
[Machine Translation Today: Translating and the Computer 15. Papers at a conference…18-19 November 1993 (London: Aslib)]

FOREIGN LANGUAGES IN WORDPERFECT

Peter Kahrel
Marsstraat 44, 2024 GE Haarlem, The Netherlands

WordPerfect offers several facilities to handle
foreign languages and multi-lingual documents.
This paper discusses two aspects of language
handling in WP: the language code, which is a WP
formatting code that gives access to language
modules and the keyboard editor, which facili-
tates entering foreign characters.
The paper discusses the possibilities offered in
the 5.1 version of the program. The last section
discusses improvements in WP 6.0.

INTRODUCTION

WordPerfect (WP) offers a number of facilities to handle foreign
languages and foreign characters. In this paper, I will
concentrate on two of the major aspects of foreign language
handling, namely the language code and its implications for
hyphenation and spell checking, and the keyboard editor, which is
essential for those who frequently need characters not
represented on the keyboard. I will also show how to create a
keyboard layout that is sensitive to the language code. Such a
keyboard layout is convenient for typing multi-lingual documents.

The WP facilities discussed here and the techniques outlined
to facilitate typing accented characters hold for WP version 5.1.
Recently, however, a new version of the WP program has been
released, WP 6.0. Though the linguistic facilities of WP 6.0 are
essentially the same as in WP 5.1, they are more sophisticated in
some respects. But since the majority of the users will still be
using WP 5.1, and since there were no language modules available
at the time of writing, I will concentrate on version 5.1 Any
relevant changes and improvements in WP 6.0 will be discussed in
the last section.

To designate keystrokes required in WP, I will use the
following conventions. Two keystrokes separated with a hyphen
mean that you press the first, hold it down and then press the
second. For example, Shift-F8 means that you press the Shift key,
hold it down, and then press the F8 key. Keys separated by a
comma mean that you press the keys one after the other. For
example, Home, Enter means that you should press the Home key,
release it, then press the Enter key.

154

THE LANGUAGE CODE

The basis for WP's ability to handle foreign languages is the
language module. A language module consists of a word list which
is used by the spell checker and a hyphenation file which is
consulted when hyphenation is enabled. In many cases, a language
module also includes a thesaurus (a dictionary that you can use
to look up synonyms and antonyms), a keyboard driver to
facilitate typing some special characters and a screen font to
display characters not contained in the standard IBM character
set. For example, the Hungarian language module includes a screen
driver to display the ő and the ű. Each version of WP includes
the language module of the package language. For example, the
English version comes with the English language module and the
German version with the German language module. Language modules
can be bought separately.

Within WP, a language module is accessed by using the
language code. This code determines which language module WP will
use after the point where it is inserted. For example, if you
enter the French language code in a document, WP will use the
French dictionary for spell checking the document and the French
hyphenation module to hyphenate words from that point onwards.
Also, when you spell check a document and you add words to the
additional word list, these words will be added to the French
word list

Like other WP codes, the language code is a formatting code.
You enter it as follows: press Shift-F8, 4, 5 (Format, Language,
Other) and type the language abbreviation (for example, FR for
French, UK for British English, US for American English). Then
press Enter until you are back at the edit screen. Since the
language code is a formatting code like any other code, it can be
inserted into a document in any place and as frequently as is
necessary. And you can enter as many different language codes as
you have language modules. Thus, it can be used in an alternating
French-English document, but also in 'EC-documents' which contain
all EC languages.

The spell checker and the hyphenation module are well
documented (see for example Kahrel (1)). I will therefore not
discuss them here, but rather move on to keyboards and typing
accented characters.

THE KEYBOARD

Computer keyboards contain only a limited number of keys.
Keyboards for use in the US and in Britain contain only the
twenty-six base letters (ie, unaccented letters). In some
countries, keyboards contain some accented characters; but no
keyboard contains all accented letters. WP, in contrast, knows
about 1900 characters distributed over 11 character sets, and by
using the special Compose feature, all these characters can be
typed with relative ease using the limited number of keys on the
keyboard. Even characters not included in any character set can
be typed using the Overstrike feature. Below I will discuss the
notions character set, Compose key and Overstrike in detail.

