
Parsing as Dynamic Interpretation

Harry Bunt and Ko van der Sloat

Institute for Language Technology and Artificial Intelligence ITK
P.O.Box 90153, 5000 LE Tilburg, The Netherlands

email: {bunt I sloot }©kub . nl

Abstract In this paper we consider the merging of the language of feature structures with a formal logical language, and how the semantic definition of the resulting language can be used in parsing. For the logical language we use the language EL, defined and implemented earlier for compu­tational semantic purposes. To this language we add the basic constructions and operations of feature structures. The extended language we refer to as 'Generalized EL' , or 'GEL' . The seman­tics of EL, and that of its extension GEL, is defined model-theoretically: for each construction of the language, a recursive rule describes how its value can be computed from the values of its constituents. Since GEL talks not only about semantic objects and their relations but also about syntactic concepts, GEL models are nonstandard in containing both kinds of entities. Whereas phrase-structure rules are traditionally viewed procedurally, as recipes for building phrases, and a rule in the parsing-as-deduction is viewed declaratively, as a proposition which is true when the conditions for building the phrase are satisfied, a rule in GEL is best viewed as a proposition in Dynamic Semantics: it can be evaluated recursively, and evaluates not to true or false, but to the minimal change in the model, needed to make the proposition true. The viability of this idea has been demonstrated by a proof-of-concept implementation for DPSG chart parsing and an emulation of HPSG parsing in the STUF environment.
1 Discontinuous Phrase

Structure Grammar

1 . 1 Introduction

DPSG, or 'Discontinuous Phrase Structure Grammar' , has been developed over the years in the context of building natural-language un­derstanding systems, such as the TENDUM di­alogue system (Bunt et al. , 1985). It has been applied in experimental systems both for parsing and for generation (see Bunt, 1987; 1991; Bunt - Thesingh - Van der Sloot, 1987) . It has grown out of the tradition of augmented context­free grammars, where the augmentations in the case of DPSG are (1) conditions on features; (2) the formulation of semantic rules coupled to the syntactic rules in a rule-by-rule fashion. The distinguishing property of DPSG is that its rules do not construct ordinary phrase­structure trees, but structures that allow cross-
27

ing branches, called 'discontinuous trees'. Partly inspired by McCawley (1982), these constituents structures have been given a formal definition (Bunt, 1991). The use of discontinuous trees is intended to provide an intuitively appealing and computationally simple treatment of bounded discontinuities. An example is the following:
VP
+-----+

V
+----- 1 ------------+

I I I
I NP I
I +------+ I
I I
VC DET
I I

N PART
I I

Wake your friend up

To generate such a structure DPSG uses rules which, disregarding the augmentations with fea­ture conditions and semantics, look as follows,

28

where square brackets indicate 'internal context'
elements of discontinuous constituents:

VP --> V + NP
NP --> DET + N
V --> VC + [NP] + PART
VC --> wake
DET --> your
N --> friend
PART --> up

For further details see Bunt (1991) , which also
describes a chart parser for DPSG.

1.2 ID-LP separation in DPSG

The above rule format is nowadays obsolete, since
it has been recognized that, by separating consid­
erations of immediate dominance (ID) and lin­
ear precedence (LP) , greater generality can be
achieved. This was first demonstrated in GPSG
(Gazdar et al. , 1985), and has subsequently been
exploited to an even greater degree in HPSG (Pol­
lard - Sag, 1987; forthc .) . It is, of course, also
well recognized in GB theory.

The possibility in principle to apply the ID­
LP separation in DPSG, which may be somewhat
surprising since a discontinuous PS rule by defi­
nition would seem to say something about dom­
inance as well as about precedence, was already
indicated in Bunt (1991) .

A discontinuous rewrite rule like the one used
above - V --> VC + [NP] + PART - is equiv­
alent to the following combination of dominance­
and precedence constraints, where CD stands for
context daughters: 1

ID : V --> {VC . PART}
CD : {NP}
LP : {VC < NP , NP < PART}

The dominance and precedence aspects of the
rewrite rule have been separated here; one can
subsequently consider the possibility to general­
ize the LP part and make it global for the entire
grammar, as GPSG and HPSG are aiming to do,
or for a part of the grammar, as is done in the
latest version of DPSG.

