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Abstract 

A casting system is a dictionary which contains information about words, and relations that can exist between words in sentences. A casting system allows the construction of dependency trees for sentences. They are trees which have words in roles at their nodes, and arcs which correspond to dependency relations. The trees are related to dependency trees in classical dependency syntax, but they are not the same. Formally, casting systems define a family of languages which is a proper sub�et of the contextfree languages. It is richer than the family of regular languages however. The interest in casting systems arose from an experiment in which it was investigated whether a dictionary of words and word-relations created by a group of experts on the basis of the analysis of a corpus of titles of scientific publications, would suffice to automatically produce reasonable but maybe superficial syntactical analyses of such titles. The results of the experiment were encouraging, but not clear enough to draw firm conclusions. A technical question which arose during the experiment, concerns the choice of a proper algorithm to construct the forest of dependency trees for a given sentence. It turns out that Earley's well-known algorithm for the parsing of contextfree languages can be adapted to construct dependency trees on the basis of a casting system. The adaptation is of cubic complexity. In fact one can show that contextfree grammars and dictionaries of words and word-relations like casting systems, both belong to a more general family of systems, which associate trees with sequences of tokens. Earley's algorithm cannot just be adapted to work for casting systems, but it can be generalized to work for the entire large family. 
Associating 

sentences 

trees with title gets a tree structure. 
The words of the title are the nodes of the 

This paper is about formal systems which asso­
ciate trees with sequences of symbols. Most of the 
contents of the paper deal with definitions, the 
formal properties of the systems defined, common 
generalizations of new and well-known systems, 
and finally parsing problems. First however, we 
will describe an experiment which gave rise to the 
formalisms we introduce here. The experiment is 
as follows. 

tree, the arrows connecting mothers and daugh­
ters in the tree stand for: 'in some sense related' .  
Such an analysis applied to the title of this paper 
might yield a tree like the one in figure 1. There is 
one restriction concerning word order the experts 
must obey in drawing their trees. The restriction 
is, that if they relate word b to word a, then no 
word c which is at the other side of a than b is in 
the textual order, can be related to b. 

The second step is, to ask the experts to mo­
tivate their tree constructions. The motivation 
must take a specific form. They are asked to 
give a name to the lines connecting mother- and 
daughter-words in their trees, in a consistent way 
for all titles. In this way they are supposed to 
make explicit which relations between words they 

A group of experts is given a set of titles of 
scientific publications in their field of expertise. 
As a ·first step, they are asked to give a structural 
analysis of the titles. More precisely: their task 
is to draw lines between related words in each of 
the titles of the corpus, in such a way that every 
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� construction 
th0 of 

� trees 
/ dependency 

Figure 1: A tree for the title 
L : algorithm 

S :  an S :  for 
� L : construction 

� S :  the S :  of 
� L :  trees 
/ S : dependency 

Figure 2: An attributed tree for the title 
consider important. Moreover, they are asked to name the characteristics of the individual words in every tree. Thus it is made explicit what the properties of the individual words are that make them fit in a particular relationship to one an­other. The final step would be, to redraw the trees in such a way that the relation names assigned to lines connecting mothers and daughters, are now assigned to the daughters, together with the characteristics of the daughter words. From this second representation, the original one can be easily reconstructed, since there is al­ways only one line in the tree to which the rela­tion component in the dressing of a daughter can belong. This final tree translation does not affect 

the structure of the trees nor does it contribute to the insight into their structure. It is relevant for technical purposes: now we have trees in which only the nodes have attributes, instead of both nodes and arcs. 
A schematic representation of a final result tree (with just two simple attributes L and S, where a real tree would have more and more com­plex ones) is the tree in figure 2. 
The outcome of such an experiment could be interesting for all sorts of reasons. Our interest is simply to use the trees, the word characteristics and the relations between words as indicated by the experts, to construct similar trees for titles of · publications that the experts did not consider . 
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The basic idea for extrapolation of the results 
of the experiment is to abstract from the trees 
that are delivered, and to concentrate on word profiles that can be derived from the trees. A 
word profile is roughly a triple consisting of an 
attribute, and two sets of attributes. A profile for 
a word can be derived from a set of trees by first 
collecting all trees in which the word has the same 
attribute. Next the set of attributes assigned to 
daughters of that word in any of the trees are col­
lected. Finally this set of daughter attributres is 
split in two, possibly overlapping, subsets. One 
has the attributes assigned to daughters which 
occur to the left of the given word, and the other 
has the attributes assigned to words which occur 
to the right . Note that a word can occur with dif­
ferent attributes, and that therefore a word can 
have more than one profile. The formal notion 
of a casting system introduced below, gives the 
precise elaboration of this idea. 

