ocho aviones, que tenian en promedio

13 arios de vuelo. (At the time of its sale to Iberia, VIASA had eight airplanes, which had

an average of 13 years of flight time.)

the initial conversion process results in a file of PROLOG strings of the form:
['Al'].Jmomento].[de].[su].[venta].[a].['Iberia'].[",'].['VIASA']....

In the second step, these unit strings are concatenated into PROLOG strings corresponding to the
sentences of the input text. The Preprocessor takes as input the file of unit PROLOG strings above and
yields a file of Prolog strings of the form:

['Al',;nomento,de,su,venta,a,'Tberia’,',','VIASA',...].

2. Spanish Part-of-Speech Tagger

The Spanish part-of-speech tagger automatically labels words with part-of-speech categories. The
tagger uses an on-line dictionary, Spanish analytical morphology and fix-up rules to tag words. Fix-up
rules use local context to alternate the part-of speech in case the part-of speech is inappropriate.

The morphological analyzer takes as input a sentence, analyzes each word and generates the cor-
responding lemma. It also produces morpho-syntactic information gleaned from the word form. Tag
category lookup order was experimentally established and is used to decide the most likely analysis in
case of ambiguity. The morphological analyzer uses the Collins Spanish-English Dictionary for single
word lexical items and a custom built database for phrasals. The morphological analyzer supports all
verbs found in Collins and their inflected forms, as well as most inflectional morphology for nouns,
adjectives, pronouns and articles.

The preliminary tagging by the morphological analyzer results in a string of the form:'

! Although al is tagged as a preposition, under analysis it is treated as the preposition « and the article
el. See the analysis at the end of Section 5.

57

[['Al/al/preposition],
[momento/momento/noun(masculine,sg)],
[de/de/preposition],
[su/su/adjective(neuter,sg)],
[venta/ventar/verb(pres_ind,sg_1)],
[a/a/preposition],
['Iberia/[]/proper_noun(unknown)],
[\/",/punc(comma)],
['VIASA'/[]/proper_noun(unknown)],...

The fix-up rule component takes as input the list of word/lemma/tag sublists in the output above
and uses local syntactic cues to repair common mistakes. The fix-up rules themselves try to match
sequences of words, lemmas, parts of speech or inflectional information against the input. If a match is
found, it triggers the revision of some particular part-of-speech tag. For instance, in the example above,
the verb tag for venta is altered to a noun by a fix-up rule that changes the tag of a verb immediately fol-
lowing a possessive adjective to a noun (if the word in question has a possible noun reading).

3. Phrase Recognizer

The Phrase Recognizer identifies basic grammatical constructions at the phrase level using a Defi-
nite Clause Grammar (Pereira & Warren, 1980; Huang, 1988).” The DCG used by this module is com-
posed of a collection of rules that identify noun phrases np, verbal constructions vc, prepositional
phrases pp, proper noun phrases pn and preposition plus proper noun phrases ppn. Some words fall
into special non-phrasal single-word categories such as conjunctions c¢j, complementizers cm and punc-
tuation pc. The residue of unassimilated words are simply tagged as single-words sw.

Examples of rules used in the DCG to tackle verb constructions and noun phrases are:

verb complex: vc — adverb, verb.
ve — auxiliary, verb.

noun phrase: np — article, noun.
np — article, npl.
npl — noun, adjective.

It should be noted that these are generally not complex. Except for certain cases where the semantic
analysis of the whole is assured to be correct such as phrases like 30 millones de dolares (30 million
dollars), each prepositional phrase, appositive, and complement is analyzed separately. (See footnote 2).

The input file used by the Phase Recognizer is the output from the Tagger. The Phrase Recognizer
takes the first words in the input sentence and tries to match them with one of the constructions deter-
mined by the DCG. When one of the rules succeeds, the sequence of words which satisfies that rule is
bracketed and labeled for the specified category. For instance, for the example sentence, the output
begins with two prepositional phrase spanning elements 1 through 5.

% These grammatical constructions do not directly correspond to any theoretical linguistic constructs.
Instead, they are intended to identify potential arguments, predicates or adjuncts.

58

[[pp,[1,2],[[[1,1],['Al'/al/preposition]],
[[2,2],[momento/momento/noun(masculine,singular)]]]]

[[pp.[3,5].[[3,3],[de/de/preposition]],
[[4,4],[su/su/adjective(neuter,sg)]],
[[5,5],[venta/venta/noun(feminine,singular)]]]],...]

The recognition of grammatical structures proceeds sequentially until all the words in the input have
been given a phrasal analysis. The final output file consists of lists of sublists corresponding to the basic
phrasal constructions determined by the DCG. Each list corresponds to a sentence of the input text.

