
A New Transformation into Deterministically Parsable Form

for Natural Language Grammars

Nigel R. Ellis, Roberto Garigliano and Richard G. Morgan

Artificial Intelligence Systems Research Group,
School of Engineering and Computer Science

University of Durham, UK. DHl 3LE
email : {N . R . Ellis I Roberto . Garigliano I R . G . Morgan }©durham . ac . uk

Abstract Marcus demonstrated that it was possible to construct a deterministic grammar /interpreter for a subset of natural language [Marcus, 1980] . Although his work with PARSIFAL pioneered the field of deterministic natural language parsing, his method has several drawbacks: • The rules and actions in the grammar / interpreter are so embedded that it is difficult to distinguish between them. • The grammar / interpreter is very difficult to construct (the small grammar shown in [Marcus, 1980] took about four months to construct) . • The grammar i s very difficult to maintain, as a small change may have several side effects. This paper outlines a set of structure transformations for converting a non-deterministic gram­mar into deterministic form. The original grammar is written in a context free form; this is then transformed to resolve ambiguities.
1 Introduction

The term deterministic grammar is used to re­fer to a grammar which can be parsed deter­ministically using a specific parser. The work of [Marcus, 1980] has been extended in the past [Berwick, 1983, Stabler, 1983] , but both of these still follow the same method in that the deterministic grammar produced is hand written and therefore difficult to generate, expand and maintain. Deterministic parsers have three fundamental features. These features appear as constraints in the parsing mechanism and are part of the parsers' structure. The parser has to have a constrained lookahead facility. It has to be data driven or bottom-up to som·e extent, but also must have the ability to" reflect expectation based upon the constructs already formed. All constructs produced from the input. to the parser must be part of the output; thus no structure is ere-
61

ated and then later destroyed. In a generic non­deterministic parser, when two (or more) gram­mar rules have identical start symbols, a looka­head must be used by the parser to decide which grammar rule to apply. The use of a lookahead relies upon the following principle:
"If there the input matched so far forms part of a rule A then some to­ken a will be present in the input. However if the the input forms part of a rule B, then a token f3 will be present in the input. This process can be extended for similar looking gram­mar rules."

A parser which uses a lookahead scheme will pause at such objects and then use a lookahead to distinguish between them. To do this, a fur­ther stream of symbols is parsed, up to some fixed length (usually denoted by k) . Eventually the

62

parser will reach a point at which it becomes cer­tain of the category of the original symbol. Once this point is reached, the parser will backtrack, allocate this category an_d continue. This means that the parser will generate the structure for sev­eral items more than once, which is an undesir­able feature.
2 State of the Art

2 . 1 Marcus Parsers

2 .1 .1 PARSIFAL

The major work in the field of deterministic natu­ral language parsing is PARSIFAL which is based upon a psychological model of how humans parse language and Marcus' determinism hypothesis. 1 PAR SIFAL has two major data structures - a stack called the active node stack and a lookahead buffer containing 5 cells (of which only 3 cells can be accessed at any time), which is used to hold grammatical constituents. The lookahead buffer processes words in the first input cell based upon the contents of the remaining two cells and there­fore can deduce what type of language component it has found. The use of these two data struc­tures ensures that PARSIFAL operates in both a top-down and bottom-up fashion. The stack has parents looking for children - a top-down pro­cess; the buffer has children looking for parents - a bottom-up process. PARSIFAL 's grammar was designed to cap­ture the generalisations of generative grammar and the structure of constructs which come from Chomsky and Winograd 's differing theories of annotated surf ace structure. The grammar con­sists of pattern/ action rules grouped together into units called packets. Each packet of rules repre­sents the structure which the parser is attempting to build . Each rule has a numerical priority which is used to decide between rules when more than one pattern matches. Patterns are matched on cells located in the buffer, the current active node and the current cyclic node. Actions can consist of operations to push or pop nodes from the stack and to activate/deactivate packets of rules. PAR­SIFAL also contains special rules called attention shift rules which are used to shift the context of