In this example, the ID /LP formulation
clearly has no advantages over the traditional for­
mulation; such advantages can only be expected

B UNT - VAN DER SLOOT

if the same dominance rule allows various prece­
dences. This is precisely what is often the case
with discontinuities; for example, in Dutch an in­
tervening adverb (phrase) can be placed on a va­
riety of positions.

1 .3 Semantics in DPSG

In developing DPSG for implementing natural
language fragments, we have chosen a rule for­
mat somewhat like that of Montague Grammar,
where syntactic phrase-structure rules and fea­
ture conditions are coupled with semantic rules
to build up semantic representations in parallel
with syntactic structures.

For these semantic rules we have chosen the
language EL ('Ensemble Language') , designed
specifically for representing natural language se­
mantics (see Bunt, 1985) . This language com­
bines typed lambda abstraction with concepts
from Ensemble Theory, an extension of classi­
cal set theory developed for dealing with mass
terms (Bunt, 1985; see also Lewis, 1992) and with
data structures and operations known to be use­
ful from computational semantics, such as lists,
list projection, singleton, cartesian product , etc.

2 EL and feature languages

2 . 1 Feature structures as formal-
language expressions

When we regard feature structures, as used for
instance in HPSG, as expressions in a formal lan­
guage, the question arises how this language re­
lates to more traditional formal languages.

Feature structures have three basic ingredi­
ents, not commonly found in the formal languages
of logic:

1 . the pairing of an attribute and a value to
form a feature;2

2. the combination of features into 'bundles ' ;

3 . the use of markers to indicate re-entrancy,
or 'structure sharing' . 1 The rules as given here are, again, extremely oversimplified copared to full-fledged DPSG-rules, which include local and global conditions on features, feature propagation constraints, and semantic composition rules. 2The term 'feature' is sometimes used in the literature for the combination of an attribute and a value, like [case :

genitive] and sometimes for an attribute alone. In this paper we will use the term only in the former sense.

PARSING AS DYNAMIC INTERPRETATION

These three ingredients, plus the possibility to use features nested as attribute values, define the core of the language of feature structures. Additional constructions found in feature structures include lists, sets, negation, disjunction and occasionally others. Syntactically, the core of the language of feature structures can be defined as follows.
1 . If A is an attribute constant and v a value constant or variable, then [A : v] is a feature expression ("atomic feature specification") .
2 . If A i s an attribute constant and f a feature expression, then [A : f] is a feature expres­sion ("complex feature specification") .
3 . If Ji and h are feature expressions, then [Ji , h] is a feature expression ("feature bundle") .
4 . If e is a feature expression and i a structure sharing marker, then (i : e) is a ("marked") feature expression.
5. If A is an attribute constant and i a struc­ture sharing marker, then [A : i] is a feature expression (with structure sharing) .
The heart of the corresponding semantic defi­nition is that of the atomic feature specification. We view feature specifications as descriptions of predicates; regarding, for example, the feature specification [gender : neuter] as denoting the predicate of having neuter gender. The seman­tics of feature bundles is nothing else than the conjunction of the corresponding predicates. The semantics of feature nesting is more complex. To formulate it properly, one must make a 3-way distinction between different kinds of feature at­tributes, exemplified by the attributes gender,

head, and complement-daughters, respectively. Attributes of the first kind, like gender and case, take atomic values to form predicates; one notice­able point is that attributes of the other types cannot have atomic values. Attributes of the sec­ond type, like head and synsem, function merely as labels, allowing one to refer to certain feature complexes (like the head features) in grammat­ical principles like the Head Feature Principle. These attributes are semantically vacuous. At­tributes of the third kind, like head-daughter

29

and complement-daughters are again different , in . that they describe dominance relations be­tween words or phrases, rather than local gram­matical properties. This is reflected in the fact that the values of these attributes must refer to words or phrases, i.e. they must be complex fea­ture structures of which the phonology attributes are fully specified.3 In a model-theoretic seman­tics, the difference comes out in the fact that these attributes denote relations among the words that inhabit the model and the phrases that can be formed from these words. Such a formalization, which we will not make explicit here, does bring out the asymmetry of HPSG that dominance rela­tions are represented within signs, whereas prece­dence relations are not . Depending on how far one wants to go in formalizing the language in which the principles of HPSG are formulated, one niay want to add the precedence relation to an enriched feature language. There is one more important aspect of fea­ture structures that must be dealt with: struc­ture sharing. We do this by interpreting structure sharing markers , introduced in the above syntac­tic rules 4 and 5, as a special kind of variable, and defining the semantics of the expressions in the intuitively obvious way by means of the unifi­cation of the values of the subexpressions marked with the sane marker (see also below) . It is clearly possible to add the above five syn­tactic rules to those of a standard logical lan­guage, such as first-order predicate logic. To the rules defining the correct expressions of predi:.. cate logic we simply add the above rules and we stipulate that feature specifications can be used everywhere where a one-place predicate con­stant is allowed. The resulting language can be used to make statements about linguistic mate­rial. For instance, the following formula expresses that there is a singular noun with neuter gender in the sentence S