4. Proper-noun Classifier

The Proper-noun Classifier provides each proper noun with a unique classification from the fol-
lowing list of categories: government entity, geographical entity, corporate entity, human name, date,
professional title. If classification into one of the above categories fails, a default classification of other
is given. The component has a multi-pass architecture. That is, all proper nouns in a text are sent
through pass one. Those that fail to be positively identified are sent through pass two. Again, those fail-
ing to be positively identified undergo pass three. On the first pass, classification is attempted via a list-
based matching scheme. On the second pass, contextual information is used to further disambiguate
non-unique tags from the first pass. Finally, default rules are applied to insure a unique classification for
each proper noun.

The first pass involves searching lists for a complete or partial match with the proper noun under
consideration. The lists used were compiled from a variety of resources including gazetteers, phone
books, etc.

Pass one classification of a given proper noun actually is carried out in two phases. First, an
attempt is made to uniquely tag the proper noun as a date, as a corporate entity, or as a title. If this pro-
cess succeeds, the proper noun is considered to be positively identified, the tag is assigned and process-
ing ends for that item. Once a tag has been assigned, the proper noun and tag are stored for future refer-
ence. If it fails, then the proper noun is exhaustively tagged with every possible classification found by
matching the noun against the word lists. In doing so, a three-level tag-ranking system is employed to
aid in future disambiguation. If this exhaustive tagging procedure results in only one possible tag, then
the item is considered to be positively identified and the tag is assigned.

Pass two attempts to select one of the multiple tags of the exhaustively tagged proper nouns from
the first pass. The first context considered is the set of already uniquely classified proper nouns. Any
partial overlap with such nouns are given the corresponding classification, provided certain partial
match criteria are satisfied.

The second type of context-based selection employed in pass two involves an analysis of the sur-
rounding words, their parts of speech, and their proper-noun classifications (if any). A number of exper-
imentally developed heuristics, involving different combinations of one or more of the above types of
information, are applied to completely select a tag for the proper noun, or, at least, to further reduce the
possible tags by filtering out one or more. Mechanically, the rules are applied starting from those which
utilize the least amount of contextual information to those which utilize the most contextual informa-
tion. If either of these processes select a single tag, the item is considered to be positively identified and
that tag is assigned.

The final pass through the text involves applying default rules to any remaining multiply classified
proper nouns. If exactly one of the possible classifications has highest rank, then it is the classification
assigned to the proper noun; otherwise assign the default tag of other.

59

5. Phrase Analyzer

The function of the Phrase Analyzer is to assign to each phrase identified by the Phrase Recog-
nizer, as extended by the Proper-Noun Classifier, a set of possible meaning representations. The Phrase
Analyzer constructs all possible interpretations for each phrase and then passes them on to the Clause
Analyzer, which is to compose the semantically coherent readings at the clause level.

The performance of the Phrase Analyzer depends heavily on lexical information stored in the
PANGLYZER's two lexicons: the Spanish lexicon, which encodes information specific to Spanish, and
the word sense lexicon, which contains the semantic information which Spanish shares with other lan-
guages in general. Items in the two lexicons are tied to together by word sense tokens. These tokens are
drawn from the sense definitions of Longman's Dictionary of Contemporary English (LDOCE) (Proctor,
etal., 1978).

Below is an example of an entry for a singular form of a Spanish noun in Spanish lexicon. This
entry provides information about agreement, gender, syntactic case, along with a word sense token indi-
cating the item in the word sense lexicon with which it is associated.

se_form(momento,ts,m, F,moment 0 1).

Entries in the word sense lexicon of the conceptual category entity provide information about semantic
class, countability, LDOCE semantic class, and LDOCE subject domain as shown in the following

entry.

ent(moment_0_I,nrm,time,c,abstract,open).

Input to the Phrase Analyzer comes from the Phrase Recognizer, as augmented by the Proper-
noun Classifier. In regard to the example sentence, the input begins with:

[pp,[L2L,[[L1],['Al/al/preposition]],
[[2,2],[momento/momento/noun(masculine,singular)]]]

which corresponds to Spanish prepositional phrase al momento. The Phrase Analyzer uses a Spanish
DCG to parse al momento. These Spanish grammar rules are compatible with the grammar rules in the
Phrase Recognizer. The syntactic information on phrase category supplied by the Phrase Recognizer
(i.e., np, pn, pp, ppn, etc.) is used to index the corresponding DCG rules of the Phrase Analyzer.