ELLIS - GARIGLIANO - MORGAN

the parser from parsing one constituent to parsing another .
2.1 .2 Problems with the Marcus ap-

proach

The main problem with Marcus style parsers is that the grammar is encoded in a procedural form which specifies some actions upon a virtual ma­chine. This makes the grammar harder to under­stand than a grammar written in a declarative manner . Also, because of the procedural form, it is very difficult to expand a grammar, as a change may cause side effects. It is difficult to see the ef­fect of a change in the grammar because the whole of the grammar can have other active packets of rules at the same time as the rule being changed; the recent change may cause some unintential in­teraction between these rules, rendering a mean­ing to the grammar which might have been un­intentional. Another problem with Marcus style parsers is that they are unable to analyse globally ambiguous grammars in a deterministic manner ; when a Marcus parser encounters a fragment of grammar which is globally ambiguous, it marks the built parse tree in a special way. If another interpretation is required for the input sequence, the input has to be completely re-parsed and the initial parse tree is used to guide the parser onto a different interpretation.
2.1 .3 Other Marcus Parsers

Several other parsers have been prodqced as a re­sult of the work of Marcus. However, all of these parsers _ follow the same basic structure as PAR­SIFAL and therefore share all the drawbacks of the approach. These were: ROBIE [Milne, 1986] which looked especially at lexical ambiguity, L. PARSIFAL [Berwick , 1983] which was used for grammar acquisition, YAP [Church, 1980] which was a modified form of PAR SIFAL im­plemented using a finite state machine , PARA­GRAM [Charniak, 1983] which looked . at the parsing of ungrammatical sentences, and FID­DITCH [Hindle, 1983] which was used to inves­tigate the sublanguage of military style speech. 1 Briefly stated, this says : "the syntax of any natural language can be parsed by a mechanism which operates strictly
deterministically· in that it does not simulate a non-deterministic machine."

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 63
2 .2 LR Parsers 2.2 .1 Outline
The term LR(k) [Knuth, 1965) is shorthand form for a parser which performs left-to-right parsing building the right-most derivation in reverse (i.e. bottom-up) using at most k terminal symbols as lookahead. LR(k) parsers can only be con­structed for unambiguous context-free grammars. Although natural language grammars are inherently ambiguous, several attempts have been made to apply LR(k) (and the re­stricted form of LALR) parsing to natural language problems [Shieber, 1983, Pereira, 1985, Briscoe, 1987) . LR parsers are members of the class of shift­reduce parsers [Aho and Johnson, 1974) which are a very general type of bottom-up parser. All shift-reduce parsers incorporate a stack for hold­ing constituents as they are built during the parse and have a shift-reduce table of states and actions for guiding the parser. This table contains two types of actions: the shift operation, which trans­fers the next word from the input buffer onto the stack, and the reduce operation, which replaces several elements on the top of the stack with a new element. Shieber and Pereira's work concen-trated on using the Unix parser generator, yacc [Johnson, 1978) , to produce an LALR parser and to use this for parsing natural language. In order to do this, they created several strategies for converting ambiguous context-free grammars into deterministically parsable form. These strategies were based upon semantic rules which exploit basic properties of the English language such as preferences for propositional attachment. Briscoe has also attempted to use LR(k) parsing for nat­ural language. He has concentrated on producing an interactive deterministic parser which corre­sponds to a specific type of LR(k) parser.
2.2 .2 Problems with this approach
The problem with the LR(k) parsing approach is that in order to make a decision, the parser needs to analyse both the left and the right contexts. For some sentences it may be that the size of left and right contexts required to correctly anal­yse the sentence is as large as the sentence itself.

