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ABSTRACT 

We present recent advances from our efforts in increasing cover- 
age, robustness, generality and speed of JANUS, CMU's speech-to- 
speech translation system. JANUS is a speaker-independent system 
translating spoken utterances in English and also in German into 
one of German, English or Japanese. The system has been designed 
around the task of conference registration (CR). It has initially been 
built based on a speech database of 12 read dialogs, encompassing a 
vocabulary of around 500 words. We have since been expanding the 
system along several dimensions to improve speed, robustness and 
coverage and to move toward spontaneous input. 

1. INTRODUCTION 

In this paper we describe recent improvements of JANUS, 
a speech to speech translation system. Improvements have 
been made mainly along the following dimensions: 1.) bet- 
ter context-dependent modeling improves performance in the 
speech recognition module, 2.) improved language models, 
smoothing, and word equivalence classes improve coverage 
and robustness of the sentence that the system accepts, 3.) 
an improved N-best search reduces run-time from several 
minutes to now real time, 4.) trigram and parser rescoring 
improves selection of suitable hypotheses from the N-best 
list for subsequent translation. On the machine translation 
side, 5.) a cleaner interlingua was designed and syntactic and 
domain-specific analysis were separated for greater reusabil- 
ity of components and greater quality of translation, 6.) a 
semantic parser was developed to achieve semantic analysis, 
should more careful analysis fail. 

The JANUS [1, 2] framework as it is presented here also 
allows us to experiment with components of a speech transla- 
tion system, in an effort to achieve both robustness and high- 
quality translation. In the following we describe these efforts 
and system components that have been developed to date. At 
present, JANUS consists conceptually out of three major com- 
ponents: speech recognition, machine translation and speech 
synthesis. Since we have not made any significant attempts at 
improving performance on the synthesis end (DEC-talk and 
synthesizers produced by NEC and AEG-Daimler are used 
for English, Japanese and German output, respectively), our 
discussion will focus on the recognition and translation parts. 

 
Figure 1: Overview of the System 

2. RECOGNITION ENGINE 

Our recognition engine uses several techniques to optimize the 
overall system performance. Speech input is preprocessed 
into time frames of spectral coefficients. Acoustic models 
are trained to give a score for each phoneme, representing 
the phoneme probability at the given frame. These scores 
are used by an N-best search algorithm to produce a list of 
sentence hypotheses. Based on this list, more computationally 
expensive language models are then applied to achieve further 
improvement of recognition accuracy. 

2.1. Acoustic modeling 

For acoustic modeling, several alternative algorithms are be- 
ing evaluated including TDNN, MS-TDNN, MLP and LVQ 
[6, 5]. In the main JANUS system, an LVQ algorithm with 
context-dependent phonemes is now used for speaker inde- 
pendent recognition. For each phoneme, there is a context 
independent set of prototypical vectors. The output scores 
for each phoneme segment are computed from the euclidian 
distance using context dependent segment weights. 
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Table 1: Word Accuracy for First Hypothesis 

The performance on the RM-task at comparable perplexities 
is significantly better than for the CR-task, suggesting that the 
CR-task is somewhat more difficult. 

2.2. Search 
The search module of the recognizer builds a sorted list of 
sentence hypotheses. Speed and memory requirements could 
be dramatically improved: Though the amount of hypotheses 
computed for each utterance was increased from 6 to 100 
hypotheses, the time required for their computation could be 
reduced from typically 3 minutes to 3 seconds. 

This was achieved by implementing the word dependent N- 
best algorithm[3] as backward pass in the forward backward 
algorithm[4]: First a fast firstbest only search is performed, 
saving the scores at each possible word ending. In a second 
pass, this information is used for aggressive pruning to re- 
duce the search effort for the N-best search. Further speedup 
was achieved by dynamically adapting the beam width to keep 
number of active states constant, and by carefully avoiding the 
evaluation of states in large inactive regions of words. Impor- 
tant for total system performance is the fact that the firstbest 
hypothesis can already be analyzed by the MT modules while 
the N-best list is computed. 

All language models (word-pairs, bigrams or smoothed bi- 
grams, and trigrams for resorting) are now trained on more 
than 1000 CR-sentences, using word class specific equiva- 
lence classes (digits, names, towns, languages etc.) 