(3x) (IN(x, S) & NOUN(x) & [number : sing, gender : neuter] (x))
In this way, feature structures can be added to the EL language. This opens the possibility to formu­late DPSG rules entirely as expressions in Gen­eralized Ensemble Language (GEL) . Evaluating

3If empty nodes are allowed, the phonology attribute should obviously be allowed to have an undefined value - which
would still make the value of the attribute fully specified.

30

�uch GEJ;i-expres�ions then comes down to try­
ing to pr?ye statements about linguistic material
- which is a way of thinking about parsing, as we
know from the parsing-as-deduction paradigm.

2 .2 Grammatical information in
GEL

What do we have to add to EL in order to en­
code grammatical information? We will consider
the case of grammatical information as expressed
in Head-driven Phrase Structure Grammar to an­
swer this question.

In HPSG, the sign is the informational unit .
Signs make up the lexicon, and are used in the
rules of HPSG. A sign is a complex feature struc­
ture with certain particular attributes and classes
of values; a sign is thus readily expressed in GEL,
once the relevant attribute and value constants
have been added to the GEL vocabulary.

Rules in HPSG come in three forms: ID
schemata, LP restrictions, and general princi­
ples (like the Subcategorization Principle and the
Head Feature Principle) . These rules are all state­
ments about signs.

ID schemata describe, in terms of the various
immediate dominance relations distinguished in
HPSG (head - head daughter, head - complement
daughter, head - adjunct daughter, head - marker,
head - filler) the configurations of signs that are
permitted. Since the various dominance rela­
tions are treated in HPSG as feature attributes,
and dominance structures are encoded in fea­
ture structures, this means altogether that ID
schemata are actually constraints on admissible
phrasal signs. Due to the logical power of EL,
these constraints are readily expressed in GEL,
once we are able to represent signs.

LP restrictions are formally different from ID
schemata, since they describe constraints on signs
with linear precedence relations, which are not
treated in HPSG as feature attributes, and not
part of the information in signs, but belong to
the_ metalanguage. For the re-expression of LP
restrictions in GEL we have three options:

1 . we follow the HPSG strategy, leaving the
liriear· precedence relation at the metalan-

BUNT - VAN DER SLOOT

guage and thus outside the . feature formal­
ism;

2 . we add a predicate constant denoting the
LP relation to GEL, and formalize what the
theory says on linear precedence;

3. we introduce a feature attribute 'right
neighbour' , comparable to HPSG's daugh­
ter attributes and treat LP relations as
parts of signs.

To make our implementation close to other
existing implementations (in particular to the
STUF implementation of HPSG, discussed be­
low), we take the first option, although theoreti­
cally one could do better.

General principles, finally, describe how the
values of certain feature attributes depend on
those of the daughters. They can be seen as de­
scribing the propagation of feature values upon
phrase building. These dependencies can be de­
scribed in a first-order language, and are thus eas­
ily expressed in GEL.

The crucial innovative feature needed in GEL
is the possibility to have shared subexpressions
within an expression. To this end a new construct
has been added which employs special variables
('unifiable variable') , binding shared subexpres­
sions. These variables are denoted by an unique
name which starts with '© ' . A simple example of
a GEL expression with shared subexpressions is:

[synsem : [local name : ©1 ,
contents : lambda(_x ,

application(©1 , _x)
)]]

This could be a template for a propername en­
try in a lexicon (see below on the definition and
use of templates) . Whenever ©1 is instantiated,
this information is shared between the name and
the semantic contents. There are no restrictions
on the kind of value that can be assigned to a
unifiable variable; any GEL expression will do.

An important question is, of course, how this
assignment is done. To this end the constructions
'unifiable' and 'unify' are introduced, the use
of which will be illustrated below. A unify con­
struction takes any number of arguments, tries to
unify them in the usual way (see Shieber et al. ,
1983), and delivers the resulting GEL expression

PARSING AS DYNAMIC INTERPRETATION

or NULL, if the unification fails. U nifiability is
defined using unify: unif iable(a1 , . . . , an) re­
turns TRUE if unify(a1 , . . . , an) is succesful, and
FALSE otherwise.