However, LR(k) parsers are restricted to looking at most k symbols ahead. Therefore an LR(k) parser will not be able to analyse a sentence deter­ministically if the right context required is more than k symbols in length. Also, since the left context is encoded deter­ministically into a parse table, any grammar rule which matches the same left hand context and lookahead will cause a shift-reduce conflict. This renders pure LR(k) parsing impossible. Shieber and Pereira introduce two rules to solve this prob­lem:
1 . Resolve shift-reduce conflicts by shifting.
2. Resolve reduce-reduce conflicts by perform­ing the longer reduction.
Although these rules solve many of the prob­lems, Shieber and Pereira admit that there are several cases in which their parser will not pro­duce an evaluation. For example, the sentence

The horse raced past the barn fell.
causes a reduce-reduce error before the last word.2 The parser of [Briscoe, 1987] employs a different approach because it can interact with a semantic component which decides which action to perform when facing with a reduce-reduce or shift-reduce conflict. The success of this method relies heavily upon the amount of semantic knowl­edge recovered from the successfully parsed input . Although each of these methods partly solves the problem of ambiguity, it should be noted that the action of either parser could at some stage degenerate into an ad-hoe strategy. The parser would then no longer operate in strictly deter­ministic manner and may have to backtrack.
3 A new approach

The introduction of our transformation algorithm provides the facility for the automatic generation of a deterministic parser from a source grammar given in context free form. A grammar descrip­tion written in a context free form is far easier to maintain and understand than one written in a procedural format such as Marcus' parser PAR­
SIFAL (written in the language PIDGIN). The

2This is because the finite verb form of 'raced' will be chosen in preference to the participle form.

64
presence of commands like create, drop, etc. in a PIDGIN grammar make it very difficult to see ex­
actly what language the grammar defines. More­
over, such parsers are difficult to write, maintain
and expand, as the effect of making a change in
one portion of the grammar may affect another.
The results of changes cannot be realized until the
parser is thoroughly tested. 3 LR(k) style parsers
are also unable to deal with the type of ambigu­
ity present in natural language grammars. Al­
though several extensions to the basic parsing al-:­
gorithm have been proposed, none of these com­
pletely solve the problem.

In the our approach, when some changes are
required to the grammar, the original source form
is modified and transformed again to produce a
new version of the parser. Working in this way
ensures that the maintenance and expansion of
the grammar does not suffer from the disadvan­
tages of the Marcus system. The transformation
system also has the advantage over LR(k) style
parsers in that no lookahead is required to parse
such grammars; the parser only needs to examine
the current input symbol in order for a decision
to be made.

4 Notation

In this section, the notation used in the remainder
of the paper is introduced.

4.1 Trees

Each tree diagram presented in this paper will
consist of a combination of and and or nodes. And nodes will be labelled with a category, or
nodes (marked with a '+') will remain unlabelled.

A
I\
a b

Fig. 1 : An and node.

ELLIS - GARIGLIANO - MORGAN

+

I\ b A
Fig. 2: An or node.

Figure 1 shows a sample and node labelled A for
the symbols a and b which represents the produc­
tion rule A --+ a b, and Figure 2 shows a sample or node for the symbol b or the symbol A rep­
resenting the production rule O --+ b I A. If any
tree diagram has a label of the form nt = N,
then this represents a node in the tree with name
N, which can be referenced by the unique non­
terminal name nt. If the name of a node is re­
peated and appears as a leaf node in a tree, this
represents a cycle or repetition of some previously
shown item.

4.2 Message passing

If a grammar contains local ambiguity, a parser
will normally have to look ahead a number of
symbols in the input stream to decide which pars­
ing rule to apply. Rather than using a lookahead,
a dummy value will be allocated for the name of
the parsing rule applied, until more of the input
has been parsed and the correct name of the rule
determined. Dummy nodes are represented as D
in the tree diagrams. Whenever the name of an and node has been replaced by a dummy node,
the name is moved and attached to the righthand
descendant of the node. For example, consider
the following grammar G1 :

S1 --+ A I B
A --+ a b
B --+ a c

This grammar is shown in tree form in Figure 3
and in an equivalent transformed form in Figure
4. Note the messages within the square brackets
attached to the nodes b and c. 3This task alone may be hard as there is no formalism available for Marcus parsers, so no formal testing methods can be applied.