Before we turn to the formal definitions and 
their properties, a few remarks are in order. The 
first remark concerns the experiment described 
above. It was never properly conducted. There 
have been experts drawing trees for titles of scien­
tific publications, but they were the same group 
as the ones who used the resulting trees for 
the analysis of new titles . Although it was not 
known beforehand to which new titles the anal­
ysis method would be applied, the experts mak­
ing the original analyses were clearly aware of the 
ways in which their results would be used. Their 
discussions therefore concentrated not so much 
on the actual analyses they made, but more on 
the generality of the relations between words and 
the characteristics of individual words they intro­
duced. Moreover, the corpus of titles they consid­
ered was too small to draw any firm conclusions 
from the outcome of the experiment anyway. But 
the results were not discouraging. 

The second remark concerns the kind of trees 
we consider and the notion of word profile. In 
shape, the trees are very much like dependency 
trees. What we ask the experts to do, could 
rightly be called dependency analysis. The syn­
tactical claims in our approach however, are far 
from classical dependency syntax. In fact, we will 
present a system that is capable of assigning trees 
to well-formed utterances, but that will assign 
trees just as easily to many ill-formed utterances. 

The question what makes a sentence or phrase 
correct, let alone the explanation of correctness at 
any level of adequacy, does not interest us. What 
we want, is to have a tree shaped representation 
of an utterance which organizes the information 
in that utterance in a way that is both manage­
able and acceptabie to a human reader or hearer 
of the utterance. 

As for the word profiles, if one thinks of the 
attributes for words as semantic categories , and 
omits the left-of/right-of distinction, a word pro­
file bears some resemblance to a case frame. In 
fact , it seems that the analysis we consider here 
could just as well be performed on the basis of 
a dictionary of case frames, as on the basis of a 
dictionary of word profiles that are derived from 
a corpus of handmade analyses. 

1 . 1  Casting systems and depen-
dency trees 

A casting system is nothing but the formal de­
scription of a dictionary of word profiles, as intro­
duced informally above. There is a slight change 
of terminology however. What we called 'words' 
above, are 'actors' in the formal representation, 
and what we called 'attributes ' ,  are now 'roles ' .  A 
casting system tells which actors can play which 
roles, and what supporting roles the actors in 
their roles expect to their left and to their right. 

Strictly formal, a casting system is a seven 
tuple of sets, symbols and relations. It fixes a 
relation between sequences of 'actors' and depen­
dency trees. It is a dictionary of words, word 
roles, and co-occurrence relations between words 
and roles. 

Definition 1 A casting system r is a seven tuple 
with the following components: 

• A, the actor set of r. A is a finite alphabet . 
Its elements are actors. 

• P, the set of roles of r. P is a finite set . 

• L, the set of leading roles of r. L is a subset 
of P. 

• t, the invisible role of r. l is a distinguished 
element of P. 

• D : □, the can-be-played-by relation of r. It 
relates roles and actors. If p is a role and 
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Actors Roles { an, algorithm, for, the, construction, dependency, . . .  } {L, S, i} Leading roles {L} 
l The invisible role Can-be-played-by L : algorithm, L : construction, . . .  

Can-be-combined-left Can-be-combined-right Combine-with-t 
S : an, S : for, S : the, S : dependency, . . .  S\L : algorithm, S\L : construction, . . .  L :  algorithm / S, S :  for / L, . .  . S : an / i, S : dependency / i, . .  . i\S : an, i\S : for 

Figure 3 :  A simple casting system 
a is an actor then we write p :  a to express that p can be played by a. 