3 GEL semantics and evalu­

ation

The semantics of EL, and that of its extension
GEL, is defined model-theoretically: for each con­
struction of the language there is a rule describing
how its value can be computed from the values of
its constituent expressions, down to the atomic
constituents. Here the recursion ends, and the
values of the atomic constituents are looked up
in the model, which is a structured specification
of these values.

The semantics of GEL is defined model­
theoretically, in the same way as that of EL, but
since GEL talks not only about 'semantic' objects
but also about syntactic objects and their rela­
tions, GEL models contain both linguistic and
nonlinguistic entities.

When defining a formal semantics for the GEL
extension with feature structures, the first thing
to consider is the semantics of a simple feature
specification. We view a feature attribute like
gender as a mathematical function, with entities
like feminine as values. This captures the idea
that an attribute has a value, and a unique one.

Viewing feature attributes as functions raises
the question to what objects these functions ap­
ply: what is their domain? We think this is
fairly obvious: the domain consists of words and
phrases. A feature specification then amounts to
a predicate, which can be used to express a syn­
tactic property of a word or phrase. The seman­
tics of a predicate being a set (or a character­
istic function) , a GEL expression like [gender :
fem] receives as its interpretation the set of those
words and phrases that have feminin gender. 4

To formally interpret a feature specification,
we apparently need a model which includes words
as the 'individuals' to which feature attributes ap­
ply, and which also includes syntactic concepts
like femin in , i nterrogative and mass as individual
objects that may occur as feature values.

I

31

A model for the GEL sublanguage of feature
structures is thus a triple:

M = < W, {AVi , . . . , AVk } , F >

where W is a countable set of words,
{ A Vi , .. , AVk} is a finite collection of finite sets of
objects called 'atomic feature values ' , and F is a
function assigning interpretations to constants. F
assigns atomic feature values to value constants;
to an attribute constant A, F assigns a function
froin W to some value set A¼ . The sets A¼ are
assumed to be disjoint.

If V is the recursive evaluation function assign­
ing interpretations to GEL expressions, we get , in
first approximation, the following semantics for a
simple feature specification:

V([A : v]) = {w in P(W) IF(A) (w) = V(v)} ;
if v is atomic, then V(v) = F(v)

I

where P(W) denotes the set of all phrases (words
and word sequences) that can be formed from W.
4 Parsing as dynamic inter­

pretation

Phrase-structure rules are traditionally viewed

I
procedurally, as recipes for building phrases.
In the parsing-as-deduction approach a rule is
viewed declaratively, as a proposition which is
true when the conditions for building the phrase
are satisfied. A rule expressed in GEL is best
viewed as a proposition in Dynamic Semantics:
it can be evaluated recursively, and evaluates not
to true or false, but to the minimal change in the
model, needed to make the proposition true.

The viability of this idea has been demon­
strated by a proof-of-concept implementation for
DPSG chart parsing and an emulation of the
STUF implementation bf HPSG. We describe
these in the following sections.

4. 1 DPSG rules in GEL

To illustrate the use of GEL in the implementa­
tion of DPSG, we consider a (simplified) DPSG
rule, which combines a central determiner and a

4Treating feature attributes as functions seems to us intuitively more satisfying than treating them as atomic entities, as Gazdar and Pullum (1987) have proposed.

32

NPCENTRE_2
ID rule
CD rule
LP constr
GEL rule

NPCENTRE --> {a : CENTRALDET , b : NOM } ;
{} ;
{a < b} ;
conditional(

BUNT - VAN DER SLOOT

conjunction(eq(Form_of (a) , Form_of (b)) ,
eq(Gender_of (a) , Gender_of (b)) ,
memberof ({ <Mass> , <Ground> , <Coll> } ,

Form_of (a))) ,
unify(Head_Feature_Instantiati�n(b) ,

Form(Form_of (b)) ,
Gender(Gender_of (b)) ,
Person(Person_of (b)) ,
Content (partselection(