155

Character sets

All the WP characters are contained in character sets. For
example, character set 0 contains the 'standard' characters, ie
the characters you also find on the keyboard. Character set 1
contains a number of floating accents (accents without a letter,
such as ¯ ˋ ˊ ¸ ˛) and a large number of accented characters.
Other character sets contain Greek, Hebrew, Arabic, Cyrillic,
Japanese, typographical symbols and mathematical symbols.
Overviews of the other character sets can be found in the WP
manual and most books on WP. Kahrel (1) also discusses some
inconsistencies in set 1 and how they can be solved. For the
purposes of this paper I will concentrate on character sets 1 and
2.

Each character is identified by the character set number and
the position within that character set. For example, the ą is
character 95 in character set 1. By convention, characters are
designated as set, number. Thus, the ą is defined as character
1,95. In the remainder of this paper I will use this convention.

Typing accented characters; the Compose key

Using the Compose key, you can type any character by
entering its character set number and its position. To activate
the Compose key, press Ctrl-V. At the bottom of the screen you
see the prompt Key =, at which you enter the character's number.
For example, to type the ą, press Ctrl-V and type 1,95 followed
by Enter. In this way, any WP character can be entered.

Entering characters in the above way is of course awkward,
since nobody will be able to memorize each character's number. WP
therefore allows you to use characters in the Compose key rather
than numbers. Normal letters you type as such, while a number of
accents are represented by a convention. For example, at the
Compose key, WP interprets the comma as the cedilla and the ^ as
the circumflex accent. Thus, to type the ç, press Ctrl-V and type
,c followed by Enter. And to type the ř, press Ctrl-V and type vr
followed by Enter (the v designates the ˇ, the hacek accent). The
order in which you type the accent and the character is
immaterial.

Table 1 lists which keys are recognized as accents at the
Compose key and which characters can be typed. The first column
gives the keys representing the accents in the second column. So
you see that since the semicolon represents the ogonek (the
Polish hook), you type ;a at the Compose key to enter the ą. The
table lists only lower case letters, but the corresponding upper
case letters can be entered as well: Ctrl-V ˊA enters the Á. The
last four lines in table 1 show some other characters that can be
entered using the Compose key. Thus, to enter the ¿, press Ctrl-
V and type ?? followed by Enter.

156

Table 1. Accent designations in the Compose key.

A few comments. As you can see, you can enter the i by typing .i
in the Compose key. However, this is not the 'normal' i, but the
ı with a dot (a dotted dotless i, so to speak). This is the
Turkish i, and if you type Turkish you are advised to use it
rather than the normal i. Firstly, to ensure that the ı and the i
are sorted correctly. In Turkish, the i follows the ı, but if you
type the normal i, it will be sorted before the ı. Secondly, if
you enable kerning, WP automatically creates ligatures like fi. It
will do this for any sequence of fi, fl and, if you have expert
fonts, ff, ffi and ffl. But naturally, to distinguish the fi and
the fi combinations in Turkish, the fi combination should not be
turned into a ligature.

Another thing is that some accents are not available in the
Compose key. Notable examples are the Hungarian umlaut (˝) and
the breve accent (˘) used, for example in Turkish. To type
letters with these accents, you need to enter the numerical code
in the Compose key, such as Ctrl-V 1,117 to enter the ğ. However,
this can be remedied with a key macro, which I will discuss in
the next section. (In WP 6 the u can be used to enter the breve
accent in the Compose key.)

Apart from the characters mentioned above, some other
characters can be entered using mnemonic keys in the Compose key.
For completeness' sake these characters are listed in table 2.

157

Table 2. Miscellaneous characters

Overstrike.

Although the WP character sets contain almost all known accented
characters, some are not included. For example, the Welsh ẅ and
some Slovene accents are not in character set 1. You can however
create any character yourself using the Overstrike feature. As
its name suggests, the Overstrike feature prints two characters
in the same position.

Let us say you want to create the ẅ. To do so, go to the
Overstrike feature: press Shift-F8, 4, 5, 1 (Format, Other,
Overstrike, Create). At the bottom of the screen you will now see
the [Ovrstk] prompt and now you can enter the two characters. To
create the ẅ, type "w and press Enter until you are back at the
edit screen. In the edit screen you will see only the second
character that you typed (in this case the w). But if you
activate the Reveal Codes screen, you see the Overstrike
character displayed as [Ovrstk:"w].