• D\D : □ ,  the can-be-combined-left relation of r. It relates roles with actors and roles . If p and q are roles, and a is an actor , then we write q\p : a to express that a in role p can play together with any actor in role q to its left. 
• D : D/D, the can-be-combined-right relation of r. The counterpart of the previous rela­tion in the following sense: we write p :  a/q to express that a in role p can play together with any actor in role q to its right. 
It should be obvious that the can-be-played­by, can-be-combined-left and can-be-combined­right relations give us the ingredients of a word profile. The special status of the set of leading roles is , that it contains the roles that can appear at the root of a well-formed tree. The invisible role is important in the 'combine' relations. Pos­sibility of combination with the invisible role in­dicates that an actor can occur without support of other roles, i.e . without daughters in a depen­dency tree. An example of a small casting system, corre­sponding to the dependency tree shown earlier for the title of this paper, is in figure 3 .  
A casting system is just the rules of the game. The rules can be derived from a given set of trees. But the game is the inverse: to associate trees with sequences of actors. That is what the fol­lowing definition is about. 

Definition 2 Let r be a casting system with ac­tor set A, and let u be a string of actors . A casting tree or a dependency tree for u w.r .t .  
r is a directed graph T. The nodes of T are pairs 
(p, a), with p a  role of r, and a an occurrence of an actor of r in u. The graph T has the following properties: 

• it is a tree, 
• the role of every node can be played by the actor of the node; 
• if ( q, /3) is a successor of (p, a) and the oc­currence /3 is to the left of the occurrence a, then q\p : a, where a· is the actor of which 

a is an occurrence; if /3 is to the right of a, then p :  a/q; 

• if node (p, a) has no successors (q, /3) with /3 to the left of a, then i \p : a; if there are no successors (q, /3) with /3 to the right of 
a, then p :  a/i; 

• with every node there is a segment v of u, which consists of the actors in the node and in its descendants. In particular , the root node corresponds to the entire sequence u. 

A casting system has an associated formal lan­guage. The existence of a dependency tree w.r .t . the casting system determines whether or not a string of actors belongs to the formal language . 
Definition 3 Let r be a casting system, with ac­tor set A. The language associated with r is the set of actor sequences in A* which have a depen­dency tree w.r.t. r. We call this language £r . 
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� 

Li_� ,(_ ;J" � Adopt: 

Figure 4: Where t adopts s 

The family of casting languages has some pe- 2 
culiar properties. We mention the following facts 
without proof. 

Parsing: the construction 
of a dependency tree for a 
given sentence 

Fact 1 If r is a casting system, £r is the asso­
ciated language, a and b are actors, and ab is a 
string in £r , then abn or anb is in £r for every 
n > 0. More general, in every string in £r with 
two or more actors, there is at least one actor 
which can be repeated arbitrarily often, and the 
resulting string will again be in £r . 

Fact 2 If r is a casting system, and £r is the 
associated language, then £r is contextfree. 

Fact 3 There are regular languages £, for which 
no casting system r exists such that £ = £r . 

Fact 4 There are casting systems r which have 
an associated language £r which is not regular. 

Fact 1 shows that casting systems are not the 
proper systems to distinguish between ill- and 
well-formed phrases of a natural language. Fact 3 
is an immediate consequence of fact 1 .  From facts 
2 to 4 we see that casting languages do not have 
a proper place in the Chomsky hierarchy, but are 
'somewhere in between regular and contextfree' .  

There are quite a number of open problems 
concerning casting systems. E.g. is it decidable 
whether two casting systems have the same asso­
ciated language or not? 

We will not go into formal properties of casting 
systems here, nor will we further pursue the ques­
tion of their suitability for the description or the 
processing of natural language. The second half 
of this paper deals with the parsing problem cast­
ing systems pose, and the solution to that prob­
lem which is found in a common generalization of 
casting systems and contextfree grammars. 