A NEW TRANSFORMATION INTO D ETERMINISTICALLY PARSABLE FORM 65
+

A A B
I\ I\

a b a c

Fig. 3: Tree for grammar Gi .
Di

I\
a +

A
b[B] c[C]

Fig . 4: Transformed version of Gi .
When the parser encounters a dummy node in the grammar, it cannot be sure of the real name of the node, as this node represents some am­biguity which existed in the original grammar. The parser proceeds to match the input symbols against the grammar. When a node is matched which contains messages, the messages are passed back up the built parse tree until a dummy node is found. This dummy node is then replaced by the message at the front of the list of messages found. The search is then continued with the re­maining list of messages.

4.3 Gated or nodes
When two grammar rules have been unified by a transformation, a single grammar rule is pro­duced which will have a chain of dummy nodes corresponding to the names of the and nodes in the two original grammar rules. This new grammar rule preserves the struc­ture of the original two grammar rules by using a special type of or node called a gated or node. These nodes prevent the parser from following a path in the new rule which is a mixture of the original two grammar rules. Consider the right child of Di shown in Fig­ure 6. This type of or node will be referred to as a gated or node. The values in the braces are tests on the name of the left child of Di . For example, if the parser had matched the input se­quence ab, then the dummy node D2 would have been replaced by the message A and the parser

would choose the path below the gated node {A} . Likewise, if the parser had matched the input se­quence ac, the dummy node D2 would have been replaced by the message B and the parser would choose the path below the gated node {B} .
S2 -+ E I F A -+ a b B -+ a c E -+ A d F -+ B e
Fig . 5 : An example grammar G2 •

Di

D2 {A} + {B}
/\ A a + d[E] e[F]
A

b[A] c[B]

Fig . 6: Transformed version of grammar G2

4.4 Special gated or nodes

In order that the structure of the grammar is pre­served when the parser is following a cycle in the transformed grammar, it must have some method of recording the name of the cycle which it has followed previously. This mechanism is imple­mented by the use of cycle markers and special gated or nodes.

Fig. 7: Grammar G3

Cycle markers are represented by angled brackets e.g. (Ci) _and special gated or nodes represented by double braces e.g. {{Ci }}. When the parser encounters a special gated or node, the

66

name of the current cycle being followed is com­pared with the values contained in the node. If a mfl,tch is found, then the parser continues by following the descendants of the gated node. An exa:rpple of a gated or node and a cycle marker may be found in Figure 7 (taken from Figure 12) . 'fhere will always be one value D in a collec­tion of special gated or nodes which represents the path the parser should follow if it has not already followed a cycle.
5 Transformation Meth�d
The transformation into deterministic form is performed by the ·algorithm given in this section. The transformation is divided into three stages: pre-transformation, main transformation and post-transformation. The pre-transformation stage prepares the grammar for processing by the main transformation by removing any pre­vious unification from the source grammar. The main transformation unifies any ambiguity which may exist in the source grammar and the post­transformation tidies the transformed grammar making it suitable for input into the parser. A de­tailed example of the transformation is also given.
5 . 1 Pre-Transformations

The pre-transformation unpacks any unification which may exist in the source grammar.