However, you must be careful with accents that you type at
the Overstrike prompt. The ẅ is an interesting example, because
if you enter it using the " key, it will be printed as ẅ! So at
the Overstrike prompt, you cannot use the conventional characters
listed in table 1. Rather, you must use a floating accent from
set 1. Now, the ¨ is character 1,7. So to create the w correctly,
do as follows: go to the Overstrike prompt (Shift-F8,4,5,1). Now
press Ctrl-V to activate the Compose key and type 1,7 followed by
Enter. Finally, type the w and press Enter until you are back at
the Edit screen. If you now look in the Reveal Codes screen, the
character you just created is displayed as [Ovrstk:■w] . To see
some more information, place the cursor on the Overstrike
character and now you will see it displayed as [Ovrstk:[■:l,7]w] .

The order in which you enter characters at the Overstrike
prompt is not important. But since you will see only the second
character of an overstrike pair, it is convenient to first enter
the accent and then the letter. In the print preview (Shift-F7,6)
you can see how the characters will print.

158

The Overstrike feature is quite powerful, but it has some dis-
advantages. For example, words containing an Overstrike character
are not sorted correctly; they are not added correctly to the
supplement word list during spell checking; they are lost when you
save the document as a DOS text file; and although you can search for
the Overstrike code, you cannot search a particular Overstrike, nor
can you do a find-and-replace in Overstrike characters. (The last
point has been remedied in WP 6.)

We may conclude that WP has some convenient features to
enter accented characters and special symbols. Nevertheless, if
you need to enter a limited number of characters very frequently,
even the Compose key becomes awkward. But WP offers another
facility to conveniently enter special characters, namely the
customizable keyboard. This will be taken up in the next section.

THE KEYBOARD EDITOR

Most languages use only a few accented characters very
frequently. It is then not very handy to enter them using the
Compose key, since flexible as it may be, it does need a handful
of keystrokes. To handle this inconvenience, you can assign any
character to virtually any key or key combination. In this
section I will show a number of ways that can be used to
reconfigure the keyboard.

Key assignments are in fact small macros that are assigned
to particular keys. Indeed, the keyboard editor is identical to
the macro editor. It is beyond the scope of this paper to explain
the full operation of the keyboard editor; rather, I will assume
knowledge of it. Most books on WP have a section on this subject;
for example, my book on WP characters and languages contains all
necessary background information (Kahrel (1)). Below I will make
some suggestions for key assignments and discuss key macros that
may make life a simpler.

The most obvious thing to do (and this is done very
frequently) is to assign particular characters to particular
keystrokes. This is useful if you need certain accented
characters often. For example, in Dutch only three accented
characters are used frequently: the é, ë and ï. It would
therefore be convenient to be able to enter these characters by
pressing one key, let us say Ctrl-I to enter the ï. This is
easily done in the keyboard editor. (Note that in Ctrl-letter
combinations, you can use only lower case letters. Thus, it is
not possible to define Ctrl-i and Ctrl-I as two distinct
keystrokes.)

I mentioned that you can assign a macro of any complexity to
a key for special purposes. Let me give a few examples. I will
begin with some relatively simple examples, and finish with a
rather more complex one.

If you type words separated by a slash (such as man/woman),
it would be convenient to insert a so-called invisible hyphen
after the slash, so that this 'word' is hyphenated correctly
after the hyphen. The easiest way to accomplish this is to define
the / key such that when you press it, the invisible hyphen is
inserted automatically. To do so, assign the following macro to
the slash key:

159

/{Home}{Enter}

With this key assignment, you don't have to think about inserting
the invisible hyphen anymore.

The next example is useful if you type Portuguese or Polish.
These two languages share the rule that if a word that contains a
hyphen is hyphenated at the end of a line, the hyphen is doubled. For
example, Polski-Fiat looks like this at the end of a line: Polski-
-Fiat. In WP, you can make the hyphens behave correctly for
Polish and Portuguese if you enter them as the combination of the
soft hyphen and the hard hyphen. To have these two distinct
hyphens inserted by pressing just the - key, assign the following
macro to the - key in the keyboard editor:

{Shy}{Home}-

{SHy}- stands for soft hyphen, which is the hyphen inserted by the
hyphenation module; {Home}- are the keystrokes required to enter
the hard hyphen, which is the hyphen that is always visible.