In this section we discuss the problem of con­
structing dependency trees for sentences on the 
basis of a casting system r. But what we shall do 
is not to present a parsing algorithm for casting 
languages. Our approach is to consider the as­
sociation of analysis trees with sequences of sym­
bols in general terms, independent of whether the 
associated trees are dependency trees or e.g. con­
textfree parse trees. First we will show that such 
a general approach, of which dependency trees 
and contextfree parse trees are both an instance, 
indeed exists. Then we consider the parsing prob­
lem for the generalized notion of tree association. 
We conclude that the generalized notion has such 
characteristics that it allows an Earley-like pars­
ing strategy. It follows that dependency trees can 
be constructed by an Earley-like algorithm. To 
obtain the actual Earley algorithm for contextfree 
languages from the generalized version, optimiza­
tions are needed which are typical for the con­
textfree case. We shall not go into these opti­
mizations. 

The kernel of the generalized notion of tree 
association, is the notion of FB-system. Strictly 
formal, an FE-system is a seven tuple of sets and 
relations. It fixes a set of colored trees, and a 
relation between colored trees and sequences of 
symbols. 

A colored tree is a tree with a mapping from 
its nodes into a set of colors. The set of colors is 
just an arbitrary finite set . 

In the sequel we shall work with three basic 
tree forming operations. They are: Single, Adopt, 
and Recolor, and they are defined as follows: 



94 VAN DER HOEVEN 

a A /4 
:;,es� LL_� 

F(a, b, c) :  Li_� 
LL� represents v 

represents uv 

Figure 5: Forward adoption 

a A · 
/1't � ::.�� 

B(a, b, c) :  
�� 

represen s u �� 
represents uv 

Figure 6: Backward adoption 

A 
Li_� 
represents u 

L(a, b) : j 
� 
represents u 

Figure 7: Lift 

Single takes a color, and yields a tree consist­
ing of just a single node, which has this color. Adopt takes two trees, which it turns into one 
by making the root of the second tree a daughter 
of the root of the first one ( cf. Figure 4) . Recolor finally, takes a tree and a color and 
'changes' the root of the given tree to have the 
given color. .... 

We shall use the phrase: the color of a tree to 
mean the color of the root of the tree. We shall 
denote this color of t by ,(t). 

With these preliminaries we are now able to 
give a precise definition of an FE-system, and to 
give an interpretation to this formal definition. 

Definition 4 An FE-system is a seven tuple IP 
with the following components: 

• C, the alphabet of colors of IP .  

• CR, subset of C with the admissible root colors. 
• S, the alphabet of symbols of IP. S and C 

are disjoint. 

• R, the representation relation of IP, a re­
lation on C x S. R( c, s) indicates that 
the color c 'represents' the symbol s. A 
color which represents a symbol is a termi­nal color. 

• F, the forward relation of IP, a relation on 
C x C x C. F(co , c1 , c) indicates that a 
tree with color Co can adopt one with color 
c1 , to form a new tree of which the root is 
(re)colored by c. If c is terminal, then so is 
Co . If both are terminal, then they represent 
the same symbols. 
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• B, the backward relation of <I?, a relation on S x S x S. B(eo , c1 , c) indicates the same as F ( c0 , c1 , c) , except that now c1 adopts c0 • If c is terminal, then so is c1 . If both are terminal, then they represent the same symbols. 
• L, the lift relation of <I>, a relation on S x S. 

L( c0 , c1 ) indicates that a tree wit_h color Co can be adopted by a single node tree with color c1 . c1 can not be a terminal color. 
FB-systems are named after their characteris­tic forward- and backward-relations. An FB-sys­tem is just a formalism which fixes the rules of the game. The game is to build colored trees, and to associate such trees with sequences of symbols. The next definition ( with pictures) tells us how to interpret the contents of an FB-system. 

Definition 5 The set of admissible trees T� over an FB-system <I> is a set of colored trees. Every tree in T� is an analysis tree for a sequence of symbols. The set T� and the analysis tree relation are ind11ctively defined by the following four clauses: 
1 .  If s is a symbol and the color c represents s ,  then Single(c) is an admissible tree, it is an analysis tree for s .  