Content_of (b) , lambda{_x ,
application(Content_of (a) , _x))))) ,

undef) ;

nominal into an 'npcentre'. To facilitate the reuse of the parsing strategy implemented for the origi­nal DPSG format, the categorial ID-parts as. well as the CD- and LP-parts of the rule have been kept separate from the rule part where the real work is done; this part, specifying the condi­tions and actions- on features as well the semantic composition, is expressed in GEL. The GEL ex­pression is of the form conditional (A , B , C); according to the EL semantics underlying GEL, the interpretation of such an expression gives the value of B if A evaluates to TRUE, and that of C otherwise. In the conjunction describing the conditions for succesfully applying the rule, the equality relation of EL ('eq') is used to test form and gender agreement of the constituents a and b. In the same way we test whether the form of constituent a is a member of an enumerated set, using the relation 'member of ' .
When the parameters a and b in this rule are instantiated by feature structures representing constituents of category CENTRALDET and NOM (the ID-condition), where the central determiner im­mediately (CD-condition) precedes the nominal (LP-condition), then the GEL rule says that if the constraints on form and gender are satisfied, these constituents are the daughters of an NP centre whose head features, form feature, gender feature and person feature are inherited (through unifi-

cation) from the nominal constituent, and whose semantic content is constructed compositionally from the contents of the daughters. 5 Dynamic interpretation of the rule, using the chart as a model, has the effect of creating and NPCENTRE node with these properties. This approach has been implemented succes­fully by extending the implemented machinery for EL evaluation with the GEL augmentations (basically, the representation of complex feature structures and the operations on those), and merging this with the DPSG parser described in Bunt (1991), originally developed by van der Sloot (1990).
4.2 HPSG/STUF emulated in GEL

4.2 .1 The Stuttgart Type Unification
Formallism (STUF)

A second proof-of-concept implementation of the idea of parsing as dynamic interpretation has been made in the form of an emulation of the parser and grammar development environment called STUF (Stuttgart Type Unification Formal­ism), originally developed in the LILOG project (Herzog et al., 1986). STUF is a descendant of PATR-11 (Shieber et al., 1983), providing a formalism and a soft­ware environment for writing grammars of various 5The semantic part says, more specifically, that the NP centre denotes the union of those parts of the denotation of the (mass) nominal's denotation that satisfy the predicate denoted by the cenral determiner. For more explanation see Bunt, 1985.

PARSING AS DYNAMIC INTERPRETATION

kinds. STUF has a much richer language for spec­ifying feature structures, based on Kasper and Rounds' feature logic (Kasper - Rounds, 1986) . In STUF it is possible to directly specify com­plex embedded structures, including disjunctive and negative information. The core of the STUF language is formed by the following definition of the syntax of feature terms:6

atom
_x

atomic value or template
variable

attribute : S feature selection
templ (S1 , . . , Sn) parametrized template
[S1 S2 . .] conjunction
{S1 S2 . . } disjunction
not S negation

Variables are used to describe structure shar­ing. They have the same interpretation as struc­ture indices in the matrix notation used above. Templates are named complex feature terms, used to organize information more compactly. An example is:
intransitive_verb : =

[syntax [value : [syntax : s
semantics : _X]

direction : left
argument : syntax : np]

semantics : _X]

Templates may be functional, having parameters which are substituted by actual values when ap­plied. A simple example is:
invert_boolean(plus) : = minus .
invert_boolean(minus) : = plus .

Lexical entries are simply feature term definitions where the name is interpreted as a word that may appear in an input sentence. Templates make these definitions very simple. Examples:
John : = [syntax : np] .
goes : = intransitive_verb .

The STUF implementation of HPSG is not en­tirely faithful to the theory, in that (1) there is in fact no ID /LP separation in STUF rules, which means that every ID schema has as many LP variants as the LP constraints allow; and (2) the General Principles are instantiated for every ID schema.

33 .
The following elements taken from an imple­mentation of a fragment of English in the PLUS system (Black et al. , 1991 ; Rentier, 1993) il­lustrate the actual use of STUF. In the next subsection we will illustrate the GEL emulation of STUF by describing the corresponding GEL structures.

1 . Some functional templates:
head(X)
maj or(X)
inv (X)

comps (X)
compsO

sat
ssat
unsat

subj (X)
subjO

mod(X)
modO

: = synsem : local : head : X .
: = head(maj : X) .
: = head(maj : X) .

: = synsem : local : comps : X .
: = comps (undef) .

: = subjO , compsO .
: = subjO , compsO , modO .
: = comps (def) .

· = synsem : local : subj : X .
: = subj (undef) .