2.3. Resorting 

The resulting N-best list is resorted using trigrams to further 
improve results. Resorting improves the word accuracy for 
the best scoring hypothesis (created using smoothed bigrams) 
from 91.5% to 98%, and the average rank of the correct hy- 
pothesis within the list from 5.7 to 1.1; 

Much longer N-best lists have been used for experiments (500- 
1000). However it is very unlikely that a rescoring algorithm 

moves a hypothesis from the very bottom of such a long list 
to the 1st position. For practical application, a number of 100 
hypotheses was found to be best. 

3. THE MACHINE TRANSLATION (MT) 
ENGINE 

The MT-component that we have previously used has now 
been replaced by a new module that can run several alternate 
processing strategies in parallel.   To translate spoken lan- 
guage from one language to another, the analysis of spoken 
sentences, that suffer from ill-formed input and recognition 
errors is most certainly the hardest part.   Based on the list 
of N-best hypotheses delivered by the recognition engine 
we can now attempt to select and analyze the most plausible 
sentence hypothesis in view of producing and accurate and 
meaningful translation. Two goals are central in this attempt 
high fidelity and accurate translation wherever possible, and 
robustness or graceful degradation, should attempts for high 
fidelity translation fail in face of ill-formed or misrecognized 
input. At present, three parallel modules attempt to address 
these goals:   1) an LR-parser based syntactic approach, 2) 
a semantic pattern based approach and 3) a connectionist 
approach.   The most useful analysis from these modules is 
mapped onto a common Interlingua, a language independent, 
but domain-specific representation of meaning. The analysis 
stage attempts to derive a high precision analysis first, using 
a strict syntax and domain specific semantics.   Connection- 
ist and/or semantic parsers are currently applied as back-up 
if the higher precision analysis fails. The Interlingua ensures 
that alternate modules can be applied in a modular fashion and 
that different output languages can be added without redesign 
of the analysis stage. 

3.1. Generalized LR Parser 

The first step of the translation process is syntactic parsing 
with the Generalized LR Parser/Compiler [16]. The General- 
ized LR parsing algorithm is an extension of LR parsing with 
the special device called "Graph-Structured Stack" [14], and it 
can handle arbitrary context-free grammars while most of UK 
LR efficiency is preserved. A grammar with about 455 rules 
for general colloquial English is written in a Pseudo Unifica- 
tion formalism [15], that is similar to Unification Grammar 
and LFG formalisms. Figure2 shows the result of syntactic 
parsing of the sentence "Hello is this the conference office". 

Robust GLR Parsing: Modifications have been made to 
make the Generalized LR Parser more robust against ill- 
formed input sentences [18]. In case the standard parsing 
procedure fails to parse an input sentence, the parser nonde- 
terministically skips some word(s) in the sentence, and returns 
the parse with fewest skipped words. In this mode, the parser 
will return some parse(s) with any input sentence, unless no 
part of the sentence can be recognized at all. 
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Error rates using context dependent phonemes are lower by
a factor 2 to 3 for English (1.5 to 2 for German) than using
context independent phonemes. Results are shown in table 1.



(HELLO  IS  THIS  THE  CONFERENCE  OFFICE  $) 

++++ GLR Parser running to produce English structure ++++ 
 
(1) ambiguities found and took 1.164878 seconds of real time 
 
((PREV-SENTENCES  ((COUNTER 1) (MOOD *OPENING) 

                             (ROOT    *HELLO))) 
(COUNTER    2) 
(MOOD *INTERROGATIVE) 
(SUBJECT ((AGR *3-SING) (ROOT *THIS) 
                          (CASE (*OR*   *NOM   *OBL)))) 
(FORM *FINITE) 
(PREDICATE 
((DET ((ROOT *THE)  (DEF *DEF)))  (AGR *3-SING) 
                                     (ANIM   *-) 

                                 (A-AN *A) 
                                   (ROOT *CONFERENCE-OFFICE))) 

(AGR *3-SING) 
(SUBCAT *SUBJ-PRED) 
(ROOT *COPULA) 
(TENSE *PRESENT))) 

Figure 2: Example F-Structure 

In the example in figure 3, the input sentence "Hello is this 
is this the office for the AI conference which will be held 
soon" is parsed as "Hello is this the office for the conference" 
by skipping 8 words. Because the analysis grammar or the 
interlingua does not handle the relative clause "which will be 
held soon", 8 is the fewest possible words to skip to obtain 
a grammatical sentence which can be represented in the in- 
terlingua. In the Generalized LR parsing, an extra procedure is 
applied every time a word is shifted onto the Graph Structured 
Stack. A heuristic similar to beam search makes the algorithm 
computationally tractable. 