The grammar rules in the Phrase Analyzer also access the lexicon entries and unify the syntactic
and semantic information in the entries to produce the meaning representations like the one shown
below. For the example phrase, the Phrase Analyzer produced two possible analyses:

[[mod,[string,al,momento],
[g rel,B],[k relt loc],[t rel,C],
[ent,[string,el,momento],
[type,nrm],[class,time],[agree,ts],[det,spin],[quant,unq],
[e desc,[string,momento],
moment_0_1]]],

60

[mod,[string,al,momenta],
[g rel,E],[k rel,condition],[t relF],
[ent,[string,el,momenta],
[type,nrm], [class,force],[agree,tu],[det,spin],[quant,unq],
[e_desc,[string,;momento],
momentum 0 2]]]]]

6. Clause Recognizer

The function of the clause recognizer is to group the phrases into clauses, inserting labeled clause
boundaries in the process. It does this by applying a DCG for sequences of phrasal categories in top-
down, depth-first, left-to-right fashion. It recognizes several types of clauses finite, relative, particip-
ial, infinitival etc. as well as groups of phrases that do not correspond to any of the sequences expected
by the DCG. These are assigned to a no-clause category.

Generally, the DCG recognizes a sentence length input sequence of phrases as a single finite
clause, as a single finite clause followed by other clauses or as a single non-clause. The grammar defines
finite clauses as consisting of zero or more phrases followed by a finite verbal construction which is fol-
lowed by zero or more other phrases. A phrase may be a relative clause, a passive participial clause, an
infinitival clause, or some basic phrase. A relative clause consists of a relativizer followed by a finite
verbal construction possibly followed by some number of phrases. A participial clause consists of a par-
ticipial possibly followed by some number of phrases. Finally, an infinitival clause consists of a prepo-
sition followed by an infinitive possibly followed by some number of phrases. The resultant output, in
simplified form, for the example sentence is:

[[finite,
[[L1],[pp,['Al';momento]]],
[[L.2],[pp,[de,su,venta]]],
[[1,3],[ppn,[a, Tberia']]],
[[14].[pe,[11],
[[L5].[pn,['VIASA']],
[[L6],[ve(fin),[contaba,con]]],
[[1,7],[np,[ocho,aviones]]],
([L8L.[pe, [, 111
[relative,

[[2.1],[em(que),[que]]],
[[2,2],[ve(fin),[tenian]]],
[12,3].[pp,[en,promedio, 13,afios,de,vuelo]]],

[[2.4).[pe. [111

7. Clause Analyzer

The function of the clause analyzer is to take a clause length sequences of phrases and identify the
grammatical dependency relations among the phrases contained, outputting a set of tables each of which
represents a possible dependency analysis of the clause.

Given an input sentence marked for clause boundaries, the component iteratively applies an as yet
limited DCG to each clause. Basically, the DCG states that a clause consists of a subject followed by a
finite verbal construction, optionally followed by an object, optionally followed by some number of
adverbial modifiers or a clause consists of a passive participial optionally followed by an object.

61

Subjects and objects consists of a noun phrase, optionally followed by a prepositional phrase, or a
preposition plus proper noun. Modifiers consist of a prepositional phrase or a preposition plus proper
noun.

Applying this DCG to the input above results in an output of the following simplified form:

[[finite,
[[L1],[pp,['Al'momento]]],

[[L8].[pc.[', 111,
[[[1,6],[1,6],head],
[[1,5],[1,6],subj],
[[1,7,].[1,6],0bj]],
[relative,
[[2,1].[cm(que),[que]]],

[2.41,[pe T,
[[[2,2],[2,2],head]

[1231[2.2].pmod]]1]

The dependency relations have been captured in the tables appended to the end of each clause.

There is a second pass over each clause during which specific subgoals of the rules are ignored.
So, for example, the identification of en promedio de 13 arios de vuelo as a circumstantial modifier of
tenian was made on the basis of applying one of clause rules in the DCG with the subject subgoal sus-
pended.
8. Reading Ranker

The Reading Ranker provides a ranked listing of the possible input sentence readings produced by

the Phrase Analyzer and Clause Analyzer. Essentially, the Reading Ranker must search and rank the
space of all possible syntactic and semantic combinations.

In light of this combinatorially large search space, an attempt must be made to constrain its size.
Currently, the use of both syntactic and semantic constraints are being considered. Syntactically, only
the best parses from the Clause Analyzer can be evaluated. Also, part-of-speech tags can be used to
reduce the number of possible word senses. Semantically, preference information should also eliminate
or indicate the likelihood of certain word sense co-occurrences.

It is unlikely that the above constraints will sufficiently reduce the size of the search space so as to
allow the use of conventional (exhaustive) search methods. Thus, weak search techniques, which do not
exhaustively search the entire space, must be employed.

(Cowie, Guthrie and Guthrie, 1992) investigated simulated annealing for the purpose of word
sense disambiguation. Their approach involved disambiguating all of the words in a sentence simulta-
neously, where the rank (evaluation) of a particular set of selected senses was determined by the Overlap
of their LDOCE definitions. They report a word disambiguation accuracy of 47% at the sense level and
72% at the homograph level.

