
Transformation-Based Error-Driven Parsing

Eric Brill*

Spoken Language Systems Group
Laboratory for Computer Science, M .I .T.
email: brill©goldilocks . lcs . mi t . edu

Abstract In this paper we describe a new technique for parsing free text: a transformational grammar1 is automatically learned that is capable of accurately parsing text into binary-branching syntactic trees. The algorithm works by beginning in a very naive state of knowledge about phrase struc­ture. By repeatedly comparing the results of bracketing in the current state to proper bracketing provided in the training corpus, the system learns a set of simple structural transformations that can be applied to reduce the number of errors. After describing the algorithm, we present results and compare these results to other recent results in automatic grammar induction.
1 Introduction

There has been a great deal of interest of late in the automatic induction of natural language grammar. Given the difficulty inherent in man­ually building a robust parser, along with the availability of large amounts of training material, automatic grammar induction seems like a path worth pursuing. A number of systems have been built that can be trained automatically to bracket text into syntactic constituents. In [MM90] mu­tual information statistics are extracted from a corpus of text and this information is then used to parse new text . [Sam86] defines a function to score the quality of parse trees, and then uses sim­ulated annealing to heuristically explore the en­tire space of possible parses for a given sentence. In [BM92a] , distributional analysis techniques are applied to a large corpus to learn a context-free grammar. The most promising results to date have been based on the inside-outside algorithm, which can be used to train stochastic context-free gram­mars. The inside-outside algorithm is an ex­tension of the finite-state based Hidden Markov

Model (by [Bak79]) , which has been applied suc­cessfully in many areas, including speech recog­nition and part of speech tagging. A number of recent papers have explored the potential of us­ing the inside-outside algorithm to automatically learn a grammar [LY90, SJM90, PS92, BW92, CC92, SRO93] .
Below, we describe a new technique for gram­mar induction. The algorithm works by begin­ning in a very naive state of knowledge about phrase structure. By repeatedly comparing the results of parsing in the current state to the proper phrase structure for each sentence in the training corpus, the system learns a set of ordered transformations which can be applied to reduce parsing error. We believe this technique has ad­vantages over other methods of phrase structure induction. Some of the advantages include: - the system is very simple, it requires only a very small set of transformations, a high degree of accuracy is achieved, and only a very small training corpus is necessary. The trained transformational parser is completely symbolic and can bracket text in lin­ear time with respect to sentence length. In addi­tion, since some tokens in a sentence are not even *This work was done while the author was at the University of Pennsylvania. This work was supported by DARPA and AFOSR jointly under grant No. AFOSR-90-0066, and by ARO grant No. DAAL 03�89-C0031 PR(1 Not in the traditional sense of the term.

13

14

considered in parsing, the method could prove to
be considerably more robust than a CFG-based
approach when faced with �10ise or unfamiliar in­
put . After describing the algorithm, we present
results and compare these results to other recent
results in automatic phrase structure induction.

2 Transformation-Based
Error-Driven Learning .

UNANNOTATED

TEXT

INITIAL

STATE

TRUTH

Figure 1 : Transformation-Based
Error-Driven Learning.

RULES

The phrase structure learning algorithm is an ap­
plication of a general learning technique called
transformation-based error-driven learning. This
learning paradigm, illustrated in figure 1 , has
proven to be successful in a number of differ­
ent natural language applications. In [Bri93]
(see also [Bri92, BM92b]) , transformation-based
learning is applied to part of speech tagging.
It is shown that the transformation-based ap­
proach outperforms stochastic taggers ([MM91])
when trained on small corpora, and obtains per­
formance comparable to stochastic taggers on
larger corpora. This is significant in light of
the fact that the transformation-based tagger is
completely symbolic. In [BR93] , this technique
is applied to prepositional phrase attachment .
The transformation-based approach is shown to
significantly outperform the t-score technique

BRILL

for prepositional phrase attachment described in
[HR91] .