When the standard GLR parser fails on all of the 20 best 
sentence candidates, this robust GLR parser is applied to the 
best sentence candidate. 

3.2. The Interlingua 

This result, called "syntactic f-structure", is then fed into a 
mapper to produce an Interlingua representation. For the 
mapper, we use a software tool called Transformation Kit 
[17]. A mapping grammar with about 300 rules is written for 
the Conference Registration domain of English. 

Figure 4 is an example of Interlingua representation produced 
from the sentence "Hello is this the conference office". In the 
example, "Hello" is represented as speech-act *ACKNOWL- 
EDGEMENT, and the rest as speech-act *IDENTFY-OTHER. 

 
 
 
 
 
 
Input sentence  : 
(hello is this the AI conference office which will be held soon $) 
 
Parse of input sentence  : 
(HELLO IS THIS THE CONFERENCE OFFICE $) 
Words skipped  :  ((IS 2) (THIS 3) (AI 7)  (WHICH 10)  (WILL 11) 

(BE 12)  (HELD 13)  (SOON 14)) 

Figure 3: Example for robust parsing 

((PREV-UTTERANCES   ((SPEECH-ACT  *ACKNOWLEDGEMENT)  (VALUE  *HELLO))) 
(TIME   *PRESENT) 
(PARTY 

((DEFINITE   + )    (NUMBER   *SG) 
      (ANIM   -) 

                      (TYPE   *CONFERENCE) 
                      (CONCEPT    *OFFICE))) 
[SPEECH-ACT    *IDENTIFY-OTHER)) 

Figure 4: Example: Interlingua Output 

The JANUS interlingua is tailored to dialog translation. Each 
utterance is represented as one or more speech acts. A speech 
act can be thought of as what effect the speaker is intending 
a particular utterance to have on the listener. Our interlingua 
currently has eleven speech acts such as request direction, in- 
form, and command. For purposes of this task, each sentence 
utterance corresponds to exactly one speech act. So the first 
task in the mapping process is to match each sentence with its 
corresponding speech act. In the current system, this is done 
on a sentence by sentence basis. Rules in the mapping gram- 
mar look for cues in the syntactic f-structure such as mood, 
combinations of auxiliary verbs, and person of the subject 
and object where it applies. In the future we plan to use more 
information from context in determining which speech act to 
assign to each sentence. 

Once the speech act is determined, the rule for a particular 
speech act is fired. Each speech act has a top level semantic 
slot where the semantic representation for a particular instance 
of the speech act is stored during translation. This semantic 
structure is represented as a hierarchical concept list which 
resembles the argument structure of the sentence. Each speech 
act rule contains information about where in the syntactic 
structure to look for constituents to fill thematic roles such as 
agent, recipient, and patient in the semantic structure. Specific 
lexical rules map nouns and verbs onto concepts. In addition 
to the top level semantic slot, there are slots where information 
about tone and mood are stored. Each speech act rule contains 
information about what to look for in the syntactic structure in 
order to know how to fill this slot. For instance the auxiliary 
verb which is used in a command determines how imperative 
the command is. For example, 'You must register for the 
conference within a week' is much more imperative than 'You 
should register for the conference within a week". The second 
example leaves some room for negotiation where the first does 
not. 

3.3. The Generator 

The generation of target language from an Interlingua repre- 
sentation involves two steps. Figure 5 shows sample traces 
of German and Japanese, from the Interlingua in figure 4. 

First, with the same Transformation Kit used in the analysis 
phase, Interlingua representation is mapped into syntactic f- 
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structure of the target language. 
 