: = synsem : local : mod : X .
: = mod(undef) .

2. Some nonfunctional templates:
nominal : = maj or(n) , modO .
nphrase : = nominal , ssat .

3. Some General Principles and auxiliary tem­plates:
' Headinherit ' : = mother : head(X) ,

h_dtr : head(X) .
' Contentinherit ' : = mother : content (X) ,

h_dtr : content (X) .
' Compsinherit 1

' Gapinherit '

' Bindinherit '

: = mother : comps (X) ,
h_dtr : comps (X) .

: = mother : gap(X) ,
((nonhead : gapO ,

h_dtr : gap(X)) ;
(h_dtr : gapO ,

nonhead : gap(X))) .
: = mother : bind(X) ,

((nonhead : bindO ,
h_dtr : bind(X)) ;
h_dtr : bindO ,
nonhead : bind(X))) .

6We omit the use of semantic subsorts and paths here. For the original definitions see Dorre - Seiffert, 1991 and Dorre - Raasch, 1991 .

34

' NonLocalinherit � : = ' Gapinherit ' ,
' Bindinherit ' .

' Modinherit ' : = mother : mod(_X) ,

' ModCombine '
h_dtr : mod(_X) .

: = mother : (modO ,
content LX) ,
context LZ)) ,

h_dtr : _Y ,
nonhead : (sat ,

gapO ,
mod(_Y) ,
content LX) ,
context LZ)) .

' Complementation ' : = ' Headinherit ' ,
' Modinherit ' ,
' Contentinherit ' ,
' NonLocalinherit ' .

' Adjunction ' : = ' Headinherit ' ,
' Compsinherit ' ,
' NonLocalinherit ' ,
' ModCombine ' .

4. Some rules (ID schemata with instantiated LP restrictions and General Principles):
' RightComplementation ' : =

mother -> h_dtr , nonhead
' Complementation ' ,
nonhead : (major(not (d))) .

' LeftComplementation ' : =

mother -> nonhead , h_dtr
' Complementation ' ,
nonhead : (major(d)) .

' LeftAdjunction ' : =

mother -> nonhead , h_dtr
' Ad junction ' .

5 . Some lexical entries (slightly simplified):
car : = nphrase ,

form(N) ,
pers (' 3rd ') ,
parm(P) ,
restr1 ((rel : ' CAR ' , argO : P)) .

who : = nphrase ,
det (wh) ,
pers (' 3rd ') ,
gend(not (neut)) ,
case (not (gen)) ,
gapO ,
parm(P) ,
restr1 ((rel : ' WHO ' , argO : P)) .

B UNT - VAN DER S LqOT

4.2.2 STUF emulated in GEL.
To illustrate the emulation of STUF in GEL, we describe the GEL counterparts of the STUF func­tional and other templates, ID rules instantiated for LP rules and for General Principles, and a few lexical entries.
O. We first define an empty sign to get unifi-cations going:
SIGN : = synsem :

[local : [head : [maj ID ,

nonlocal :

aux ID ,
inv ID ,
case ID ,
form ID] ,

comps : ID ,
subj : ID ,
mod : · ID] ,

[bind : ID ,
gap : (D] '

cont :
[parm

[pers : (D ,
gend : (D ,
num : (D] ,

restr : (D]] •

The symbol '©' is to be considered as an anony­mous variable; no two occurrences are taken as identical.
1 . Some functional templates
Head(©X) : = synsem : local : head : ©X .
Major(<OX) : = Head(maj : <OX) .
Inv (©X) : = Head(inv : ©X) .
InvO : = Inv(undef) .
Comps (©X) : = synsem : local : comps : ©X .
CompsO : = Comps (<>) .

Sat : = unify(SIGN ,
SubjO ,
CompsO) .

Ssat : = unify(Sat , ModO) .
Unsat : = Comps (Def) .
Subj (©X) : = synsem : local : subj : ©X .
SubjO : = Subj (undef) .
Mod((OX) : = synsem : local : mod : ©X .
ModO : = Mod(undef) .

PARSING AS DYNAMIC INTERPRETATION

2. Some nonfunctional templates:
Nominal : = unify(SIGN , Major(N) , InvO ,

ModO , SubjO) .
Nphrase : = unify(Nominal , Ssat) .

3. Some General Principles:
Headinherit (©HD) : =

conditional (unifiable (©HD , Head(©X)) ,
Head(©X) ,
undef) .