With the next example I come back to my promise to show how
omissions in the Compose characters can be remedied. I mentioned
that, contrary to what you would expect, the u does not enter the
breve accent in the Compose key (in WP 6 it does). But it is not
difficult to create your own Compose character. The following
macro takes care of that:

u
{IF}{SYSTEM}13¯=32790¯
{ELSE}
{RETURN}

{END IF}
{CHAR}ch¯¯
{Enter}
{CASE}{VARIABLE}ch˜˜
A¯ul¯a¯u2¯G¯u3¯g¯u4¯U¯u5¯u¯u6¯Y¯u7¯y¯u8¯
{RETURN}

{LABEL}ul¯{NTOK}1,98¯{RETURN}
{LABEL}u2¯{NTOK}1,91¯{RETURN}
{LABEL}u3¯{NTOK}l,116¯{RETURN}
{LABEL}u4¯{NTOK}1,117¯{RETURN}
{LABEL}u5¯{NTOK}1,188¯{RETURN}
{LABEL}u6¯{NTOK}l,189¯{RETURN}
{LABEL}u7¯{NTOK}1,224¯{RETURN}
{LABEL}u8¯{NTOK}l,225¯{RETURN}

With this macro assigned to the u key, the u behaves as the breve
accent in the Compose key. Thus, you can type ug in the Compose
key to enter the ğ.

To conclude this section, and to link smart keyboards to the
language code, I will give an example of a way to handle multi-
lingual documents. Suppose that you use two languages: English
and Russian. What you need is a keyboard that enables you to type
English and Russian (in the Cyrillic alphabet) and a key that
inserts the correct language code. We'll start with the key that
inserts the language code. Take the following macro:

160

{DISPLAY OFF}
{IF}"{SYSTEM}32¯"="UK"¯
{Format}44RU{Enter>{Exit>

{ELSE}
{Format}44UK{Enter}{Exit}

{END IF}

What this macro does is the following. When activated, it checks
which language code is active (system variable 32 holds the
current language code). If English is active, the Russian
language code is inserted (RU), and if it is not, the English
code is inserted. It is convenient to assign this macro to a key
that has no meaning in WP, such as the Alt-Enter combination.
Now for the keys. It is possible to create a keyboard in
which each letter produces either a Latin or a Cyrillic
character. We can do this by making each key sensitive to the
language code. So, if the English language code is active, the d
key should produce the d, and if the Russian language code is
active, the д. Basically, this is a variant of the previous
macro. Take the following macro:

{IF}"{SYSTEM}32¯"="UK"¯
d

{ELSE}
д

{END IF}

Assign this macro to the d key in the keyboard driver. Thus
defined, the d key behaves as follows: when pressed, first the
current language code is determined, if it is English, the d is
inserted into the document, otherwise the д. Note that this key
macro does not check for Russian. It assumes that if the UK code
is not active you want Russian. This macro can therefore be used
for other languages as well; just change the д to another
character.

Although the macro discussed here works fine, it has one
shortcoming. If you are accustomed to using the mnemonic letters
rather than the numbers while cruising the WP menus, you cannot
use these mnemonics if the Russian language code is active. For
example, you can go to the line margin menu by pressing Shift-
F8,l,m. But if Russian is active, you would have to use Shift-
F8,l,7, since the l and the m then produce Cyrillic, which WP
does not understand. Further, if Russian is active, you cannot
type a file name when saving or retrieving a document, answer y
or n to a WP question, and so on. So apart from making the keys
sensitive to the language code, we also want to make them
sensitive to whether or not we are in the edit screen. The
general format of such keys is as follows:

{IF}{STATE}&4~
(do something)

{ELSE}
(alternative)

{END IF}

This general format is WP macro language for 'if at the edit
screen, do something, else do something else'. Edit screen here
also includes headers, footers, endnotes and footnotes.

161

The thing to do now is to embed the macro for the d key in
this general format. The macro to be assigned to the d key will
then look as follows:

{IF}{STATE}&4~
{IF}"{SYSTEM}32¯"="UK"¯
d

{ELSE}
д

{END IF}
{ELSE}
d

{END IF}

To complete the keyboard, you should assign similar macros for
each key. Fortunately, you can copy a macro from one key to
another, which is convenient in our case. Do as follows: create
the macro for the d key as described below, then go back to the
edit screen to activate the keyboard layout with just this one d
in it. Then go to the keyboard editor again. To copy the macro
from the d to the i, type 1 (Create) in the keyboard editor and
press Enter to enter the macro window. The i is in this window;
delete it. Now press Ctrl-V and type d to copy the macro assigned
to the d in the current window. Just replace the d with the i and
the д with the и and press F7 to save the changes. In this way it
is not difficult to create a well-working bilingual keyboard.