{d, n , p} { NP, PP } NP 

2. If t with ,(t) = a is an analysis tree for u, and t' with ,( t') = b is an analysis tree for v, and F(a, b, c) holds, then Recolar(Adopt(t, t' ) ,  c) is an admissi­ble tree, it is an analysis tree for uv ( forward adoption, cf. figure 5) .  
3 .  If  t with ,(t) = a i s  an analysis tree for u, and t' with ,(t') = b is an analysis tree for v, and B(a, b, c) holds, then Recolar(Adopt(t' , t) , c) is an admissi­ble tree, it is an analysis tree for uv (back­ward adoption, cf. figure 6) . 
4. If t with ,(t) = a is an analysis tree for u, and L(a, b) holds, then Adopt(Single(b) , t) is an admissible tree, it is also an analysis tree for u (lift , cf. figure 7) . 

2 .1  A contextfree grammar as an 
FB-system 

To illustrate the concept of FB-system and the as­sociation of analysis trees with sequences of sym­bols, we will present a simple contextfree gram­mar as an FB-system, and show how the parse tree of a simple sentence can be obtained as an analysis tree according to the foregoing definition. 
Terminals Non-terminals Start symbol Rules NP --+ d n, NP --+ NP PP, PP --+ p NP Colors 
Root colors Symbols Represent Forward 

Backward Lift 

{ d --+ d, n --+ n, p --+ p , NP --+ d n, NP --+ NP PP , PP --+ p NP, NP --+ d, NP --+ NP PP --+ p} { NP --+ d n, NP --+ NP PP } {d, n ,p} R(d --+ d, d) , R(n --+ n, n) , R(p --+ p, p) (Fl)  F(NP --+ d, n --+ n, NP --+ d n )  (F2) F(NP --+ NP, pp --+ p WP, NP --+ NP pp ) (F3) F(PP --+ p, NP --+ d n, PP --+ p NP ) (F4) F(PP --+ p, NP --+  NP PP, PP --+ p NP ) empty (Ll ) L(NP --+ d n, NP --+ NP ) (L2) L(NP--+NP PP, NP --+ NP ) (L3) L( d --+  d, NP --+ d ) (L4) L( p --+ p, PP --+ p ) 
Figure 8: The example grammar and the corresponding FB-system 
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Step 1 :  representation. 
p -+ p  

n --+ n  d --+ d n --+ n 
n p ;.z n 

NP --+ d 
ld  

d 

VAN DER HOEVEN 

Step 2: L3,L4,L3. pp --+ p 
/ P/ NP -> d  p 

--+/. n --+ n : d --+ d  n --+ n  
n p ;.z n 

Step 3: Fl ,Fl . pp --+ p 
NP -, �  / PAP -, dn /. >.. p --+/. .� d --+ d  n --+ n : d --+ d n --+ n  

;.z Step 4: Ll ,  F3. NP -+ NP 
/ PP --+ p NP 

NP -, � � NP -, dn /. >.. p ;� d --+ d n --+ n  · d --+ d  n --+ n  . . . . . 

;.z n p d n 

n p d n Step 5: F2. NP -+ NP PP 
- - � PP --+ p NP 

NP -, ✓ � NP -> dn /. >.. p ;� d --+ d n --+ n  · d --+ d  n --+ n  . . . . . 

d n p d n 

Figure 9: The construction of an analysis tree for dnpdn 
The simple grammar we consider is shown in the top half of figure 8 .  The corresponding FB­system is shown in the bottom half of the same figure. Its set of colors contains an element x --+ x, for every terminal x of the grammar. It contains also all production rules of the grammar. Finally it contains the 'partial' rules x --+ u, which are such that x --+ uv is a rule of the grammar (both u and v not empty) .  The set of root colors of the FB-system con­tains the colors that are production rules for the start symbol. Its symbols are the terminals of the grammar. The representation relation R contains three pa!rs, one for every symbol. The idea behind the forward relation F and the lift relation L of the system is, that an analy­sis tree will always have a color indicating a par-

tially recognized production. The F rules state how to extend partial recognition, the L rules tell how a terminal or a completely recognized non­terminal can be the leftmost symbol in a partially recognized other non-terminal. The five pictures in figure 9 show the step-by­step construction of an analysis tree for the se­quence dnpdn. The analysis tree is a parse tree. The steps are: 
1 .  single node trees representing the symbols, 
2. three admissible lifts (L3,L4,L3) , 
3. two admissible forward adoptions ( twice Fl) ,  
4 .  an admissible lift (Ll ) ,  and a forward adop­tion (F3) , 
5. an admissible forward adoption (F2) .  
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Actors 
Roles 