In its initial state, the transformation-based
learner is capable of annotating text but is not
very good at doing so. The initial state anno­
tator is typically very easy to create. In part of
speech tagging, the initial state annotator assigns
every word its most likely tag in isolation, with
unknown words being assigned a default tag. In
prepositional phrase attachment, the initial state
annotator always attaches prepositional phrases
low. The naively annotated text is compared
to the true annotation as indicated by a small
manually annotated corpus, and transformations
are learned that can be applied to the output
of the initial state annotator to make it better
resemble the truth. The learner learns a set of
ordered transformations from a prespecified set
of allowable transformations. A greedy search
strategy is used to learn transformations: at each
stage of learning, the best scoring transformation
is learned for whatever scoring function is being
used. Four elements must be defined to com­
pletely specify a transformation-based learner:

3

1 . The initial-state annotator.

2. The list of allowable transformations.

3. The scoring function.

4. The search strategy.

Learning Phrase
ture

Struc-

The phrase structure learning algorithm is
trained on a small corpus of partially bracketed
text which is also annotated with part of speech
information. All of the experiments presented be­
low were done using the Penn Treebank anno-:

tated corpus[MSM93] . The learner begins in a
naive initial state, knowing very little about the
phrase structure of the target corpus. In partic­
ular, all that is initially known is that English
tends to be right branching and that final punc­
tuation is final punctuation. Transformations are
then learned automatically which transform the
output of the naive parser into output which bet­
ter resembles the phrase structure found in the
training corpus. Once a set of transformations

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 15

has been learned, the system i s capable of tak­
ing sentences tagged with parts of speech (ei­
ther manually tagged text, or the output of an
automatic part of speech tagger) and returning
a binary-branching structure with nonterminals
unlabelled . 2

3 .1 The Initial State Of The Parser

Initially, the parser operates by assigning a right­
linear structure to all sentences. The only excep­
tion is that final punctuation is attached high. So,
the sentence " The dog and old cat ate ." would
be incorrectly bracketed as :

((The (dog (and (old (cat ate))))) .)

The parser in its initial state will obviously
not bracket sentences with great accuracy. In
some experiments below, we begin with an even
more naive initial state of knowledge: sentences
are parsed by assigning them a random binary­
branching structure with final punctuation al­
ways attached high.

3.2 Structural Transformations

The next stage involves learning a set of trans­
formations that can be applied to the output of
the naive parser to make these sentences better
conform to the proper structure specified in the
training corpus . The list of possible transforma­
tion types is prespecified. Transformations in­
volve making a simple change triggered by a sim­
ple environment. In the current implementation,
there are twelve allowable transformation types:

• (1-8) (Addldelete) a (left lright) parenthe­
sis to the (leftlright) of part of speech tag
X.

• (9- 12) (Addldelete) a (left lright) parenthe­
sis between tags X and Y.

To carry out a transformation by adding or
deleting a parenthesis, a number of additional
simple changes must take place to preserve bal­
anced parentheses and binary branching. To give

an example, to delete a left paren in a particular
environment, the following operations take place
(assuming, of course, that there is a left paren to
delete) :

1 . Delete the left paren.

2. Delete the right paren that matches the just
deleted paren.

3. Add a left paren to the left of the con­
stituent immediately to the left of the
deleted left paren.

4. Add a right paren to the right of the con­
stituent immediately to the right of the
deleted left paren.

5. If there is no constituent immediately to the
right, or none immediately to the left , then
the transformation fails to apply.

Structurally, the transformation can be seen
as follows. If we wish to delete a left paren to
the right of constituent X3 , where X appears in a
subtree of the form:

�
X

� yy z

carrying out these operations will transform this
subtree into:4

� z
/'-.._,

X yy

Given the sentence:5

The dog barked .

this would initially be bracketed by the naive
parser as: 2This is the same output given by systems described in [MM90, Bri92, PS92 , SRO93]. 3To the right of the rightmost terminal dominated by X if X is a nonterminal. 4The twelve transformations can be decomposed into two structural transformations, that shown here and its con­verse, along with nine triggering environments. 5Input sentences are also labelled with parts of speech.

16

· ((The (dog barked)) .)
If the transformation delete a left paren to the right of a determiner is applied, the structure would be transformed to the correct bracketing:

(((The dog) barked) .)
To add a right parenthesis to the right of YY, YY must once again be in a subtree of the form:

� X
/'---.... yy z

If it is , the following steps are carried out to add the right paren:
1. Add the right paren.
2. Delete the left paren that now matches the newly added paren.
3. Find the right paren that used to match the just deleted paren and delete it.
4. Add a left paren to match the added right paren.
This results in the same structural change as deleting a left paren to the right of X in this par­ticular structure. Applying the transformation add a right paren to the right of a noun to the bracketing:

((The (dog barked)) .)
will once again result in the correct bracketing:

(((The dog) barked) .)