The LDOCE overlap disambiguation method described above was re-implemented with a genetic
algorithm replacing simulated annealing as the weak search technique, with almost no change in accu-
racy. Part-of-speech information was then used to restrict the possible senses for the words. Not sur-
prisingly, homograph level accuracy jumped to above 90%, due to the fact that in LDOCE, the senses of

62

many words are grouped into homographs on the basis of their part of speech. Sense level accuracy, on
the other hand, actually dropped by several points. In part this decrease in performance was due to an
inadequate morphological analyzer which produced stems with incorrect parts of speech.

It is likely that the less than satisfactory results of both simulated annealing and the genetic algo-
rithm are the result more of an ineffective evaluation metric than of an inherent inability to search this
particular space. In fact, several experiments revealed that the best interpretation was being evaluated
as much worse by the LDOCE evaluation metric than incorrect interpretations. The possibility of
enhancing the LDOCE overlap method by including WordNet synsets of the sense definition words is
being considered.

A certain degree of skepticism remains as to whether dictionary sense definition overlap or co-
occurrence can be used to successfully disambiguate word senses. Thus, an investigation has been
launched to determine whether statistically derived word sense meaning vectors might prove to be more
successful. This approach has been used by (Schiitze, 1993) and (Landauer, 1994) to disambiguate
words and discriminate amongst synonyms. These vectors might be used in one of two ways: either as a
more accurate evaluation metric for a weak search technique, or in a more direct word for word disam-

biguation attempt.

Summary and System Performance

The Panglyzer functions as the analysis portion of a knowledge-based MT engine. The results of
this KBMT system are themselves only inputs to a multi-engine MT system (Pangloss). As a result, it is
difficult to judge the performance of the Panglyzer solely on system (Pangloss) throughput, and we have
yet to develop a notion of adequacy of analysis (Panglyzer) output. However, each module of the Pang-
lyzer has a fairly well-defined task, and appropriate output for each module can be judged with a fair
degree of accuracy.

For instance, the Preprocessor is able to identify sentence- and word- boundaries with near perfect
accuracy. The Part-of-Speech Tagger operates at about 93% accuracy, when compared with the judg-
ments of Spanish language experts. The Phrase Recognizer has an accuracy rate of 90% on Part-of-
Speech Tagger output. Discounting Tagger errors its accuracy rate is roughly 98%. The Proper-Noun
Classifier will classify about 80% of the proper nouns in a given text correctly.

The remainder of the module have yet to undergo rigorous testing. For the Phrase Analyzer, a
performance estimate on the basis of a sample text produced an appropriate representation for 77% of
the phrases in the text. This representation may be one of several produced for any particular phrase.
When failure due to missing lexical items and incorrectly recognized phrases is discounted, appropriate
representations were produced for 97% of the phrases. As is evident, the quality of the output of the
Phrase Analyzer is highly dependent on having lexicon entries for the words in the text being analyzed.

Over a short text the Clause Recognizer identified about 76% of the clauses and 56% of the
clauses contained the appropriate constituents. In a test over a text with 40 clauses, the Clause Analyzer
produced correct and complete results in only 4 cases, partially correct in 25, and incorrect results in 11.

Finally, given the cascading architecture described here, the performance of any module usually
depends greatly on the performance of the preceding modules. For example, an incorrect tag may well
cause an incorrect phrase to be constructed, which may then be analyzed and grouped into a clause
incorrectly.

To account for these difficulties, we are attempting to measure the performance of each module in
two respects: first using actual system output from previous modules and second on the basis of manu-
ally corrected "golden" input.

63

References

Cowie, J., Guthrie, J. and Guthrie, L., 1992, Lexical Disambiguation using Simulated Annealing, Pro-
ceedings of the 15th International Conference on Computational Linguistics (COLING-92),
Nantes, France, July, pp. 359-365.

Huang, X-M, 1988, XTRA: The Design and Implementation of a Fully Automatic Machine Translation
System. Memoranda in Computing and Cognitive Science, MCCS-88-121, Computing Research
Laboratory, New Mexico state University, Las Cruces, New Mexico.

Landauer, T. K., 1994, "How is it that you know so much?", An Invited lecture at New Mexico State
University, January 1994.

Pereira, F. and Warren, D., 1980, Definite Clause Grammars for Language Analysis--A Survey of the
Formalism and A Comparison with augmented Transition Networks. Artificial Intelligence, 13:
231-278.

Procter, P., et al, 1978, Longman Dictionary of Contemporary English. Longman Group Limited, Har-
low, Essex, England.

Schiitze, H., 1993, Word Space. In S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), Advances in Neu-
ral Information Processing Systems 5, 895-902. San Mateo CA: Morgan Kaufmann Publishers.

64