; ++ TransKit rules being applied to produce G structure ++ 
 
((PREV-SENTENCES  ((VALUE HALLO)  (ROOT LITERAL))) 

(ROOT SEIN) (CAT V) (PERSON 5) 
(SUBJECT 
((CAT N) (CAS N)  (DIST + )  (LOC + ) (PERSON 3) 
(NUMBER SG)  (ROOT  D-PRONOUN))) 

(NUMBER  SG)  (FORM  FlN)  (MOD  IND)  (TENSE  PRES) 
(MOOD  INTERROG) 
( PRED 
((DET  ((CAS  N)  (GENDER  NEU) 

   (NUMBER  SG) 
   (CAT  DET) 
   (ROOT  DER))) 

(CLASS  SW)  (NUMBER  SG)  (PERSON  3)  (CAT  N) 
(COMPOUND 
((CAT  N)  (PL-CLASS PL3) 

  (SG-CLASS  SG0) 
  (GENDER  FEM) 
  (ROOT  KONFERENZ))) 

(ROOT  SEKRETARIAT)  (PL-CLASS  PL5)  (SG-CLASS  SG3) 
(GENDER  NEU)  (CAS  N)  (ANIM  - )))) 

; ++  GenKit  rules  being  applied  to  produce  German  te x t   + +  
 
* HALLO  ,  IST DORT Das KONFERENZSEKRETARIAT   ?* 
 
; ++  TransKit  rules  being  applied  to produce J structure  ++ 

((PREV-UTTERANCES 
((FOR-REMOVE-DESU  *IDENTIFY-OTHER  (VALUE  MOSHIMOSHI), 

                                           (ROOT  *LITERAL)))) 
(VTYPE    MEISHI) 
 (SUFF  (*MULTIPLE*  KA  DESU)) 
 (PRED     (ROOT   GAKKAIJIMUKYOKU)  (CAT N) 
                                (DEFINITE  +) 
                                (NUMBER  *SG) 
                                 (ANIM  - ))) 
 (ROOT  COPULA)) 
 
; +++  GenKit rules being applied to produce Japanese text  ++ 
 
*MOSHIMOSHI  GAKKAI  JIMOKYOKU DESUKA* 

 Figure 5: Output language F-structure 

There are about 300 rules in the generation mapping grammar 
for German, and 230 rules for Japanese. The f-structure is then 
fed into sentence generation software called "GENKIT'' [17] 
to produce a sentence in the target language. A grammar for 
GENKIT is written in the same formalism as the Generalized 
LR Parser: phrase structure rules augmented with pseudo 
unification equations. The GENKIT grammar for general 
colloquial German has about 90 rules, and Japanese about 60 
rules. Software called MORPHE is also used for morphological 
generation for German. 

3.4. Semantic Pattern Based Parsing 

A human-human translation task is even harder than human- 
machine communication, in that the dialog structure in 
human-human communication is more complicated and the 
range of topics is usually less restricted. These factors point 
to the requirement for robust strategies in speech translation 
systems. 

Our robust semantic parser combines frame based semantics 
with semantic phrase grammars. We use a frame based parser 
similar to the DYPAR parser used by Carbonell, et al. to pro- 
cess ill-formed text,[9] and the MINDS system previously de- 
veloped at CMU.[10] Semantic information is represented in 
a set of frames. Each frame contains a set of slots representing 
pieces of information. In order to fill the slots in the frames, 

we use semantic fragment grammars. Each slot type is rep 
resented by a separate Recursive Transition Network, which 
specifies all ways of saying the meaning represented by the 
slot. The grammar is a semantic grammar, non-terminals art 
semantic concepts instead of parts of speech. The grammar is 
also written so that information carrying fragments (semantic 
fragments) can stand alone (be recognized by a net) as well as 
being embedded in a sentence. Fragments which do not form 
a grammatical English sentence are still parsed by the system. 
Here there is not one large network representing all sentence 
level patterns, but many small nets representing information 
carrying chunks. Networks can "call" other networks, thereby 
significantly reducing the overall size of the system. These 
networks are used to perform pattern matches against input 
word strings. This general approach has been described in 
earlier papers. [7, 8] 

The operation of the parser can be viewed as "phrase spot- 
ling". A beam of possible interpretations are pursued simul- 
taneously. An interpretation is a frame with some of its slots 
filled. The RTNs perform pattern matches against the input 
string. When a phrase is recognized, it attempts to extend 
all current interpretations. That is, it is assigned to slots in 
active interpretations that it can fill. Phrases assigned to slots 
in the same interpretation are not allowed to overlap. In case 
of overlap, multiple interpretations are produced. When two 
interpretations for the same frame end with the same phrase, 
the lower scoring one is pruned. This amounts to dynamic 
programming on series of phrases. The score for an interpre- 
tation is the number of input words that it accounts for. At UK 
end of the utterance, the best scoring interpretation is picked. 