ELLIS - GARIGLIANO - MORGAN

leave t1 in the or node and repeat the procedure for the rest of the descendants. The comparison process is as follows:
5.2.1 Comparison between two graph seg­

ments:

1. For each tree ti and ti , list the sequences L1 and Li of leftmost nodes from the root node to the leftmost terminal node;
2. If no common nodes are found in the lists, the two trees cannot be unified by this al­gorithm;
3 . If a common node c is found, mark it ;
4. Count the number of nodes n1 and ni from the first node to the common node c in L1 and Li ;
5 . If n1 -=/ ni , add dummy and nodes to the top of the shortest tree (t1 or ti) - The ex­isting tree is the left child, and an empty node is the new right one. A dummy mes­sage is then added to the empty node. Any messages carried by the previous node are passed to the new one. When two trees are unified, the resulting tree must be complex enough to accommodate the more complex of the two, so the shorter tree must be bal­anced to match the larger one.

1 . Lift the left-most or nodes above the and 5.2.2 Make the unified tree: nodes, removing any empty nodes which may be present . This step continues the unpacking of any previous unification.
2. Flatten any chains of or nodes into one or node.
3. Repeat steps 1 to 2 on whole graph until the transformations can not be applied.

5 . 2 Main Transformation

For each or node O in the grammar with descen­dants t1 . . . tn , do the following: Take the first descendant t1 and compare it with all the others. If a matching descendant ti (1 < i � n) is found (following the method below), unify the two and start again comparing the re­sulting tree to the rest. If no match is found,

Given two balanced trees t1 and ti with a com­mon node c in the list of nodes from the root to the leftmost node, do the following:
1 . Take the number of nodes above c and cre­ate that number of dummies. Each of these dummies will have an or branch gate as the right child.
2. Put c as the leftmost of the chain. This is done because the node c represents the common elements of both trees.
3. Put a special gated or node, S, as the sib­ling of c. This node represents the first node of each of the trees being unified, and is an

or node because all structures above this node are different.

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 67

4. Attach to S a gated node with the name D.
Add to it an or node containing the siblings
of c in each of the two trees t1 and ti . These
represent the possibilities which can follow
from c in the two trees being unified before
the name of any cycle has been resolved.

5. For each cycle C in t1 or ti attach to S a
special gated node with name C. Add to
this node, the siblings of c from the tree
the cycle appears in. These nodes repre­
sent the choices available in the grammar if
the parser is following a specific cycle name.

6. If any gated nodes are repeated in S, re­
move the duplicates, adding the possibili­
ties below each duplicate to the remaining
node in S.

7. Add the name of the parent of the siblings
in each of the original trees to the message
list of each sibling. This allocates the mes­
sages which will be passed to the dummy
nodes.

8. Add to each branch gate (sibling node of
the dummy chain) the name of the origi­
nal left sibling (if more than one) and the
possible choices which follow from it . This
ensures that the messages passed up to the
dummy nodes are used to lead the parser to
the correct possibility at an or node.

9. Repeat this transformation on the new or
node, after having flattened it .

5 .3 Post-transformations

The post-transformation tidies the transformed
grammar to make it suitable for input to the
parser.

1. Flatten the chain of ors which do not carry
messages;

2. Unify the same gates under an or, thus mak­
ing the gates disjoint; If there is a gated or node which has two (or more) gates
which contain the same message, the com­
mon message is removed from each gate
and a new gate with this message is formed
which has an or node as its child. This or
node has each of the common possibilities
as children.

3. If an or node contains an empty node as a
descendent, then place this node at the end
of the list of descendents. This ensures that
there is no backtracking.

5.4 Example

An example application of the transformation al­
gorithm to the grammar G3 is shown in Figures
9 - 12 on the next page

68

S3 -+ B I E
A -+ a 01
B -+ A C
C -+ a d
E -+ C 02
01 -+ b I A
02 -+ e I E

Fig.8: Grammar GJ

Fig.10: Mark cycles.

a +

{D]t {C2]t {C1]t
I I I

+ + d[C)

� �
b[A] d[C) C2 [A] (C2) b[A) C2 [A] (C2)

ELLIS - GARIGLIANO - MORGAN

83= +

�
B E

/\ A
A C C +

I\ I\ I\
a + a d e E

I\
b A

Fig.9: Start grammar G3.