WORDPERFECT 6

Recently, WordPerfect released WP version 6. In this new version
various linguistic characteristics are more refined. On the
whole, I think that for anyone using foreign languages, WP 6.0 is
a great improvement. A rather drastic change is the ability to
edit in a graphic screen, in which every character is displayed
correctly: screen font editors are a thing of the past. Secondly,
WP includes a large number of printer fonts in the package that
enable you to print all characters. Fonts are included in Type 1
and Speedo format, and WP also supports TrueType and Agfa
Intellifont. With the included font installer fonts of these
formats can be installed in the WP printer driver. Another big
change is the macro language, which is completely new.

Character sets. Most character sets have changed in some way.
Linguistically, the following changes have been made.

Character set 1 has been modified to correct some errors and
to add some characters. WP 5.1 documents are updated
automatically when you retrieve them in version 6. For example,
the dotless i (ı) was 1,24 in WP 5.1, but is 1,239 in WP 6; when
you retrieve a 5.1 document in 6, the 1,24 code is changed to
1,239 automatically.

Character set 2 is new and linguists will love it: it
contains 144 phonetic characters.

Character set 8 (Greek): some minor changes.
Character set 9 (Hebrew): this character set has been

reorganized considerably.

162

Character set 10 (Cyrillic) is now called Cyrillic/Georgian.
The Cyrillic has been slightly modified. It now includes Georgian
as well.

Character set 11 (Japanese). Drastically changed. In WP 5.1,
this set contained the full Hiragana and Katakana sets; in WP 6,
by contrast, it contains only 62 Katakana characters.

Character sets 13 and 14 are new: they contain Arabic and
script Arabic characters.

Compose key. Although mapped to another key (it is Ctrl-A, in WP
5.1 it was Ctrl-V), the Compose key works the same. The breve
accent has been added as an accent that can be typed in the
Compose key. You can use the letter u as a mnemonic.

Character window. This is new in WP 6, but you may know it from
WP 5.2 for Windows: press Ctrl-W to get an on-screen overview of
all character sets. You can use this window to insert characters
in the document.

Overstrike. Using WP's Search function, you can now search a
particular Overstrike character. You can also do a find-and-
replace in Overstrike: search one Overstrike character and
replace it by another. In the text mode, only the last character
is displayed, as in WP 5.1; in the graphic mode, all characters
are displayed.

Word lists. The supplement word list, which is created and
updated when you add words to it during spell checking, is no
longer a standard WP document. You must now use a special menu to
edit it. An interesting feature is that you can define an
automatic replacement in the word list. Suppose you want to
change English to American spelling. You can include in the
supplement list statements to the effect that center should be
changed to centre, harbor to harbour, etcetera. Once these
replacements are defined in the word list, they are automatically
implemented during spell checking.

Spell checker. The spell checker itself is essentially the same
as the one in 5.1. But it is now possible to include codes to
exclude parts of a document from spell checking.

Grammar checking. WP 6 includes the Grammatik grammar checker,
which is also included WP and Word for Windows.

Macros. Although WP contains the basics of a good linguistic word
processor, it basically lives on the macro language to drive the
keyboard. This was true in WP 5.1, and is still true in WP 6.0.
It is therefore a relief that the macro language in WP 6.0 is
much more powerful than the one in WP 5.1. The new macro language
is basically Turbo Pascal with a bit of C notation. Anyone who
knows Pascal can write WP macros without any effort; you only
need to get used to a few notational variants. For example,
converting a Quicksort routine and a binary search function from
Turbo Pascal to WP was a matter of minutes!

WordPerfect includes a program to convert 5.1 macros to 6.0
format. Contrary to the 4.2 to 5.0/5.1 converter, this program
works very well. Even complex macros were converted successfully.

163

References.

1. Kahrel, P., 1992, "Working with foreign languages and
characters in WordPerfect", John Benjamins, Amsterdam.