Our strategy is to apply grammatical constraints at the phrase 
level and to associate phrases in frames.   Phrases represent 
word strings that can fill slots in frames. The slots represent 
information which, taken together, the frame is able to act on. 
We also use semantic rather than lexical grammars. Seman- 
ties provide more constraint than parts of speech and must 
ultimately be dealt with in order to take actions.  We believe 
that this approach offers a good compromise of constraint 
and robustness for the phenomena of spontaneous speech 
Restarts and repeats are most often between phrases, so in-
dividual phrases can still be recognized correctly.   Poorly 
constructed grammar often consists of well-formed phrases, 
and is often semantically well-formed. It is only syntactically 
incorrect. 

The parsing grammar was designed so that each frame has 
exactly one corresponding speech act. Each top level slot 
corresponds to some thematic role or other major semantic 
concept such as action. Subnets correspond to more specific 
semantic classes of constituents. In this way, the interpretation 
returned by the parser can be easily mapped onto the inter- 
lingua and missing information can be filled by meaningful 
default values with minimal effort. 
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Once an utterance is parsed in this way, it must then be mapped 
onto the interlingua discussed earlier in this paper. The map- 
ping grammar contains rules for each slot and subnet in the 
parsing grammar which correspond to either concepts or speech 
acts in the interlingua. These rules specify the relationship 
between a subnet and the subnets it calls which will be repre- 
sented in the interlingua structure it will produce. Each rule 
potentially contains four parts. It need not contain all of them. 
The first part contains a default interlingua structure for the 
concept represented by a particular rule. If all else fails, this 
default representation will be returned. The next part con- 
tains a skeletal interlingua representation for that rule. This 
is used in cases where a net calls multiple subnets which fill 
particular slots within the structure corresponding to the rule. 
A third part is used if the slot is filled by a terminal string of 
words. This part of the rule contains a context which can be 
placed around that string of words so that it can be attempted 
to be parsed and mapped by the LR system. It also contains 
information about where in the structure returned from the LR 
system to find the constituent corresponding to this rule. The 
final part contains rules for where in the skeletal structure to 
place interlingua structures returned from the subnets called 
by this net. 

3.5. Connectionist Parsing 

The connectionist parsing system PARSEC [12] is used as a 
tall-back module if the symbolic high precision one fails to an- 
alyze the input. The important aspect of the PARSEC system 
is that it learns to parse sentences from a corpus of training 
examples. A connectionist approach to parse spontaneous 
speech offers the following advantages: 

1. Because PARSEC learns and generalizes from the exam- 
ples given in the training set no explicit grammar rules 
have to be specified by hand. In particular, this is of im- 
portance when the system has to cope with spontaneous 
utterances which frequently are "corrupted" with disflu- 
encies, restarts, repairs or ungrammatical constructions. 
To specify symbolic grammars capturing these phenom- 
ena has been proven to be very difficult. On the other side 
there is a "build-in" robustness against these phenomena 
in a connectionist system. 

2. The connectionist parsing process is able to combine 
symbolic information (e.g. syntactic features of words) 
with non-symbolic information (e.g.   statistical likeli- 
hood of sentence types). Moreover, the system can eas- 
ily integrate different knowledge sources. For example, 
instead of just training on the symbolic input siring we 
trained PARSEC on both the symbolic input string and 
the pitch contour. After training was completed the sys- 
tem was able to use the additional information to deter- 
mine the sentence mood in cases where syntactic clues 
were not sufficient. We think of extending the idea of 

integrating prosodic information into the parsing pro- 
cess in order to increase the performance of the system 
when it is confronted with corrupted input. We hope that 
prosodic information will help to indicate restarts and 
repairs. 