Fig.11 : Unify: build dummy chain and special gated nodes.

a +

Fig.12: Unify: build gated or nodes.

{A} + {C}

c[B) +

�
{C1]t d(E) C1 [E] (C1)

d[C)

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 69

5 .5 Parsing method
Initially the parser operates in a top-down fash­ion, matching the input from left to right. The parser checks the first input symbol against all of the possibilities below the top or node in the transformed grammar. If a match is found, then the parser proceeds to match the input seqence by following that possibility. The parser contin­ues in this way for each or node encountered in the grammar until one of the following possibili­ties occurs :

• The parser matches a node which con­tains messages. These messages are then passed back up the parse tree to replace the dummy nodes encountered whilst building the tree.
• The parser encounters a dummy node which has an empty node as its right child. The parser then replaces the dummy node and right child with the left child. This situa­tion occurs when a tree has been balanced for unification.
• The parser reaches a gated or node. The parser then follows the possibilities below the gated node which contains the name of the message which replaced the dummy sib­ling node of the gated or node (gated or nodes always appear as a sibling node to a dummy node in the transformed grammar).
• The parser encounters a special gated or node. If the parser has not yet resolved the name of any cycles, the path below the dummy gate is followed. If the name of the cycle has been resolved, the path below the gate containing the cycle name is fol­lowed. Cycle names are resolved by nodes with angle brackets. For example, the node C1 (m1 . . . mn] (R) , represents a cycle named C1 with messages m1 . . . mn whose real cy­cle name has been resolved to the R.

Below is an example parse of the transformed grammar G3 shown earlier in Figure 12. The grammar G3 presented earlier can match the in­put sequences anbc and (ad)ne where n > 0. If the input given to the parser is adade (for n = 2) , then the following actions will be performed (the

symbol I represents how far the input has been parsed) .
Input: ladade Action: Match symbol a, build chain of dummy nodes.

a
Input: aldade Action: Cycle name is unresolved, so follow the path below the dummy gate {D} (sibling of a) . Match the symbol d.

Input: adlade Action: Pass message C back up to replace the dummy node D2 .
Di

C

/\ a d
Input: adlade Action: Match the gated node { C} as its sibling node is now C. No symbol e, so follow the cycle C1 with message E and cycle name resolved to C1 . Now match the symbol a.

a
Input: adalde Action: The cycle name has been resolved to C1 , so follow the path below the special gated node { C1 } . Match the only possibility of d with message C.

70

Input: adadle

Di
C D3(E] (Ci)

/\ /\ a d D4
a d[C]

Action: Pass message C back up to replace the
dummy node D4 .

Input: adadle

Di
C D3 (E] (Ci)

/\ I\ a d C
/\ a d

Action: follow the path below the gated node { C} as
its sibling node is C. Match the input sym'bol e with
message E.

Input: adadel

Di
C D3 (E] (Ci)

/\ A a d C e[E]
/\
a d

Action: Pass message E back to replace dummy node
D3 and the second message E to replace the dummy
node Di .
Parse is now finished. E

C E

/\ I\ a d C e
/\
a d

ELLIS - GARIGLIANO - MORGAN

6 Improvements

Several improvements are planned to the trans­formation algorithm. These include adding a fa­cility to deal with homonymy.4 In addition looka­head gates can be added to and nodes under an or node to prevent the parser needlessly descending a chain of nodes to match the left-most symbol. Other imp.rovements which could be made involve expanding the algorithm to deal with features.
7 Conclusion