Contentinherit (©HD) : =

conditional (unifiable (©HD , Content (©X)) ,
Content (©X) ,
undef) .

Comp�Inherit (©HD) : =

conditional (unifiable (©HD , Comps (©X)) ,
Comps (©X) ,
undef) .

Gapinherit (©HD , ©N) : =

conditional (
unifiable (©N , GapO) ,
conditional (

unifiable (©HD , Gap(©G1)) ,
Gap(©G1) ,
undef) ,

conditional (
unifiable (©HD , GapO) ,
conditional (

unifiable (©N , Gap(©G2)) ,
Gap(©G2) ,
undef) ,

undef)) .

Bindinherit (©HD , ©N) : =

conditional (
unifiable (©N , BindO) ,
conditional (

unifiable (©HD , Bind(©G1)) ,
Bind(©G1) ,
undef) ,

conditional (
unifiable (©HD , BindO) ,
conditional(

unifiable (©N , Bind(©G2)) ,
Bind(©G2) ,
undef) ,

undef)) .

NonLocalinherit (©HD , ©N
unify(

SIGN ,

: =

Gapinherit (©HD , ©N) ,
Bindinherit (©HD , ©N)) .

Modinherit (©HD) : =

conditional(unifiable (©HD , Mod(©X)) ,
Mod(©X) ,
undef) .

ModCombine (©HD , ©N) : =

conditional(
unifiable (©N , Sat ,

GapO ,
Mod(©HD) ,
Content (©X) ,
Context (©Z)) ,

unify (SIGN , ModO ,

35

Content (©X) ,
Context (©Z)) ,

undef) .

Complementation(©HD , ©N) · =
unify (

SIGN ,
Headinherit (©HD) ,
Modinherit (©HD) ,
Contentinherit (©HD) ,
NonLocalJnherit (©HD , ©N)) .

Adjunction(©HD , ©N) : =

unify(
SIGN ,
Headinherit (©HD) ,
Subjinherit (©HD) ,
Compsinherit (©HD) ,
ModCombine (©HD , ©N)) .

4. Some rules (ID schemata with instantiated LP restrictions and General Principles) :
RightComplementation(©Head , ©Comp) : =

conditional (
unifiable (©Comp , Maj or(notu(D))) ,
Complementation(©Head , ©Comp) ,
undef) .

LeftComplementation(©Comp , ©Head) : =

conditional (
unifiable (©Comp , Major (D)) ,
Complementation(©Head , ©Comp) ,
undef) .

LeftAdjunction(©Adj , ©Head) : =

Adjunction(©Head , ©Adj) .

36

5. Some lexical entries:

car : = unify(Nphrase ,
Form(N) ,
Pers (3rd) ,
Parm(<D1) ,
Restr([rel : Car ,

argzero : <01])) .

who : = unify (Nphrase ,
Det (Wh) ,
Pers (3rd) ,
Gend(notu(Neut)) ,
Case (notu(Gen)) ,
GapO ,
Parm(<D1) ,
Restr([rel : Who ,

argzero : Gi])) .

Comparing the STUF and GEL descriptions,
we see that , once the necessary functional tem­
plates and other auxiliary structures have been
put in place, a relatively simply pattern of re­
lations emerges. It my be noted that the GEL
emulation has a clearer and more explicit repre­
sentation of HPSG's general principles than the
original STUF implementation, though the STUF
representation is more compact. As a result, the
fact that the theory's General Principles are in­
stantiated in every GEL rule (just like in STUF)
is hardly a drawback, although it is not in ac­
cordance with the theory. The principles are ex­
plicitly available in the implementation, ready
for inspection and modification. Note also that
the lexical representations in STUF and GEL are
identical except for minor notational details; this
is very important in practice, since all that an
HPSG grammar writer is concerned with is the
specification of lexical elements-. · In fact, the cor­
respondence between lexical items in STUF and
GEL is so straightforward that an automatic con­
version from one format to the other would be

' BUNT - VAN DER SLOOT

possible.

4.3 Rule application as evaluation

Since the LP restrictions and General Principles
are instantiated in each ID-rule, application of
STUF HPSG rules simply comes down to the ap­
plication of these ID rules; there are no additional
checks. Therefore, standard parsing procedures
can be applied. We have implemented a sim­
ple chart parser, using the matrix-driven parsing
strategy described in Bunt (1991) ,7 which applies
the ID rules by invoking the implemented 'GEL
machine' to evaluate the GEL rule.