The current PARSEC system comprises six hierarchically or- 
dered (back-propagation) connectionist modules. Each mod- 
ule is responsible for a specific task. For example, there are 
two modules which determine phrase and clause boundaries. 
Other modules are responsible for assigning to phrases or 
clauses labels which indicate their function and/or relation- 
ship to other constituents. The top module determines the 
mood of the sentence. 

Recent Extensions: We applied a slightly modified PAR- 
SEC system to the domain of air travel information (ATIS). 
We could show that the system was able to analyze utterance 
like "show me flights from boston to denver on us air" and 
that the system's output representation could be mapped to a 
Semantic Query Language (SQL). In order to do this we in- 
cluded semantic information (represented as binary features) 
in the lexicon. By doing the same for the CR-task we hope to 
increase the overall parsing performance. 
We have also changed PARSEC to handle syntactic structures 
of arbitrary depth (both left and right branching) [13]. 
The main idea of the modified PARSEC system is to make it 
auto recursive, i.e. in a recursion step n it will take its output 
of the previous step n-1 as its input. This offers the following 
advantages: 

1. Increased Expressive Power: The enhanced expressive 
power allows a much more natural mapping of linguistic 
intuitions to the specification of the training set. 

2. Ease of learning: Learning difficulties can be reduced. 
Because PARSEC is now allowed to make more abstrac- 
tion steps each individual step can be smaller and, hence, 
is easier to learn. 

3. Compatibility:   Because PARSEC is now capable of 
producing arbitrary tree structures as its output it can be 
more easily used as a submodule in NLP-systems (e.g. 
the JANUS system). For example, it is conceivable to 
produce as the parsing output f-structures which then can 
be mapped directly to the generation component [11]. 

4. SYSTEM INTEGRATION 
The system accepts continuous speech speaker-independently 
in either input language, and produces synthetic speech output 
in near real-time. Our system can be linked to different lan- 
guage versions of the system or corresponding partner systems 
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via ethernet or via telephone modem lines. This possibility 
has recently been tested between sites in the US, Japan and 
Germany to illustrate the possibility of international telephone 
speech translation. 

The minimal equipment for this system is a Gradient Desklab 
14 A/D-converter, an HP 9000/730 (64 Meg RAM) worksta- 
tion for each input language, and a DECtalk speech 
synthesizer. 

Included in the processing are A/D conversion, signal pro- 
cessing, continuous speech recognition, language analysis and 
parsing (both syntactic and semantic) into a language inde- 
pendent interlingua, text generation from that interlingua, and 
speech synthesis. 

The amount of time needed for the processing of an utterance, 
depends on its length and acoustic quality, but also on the 
perplexity of the language model, on whether or not the first 
hypothesis is parsable and on the grammatical complexity 
and ambiguity of the sentence. While it can take the parser 
several seconds to process a long list of hypotheses for a 
complex utterance with many relative clauses (extremely rare 
in spoken language), the time consumed for parsing is usually 
negligible (0.1 second). 

For our current system, we have eliminated considerable 
amounts of communication delays by introducing socket com- 
munication between pipelined parts of the system. Thus the 
search can start before the preprocessing program is done, 
and the parser starts working on the first hypothesis while the 
N-best list is computed. 

5. CONCLUSION 
In this paper, we have discussed recent extensions to the 
JANUS system a speaker independent multi-lingual speech- 
to-speech translation system under development at Carnegie 
Mellon and Karlsruhe University. The components include 
 speech recognition using an N-best sentence search, to 
derive alternate hypotheses for later processing during the 
translation. The MT component attempts to produce a high- 
accuracy translation using precise syntactic and semantic anal- 
ysis. Should this analysis fail due to ill-formed input or mis- 
recognitions, a connectionist parser, PARSEC, and a seman- 
tic parser produce alternative minimalist analyses, to at least 
establish the basic meaning of an input utterance. Human-to- 
human dialogs appear to generate a larger and more varied 
breadth of expression than human-machine dialogs. Further 
research is in progress to quantify this observation and to 
increase robustness and coverage of the system in this envi- 
ronment. 
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