{d, n , p} {D, N, P, t} 
Leading roles {N} 

I, The invisible role 
Can-be-played-by 
Can-be-combined-left 
Can-be-combined-right 

D : d, N : n ,  P : p D\N : n ,  t\D : d, t\P : p  
D :  d/t, N : n/P, N : n/t, P :  p/N 

Colors 
Root colors 
Symbols 
Represent 
Forward 

{D : d, •N : n , N : n , P : p• , P : p} 
{N : n} {d, n , p} R(D : d, d) , R( •N : n, n) ,  R(P : p• , p) 
(Fl ) F(•N : n , P :  p, •N : n ) ,  
(F2) F(N : n , P :  p, N :  n ) ,  
(F3) F(P : p•, N : n , P : p) , 
(F4) F(P : p, N :  n , P :  p) 

Backward (Bl )  B(D : d, •N : n , N : n) , 
(B2) B(D : d, N : n , N : n )  

Lift empty 

Figure 10: The example casting- and the corresponding FE-system 

2 .2 A casting system as an FB-
system 

In a similar way as the contextfree grammar 
above, we can present a casting system as an 
FE-system, and show how the analysis tree con­
struction yields a dependency tree. We take the 
casting system of the top half of figure 10 as an 
example. 

The corresponding FE-system is in the second 
half of the same figure. 

Its set of colors contains all possible role-actor 
pairs according to the can-be-played-by relation. 
Role-actor combinations which cannot do with­
out support, i.e. which cannot be combined with 
the invisible role, also appear 'dotted' in the color 
set . The dot marks the side at which support is 
obligatory. 

There is one admissible root color, correspond­
ing to the leading role. 

The symbols are, as before, the actors of the 
casting system. 

The representation relation R contains three 
pairs, one for every symbol. 

F has four triples, B has two, and L is the 

empty relation, no color can be lifted to another. 
Note that F and B correspond to the can­

be-combined relations. Note also that a dot dis­
appears in recoloring whenever a dotted color 
adopts a color at the side of the dot . 

Note finally that the absence of Lift here and 
the importance of Lift in the case of contextfree 
grammars reflect the fact that every node in a 
dependency tree represents a symbol, whereas in 
parse trees the internal nodes are representatives 
of constituents. 

The four pictures in figure 1 1  show the step­
by-step construction of an analysis tree for the 
sequence dnpdn. The resulting analysis tree is a 
dependency tree for the sequence. The steps in 
its construction are: 

1 .  single node trees, representing the individ­
ual symbols, 

2. two admissible backward adoptions ( twice 
Bl) ,  

3 .  a forward adoption (F3) , 

4. a forward adoption (F2) .  
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Step 1: representation. 
•N : n  

D :  d P :  p• 
•N : n  

D : d  

d n P d n 

Step 3 :  F3. 

�:(�:_, p 
. . . N : n  . . . . . . 

: : : d : 

d n p d n 
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Step 2: Bl ,Bl. 
N : n  

/ /  P : p• 

d n p 

/ N/ n 
1J :  d . 
d n 

Step 4: F2. 

0�:_, p . . . N : n  . . . . . . 
: : : d : 

d n P d n 
Figure 1 1: The construction of an analysis tree for dnpdn 

2 .3  Recognizing sequences which 
have an analysis tree 

The two examples are of course not a proof of the fact that every contextfree grammar and ev­ery casting system can be represented as an FB­system. Such a proof can be given, it is in fact not difficult. But it is tedious, and we shall not present it here. Hopefully, the examples are enough to suggest the general techniques appli­cable for translating the one formalism into the other. The goal of the introduction of FB-systems was to come to a uniform approach to parsing. It is parsing we shall now concentrate on. That is to say, the actual problem of parsing is to construct an analysis tree , if any, or even better, . all anal­ysis trees for a given sequence of symbols w .r.t. a given F B-system. What we present here is a strategy for recognition. Strictly speaking, the algorithm we present (not in full algorithmic de­tail) , is capable only of deciding whether a given 

sequence has an associated analysis tree or not, and it does not produce the trees . But it is a well-known technique, and a minor adaptation to the algorithm, to keep track of the ways in which items are combined during recognition. Such ad­ditional information is sufficient to produce all analysis trees. 
The central notion in the recognition algo­rithm is the notion of an item. 