5 Conclusions
work

and future

Where STUF and similar formalisms and imple­
mentations developed in recent years, such as
TFS, CUF and PLEUK, is an advancement com­
pared to PATR-11 because of its more power­
ful language for expressing linguistic information,
GEL offers further extended possibilities to for­
malize grammatical information and represent it
in a computationally attractive form. Not only
ID-schemata and lexical entries can be given a for­
mal representation, but LP-restrictions and Gen­
eral Principles as well. At the same time, GEL
retains the advantages of a fully declarative repre­
sentation and of integrated representation of syn­
tactic and semantic information.

Further work will make clear how attrac­
tive this approach can be for building efficient
parsers and generators that work directly on the
constraint-based representation of rules, rather
than by internally compiling them first into more
traditional formats.

7The implemented parser is simplified in that the particular provisions for dealing with discontinuous constituents have for the moment been left out. The implementation, done in C, is the work of Ko van der Sloot.

PARSING AS DYNAMIC INTERPRETATION

References

Black, W. et al. (1991) "A Pragmatics-vased Language Undrstanding System" . In: Infor­mation Processing Systems and Software: Re­sults of Selected Projects. EC, Esprit, Brus­sels.
Bunt, H. (1985) Mass terms and model-theoretic semantics . Cambridge University Press, Cambridge, England.
Bunt , H. (1987) "Utterance generation from se­mantic representation augmented with prag­matic information" . In G. Kempen (ed.) Natural language generation. Kluwer/Nijhoff, The Hague.
Bunt , H. (1991) "Parsing with Discontinuous Phrase Structure Grammar" . In M. Tomita (ed.) Current Issues in Parsing Technology. Kluwer, Boston.
Bunt , H. - J. Thesingh - K. van der Sloot (1987) "Discontinuities in trees, rules and parsing" . In Proceedings of the Third Confer­ence of the European Chapter of AGL, Copen­hagen.
Dorre, J. - 1. Raasch, (1991) The Stuttgart Type Unification Formalism - User Manual. IWBS Report 168, IBM Scientific Center, Stuttgart.
Dorre, J. - R. Seiffert (1991) Sorted Feature Terms and Relational Dependencies . IWBS Report 153 , IBM Scientific Center, Stuttgart.
Gazdar, G. - E. Klein. - G. Pullum - I. Sag (1985) Generalized Phrase-Structure Gram­mar. Harvard University Press, Cambridge, MA.
Gazdar, G . - G. Pullum (1987) A Logic or Cat­egory Definition. Cognitive Science Research Paper CSRP 072, University of Sussex.

37.'
Herzog, 0. et al. (1986) LILOG - Linguistic and logic methods for the computational un­derstanding of German. LILOG Report lb, IBM Scientific Center, Stuttgart.
Kasper, R. - W. Rounds (1986) "A logical se­mantics for feature structures" . In : Proceed­ings of the 24th Annual Meeting of the A GL. Columbia University, New York.
Lewis, D. (1992) Parts of Classes . Basil Black­well, Oxford and Cambridge, MA.
J. McCawley (1982) "Parentheticals and Dis­continuous Constituent Structure" . Linguistic Inquiry, 13 , 91-106
Pollard, C. - I. Sag (1987) Information-based Syntax and Semantics . Vol I, Fundamentals. CSLI Lecture Notes 13 , Center for the Study of Language and Information, Stanford.
Pollard, C. - 1. Sag (forthc.) Information-based Syntax and Semantics . Vol II. Preliminary version dstributed as 'Topics in Constraint­based Syntactic Theory' , Universitat des Saar­landes, Saarbriicken, 1992.
Rentier, G. (1993) "The PLUS Grammar" . PLUS deliverable D3.2, ITK, Tilburg, May 1993 .
Shieber, S. - H. Uszkoreit - F. Pereira - J. Robinso - M. Tyson (1983) "The formalism and implementation of PATR-11" . In: J. Bres­nan (ed.) Research on Interactive Acquisition and Use of Knowledge. SRI International, Ar­tificial Intelligence Center, Menlo Park, Cal.
Sloot, K. van der (1990) "The TEND UM 2. 7 parsing algorithm for DPSG" . ITK Research Memo, ITK, Tilburg.
Tomita, M.(ed.) (1991) Current Issues in Pars­ing Technology. Kluwer, Boston.

38 BUNT - VAN DER SLOOT