In this paper, we have outlined a transformation for converting a non-deterministic context free grammar into deterministic form. A complete for­malism of the transformation algorithm has been produced. This is discussed in [Ellis et al. , 1993] . Work is also in progress to produce a method for transforming globally ambiguous grammars. The transformation outlined has been implemented in the lazy functional lan­guage Miranda5 and has been applied to the large natural language processing system LOLITA [Garigliano et al. , 1993] . LOLITA is a general natural language (English) tool which has been under development at the University of Durham for the last four years. The LOLITA system is built around a large semantic network which holds knowledge that can be accessed, modified or expanded using natural language in­put and has a grammar of some 1600 rules. The system can parse complex text (such as news­paper articles) , semantically and pragmatically analyse its meaning and add relevant informa­tion to the network. The system can also answer natural language interrogations about the knowl­edge held in the network by generating natural language from the network representation.
Acknowledgements

The authors would like to thank Greg Lee of the University of Hawaii for the production of the tree drawing package used in the production of this report. Nigel R. Ellis is supported by a grant supplied by the Science and Engineering Research Council of Great Britain. 4For example, the word 'bank' is homonymous as it can represent either a noun or a verb. If the transformation can be extended .to deal with homonymous words such as this then the parsing of transformed grammars can be made more efficient. 5Miranda is a trademark of Research Software Ltd.

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 71
References

A. Aho and S. Johnson, "Programming Util­ities and Libraries; LR Parsing" , Computing Surveys, 4(6) :99 - 124, June 1974.
R. Berwick, "A deterministic parser with broader coverage" , in Proceedings of the st,h In­ternational Joint Conference on Artificial In­telligence, pages 710-712, 1983.
E. Briscoe, Modelling Human Speech Compre­hension, Series in Computer Science, Ellis Hor­wood, 1987.
E. Charniak, "A Parser with Something for Ev­eryone" , in M. King, editor, Parsing Natural Language, chapter 7, pages 1 1 7-149, Academic Press, London, 1983.
K . Church, "On memory limitations in natural language" , Unpublished Masters thesis, Labo­ratory for Computer Science, MIT, 1980.
N. Ellis, R. Garigliano, and R. Morgan, "A Transformation Algorithm for Converting Non-Deterministic Grammar into Determinis­tic Form" , Technical Report 4/92, Artificial In­telligence Systems Research Group, School of Engineering and Computer Science, University of Durham, UK, 1992.
N. Ellis, R. Garigliano, and R. Morgan, "A Language for defining transformations on graph grammars: definition and use." , Tech­nical Report ? /93, Artificial Intelligence Sys­tems Research Group, School of Engineering and Computer Science, University of Durham, UK, 1993.

R. Garigliano, R. Morgan, and M. Smith, "The LOLITA System as a Contents Scanning Tool" , in Proceedings of the 1 :f-h International Con­ference on Natural Language Processing, Avi­gnon, France, May 1993.
D . Hindle, "Deterministic parsing of syntactic non-fluencies ." , in Association for Computer Linguistics, pages 123 - 128, June 1983.
S . Johnson, "yacc: Yet another compiler­compiler" , Technical report, Bell Laboratories, Murray Hill, New Jersey, USA, July 1978.
D . Knuth, "On the translation of language from left to right" , Information and Control, 8(1) :607-639, 1965 .
M. Marcus, A Theory of Syntactic Recognition for Natural Language, MIT Press, 1980.
R. Milne, "Resolving lexical ambiguity in a deterministic parser" , Computational Linguis­tics, 12(1) : 1-12, 1986.
F. Pereira, "A new characterization of attach­ment preferences" , in D. Dowty, L. Kartunnen, and A. Zwicky, editors, Natural language pars­ing: psychological, computational and theoret­ical perspectives, pages 307-319, Cambridge University Press, 1985.
S . Shieber, "Sentence disambiguation by a shift-reduce parsing technique" , in Proceedings of the 21st Annual Meeting of the Association for Computational Linguistics, pages 1 13-1 18, Cambridge, Mass. , June 1983.
E. Stabler, "Deterministic and Bottom-up Parsing in PROLOG" , American Association for Artificial Intelligence, 1983.

72 ELLIS - GARIGLIANO - MORGAN