Definition 6 An item for a given FB-system <I> is an element of the Cartesian product N x C, in which N is the set of positive natural numbers and C is the color set of <I>. 
The overall structure of the recognizer is as follows. The recognizer R w.r.t. <I> is an algorithm which expects an input sequence (a1 , . . .  , an) which consists of symbols ai of <I>. As a result it produces a sequence of item sets 

(lo , . . .  , In ) .  
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lo is empty. Every next Jk+1 is computed from the sym­bol ak+l and the preceding initial segment (10 , • • •  , Ik ) of the result sequence. The computation of h+i will yield a set of items (m, c) in which m ::;  k + l .  The interpretation of (m, c) E Ik is: there is an analysis tree t for the segment (am , . . .  , ak ) ,  with -y(t) = c .  Recognition i s  expressed as:  the last item set in the sequence produced, i.e. In , contains an item ( 1 ,  c) in which c is an admissible root color of <p _  
3mm To be precise: the construction of the next item set h+i from the previous ones (lo , . . .  , h )  and the next symbol ak+I proceeds as follows: It starts with the set 
K = { (k + 1 ,  c) IR(c, ak+l ) }  Of  this set ,  the completion is constructed. The completion of K is the smallest set J satisfying: 
• K � J 
• If (j+l ,  d) E J and (i , c) E Ij and F(c, d, c' ) ,  then ( i ,  c' ) E J 
• If (j + 1 , c) E J and (i , d) E IJ and B(d, c, c' ) ,  then (i ,  c' ) E J 
• If (j + 1 ,  c) E J and L(c, c') then (j + 1 ,  c') E 

J. 

This completion is h+1 • For the complexity of the construction of the completion, the following is relevant: 

every set Ij has a number of elements bounded by C x j, where C is the number of colors, to construct Jk+1 , all sets Ij , j < k + l ,  must be traversed, every item in these previous sets must be matched against at most C items already in h+1 , and for every item newly constructed at most C lifts must be added. It follows that the number of steps in the con­struction of Jk+1 is bounded by C2 k2 . The recognition algorithm is of cubic complex­ity. 

3 Conclusions 

The creation of dependency trees for utterances on the basis of a dictionary of word profiles, i .e. a casting system, derived from the handmade anal­ysis of a restricted set of utterances, is an inter­esting approach to structural analysis. To assess the full merits of the approach, further research is necessary however. The parsing problem for the construction for dependency trees is in many respects the same as that for contextfree derivation trees. In fact , the general notion of FE-system seems to cover all methods of associating trees with sequences which are local, i.e. all methods where the well­formedness of the associated tree is determined by restrictions on the structure of the nodes, and not on the tree as a whole. An Earley-like algorithm of cubic complexity applies to every association of trees to sequences on the basis of such a general FE-system. 



100 

References 
(1] Earley, J. (1970), "An efficient contextfree parsing algorithm".  Communications of the A CM 13, 90-102. 
(2] F ilmore, C. (1968), "The case for case". In: Bach, E. & R. Harms, (Eds.): Universals in Linguistic Theory, 1-68. New York : Holt, Reinhart and Winston. 
(3] Hoeven, G.F. van der (1992), "An experi­ment in the syntactical analysis of English noun phrases" .  Memoranda lnformatica 92-24, 34pp. Enschede, The Netherlands : Uni­versity of Twente, Department of Computer Science. 

VAN DER HOEVEN 

(4] Hoeven, G.F. van der (1992), "An algo:­rithm for the construction of dependency trees" , Memoranda Informatica 92-39, 29pp. Enschede, The Netherlands : University of Twente, Department of Computer Science. 
(5] Hopcroft, J.E. - J.D. Ullman (1979), In­troduction to Automata Theory, Languages and Computation. Reading, Massachusetts: Addison-Wesley. 
(6] Schubert, K. (1987), Metataxis-Contrastive Dependency Syntax for Machine Transla­tion. Dordrecht, Providence R.I. : Foris Pub­lications 