BRILL

3.3 Learning Transformations

Learning proceeds as follows. Sentences in the training set are first parsed using the naive parser which assigns right linear structure to all sen­tences, attaching final punctuation high. Next , for each possible instantiation of the twelve trans­formation templates, that particular transforma­tion is applied to the naively parsed sentences. The resulting structures are then scored using some measure of success that compares these parses to the correct structural descriptions for the sentences provided in the training corpus. The transformation resulting in the best scoring structures then becomes the first transformation of the ordered set of transformations that are to be learned. That transformation is applied to the right-linear structures, and then learning pro­ceeds on the corpus of improved sentence brack­etings. The following procedure is carried out repeatedly on the training corpus until no more transformations can be found whose application reduces the error in parsing the training corpus:
1. The best transformation is found for the structures output by the parser in its cur­rent state. 6

2. The transformation is applied to the output resulting from bracketing the corpus using the parser in its current state.
3. This transformation is added to the end of the ordered list of transformations.
4. Go to 1.
After a set of transformations has been learned, it can be used to effectively parse fresh text. To parse fresh text , the text is first naively parsed and then every transformation is applied , in order, to the naively parsed text. One nice feature of this method is that differ­ent measures of bracketing success can be used: learning can proceed in such a way as to try to optimize any specified measure of success. The measure we have chosen for our experiments is the same measure described in [PS92] , which is one of the measures that arose out of a parser evalu­ation workshop [ea91]. The measure is the per­centage of constituents (strings of words between

6The state of the parser is defined as naive initial-state knowledge plus all transformations that currently have been
learned.

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 17
matching parentheses) from sentences output by our system which do not cross any constituents in the Penn Treebank structural description of the sentence. For example, if our system outputs:

(((The big) (dog ate)) .)
and the Penn Treebank bracketing for this sen­tence was:

(((The big dog) ate) .)
then the constituent the big would be judged cor­rect whereas the constituent dog ate would not . Table 1 . shows the first ten transformations found from one run of training on the Wall Street Journal corpus, which was initially bracketed us­ing the right-linear initial-state parser.

Left/ Add/ Right
Delete Paren Environment 1 D L Left of NN 2 D L Left of NNS 3 A R Left of , 4 D L Btwn NNP and NNP 5 D L Right of DT 6 A R Left of , 7 D R Left of NNS 8 D R Btwn NN and NN
g D L Btwn JJ and JJ 10 D L Right of $

Table 1 : The first 10 learned transformations.
The first two transformations, as well as trans­formation number 4, 5, 7, 8 and 9 all extract noun phrases from the right linear initial structure. Af­ter bracketing in the initial state, every word will be the leftmost terminal of a phrase containing the entire remainder of the sentence to its right . The first two transformations effectively remove singular and plural common nouns from such a structure and bracket them with the preceding constituent instead. The sentence "The cat me­owed ." would initially be bracketed as:

((Thf;/DT (cat/NN meowed/VBD)) . / .)
Applying the first transformation to this brack­eting (or · the second transformation to the same bracketing with cats replacing cat) would result in:

(((The cat) meowed) .)
If there is a left parenthesis between two proper nouns, then the second proper noun is initially bracketed with constituents that follow it rather than with the preceding proper noun. The fourth transformation fixes this. The sen­tence General Motors is very profitable . would initially be bracketed as:
((General/NNP (Motors/NNP (is (very profitable)))) .)

Applying the fourth transformation would con­vert this structure to:
(((General Motors) (is (very profitable))) .)

The following example demonstrates the in­teraction between transformations. The sentence The fastest cars won . would initially be brack­eted as:
((The/DT (fastest/ JJ (cars/NNS won/VBD))) .)
The first transformation to apply to this sentence would be number 2, resulting in:

((The ((fastest cars) won)) .)
The next applicable transformation is number 5 , whose application results in:

(((The (fastest cars)) won) .)
After this transformation is applied, no other transformations can be applied to the sentence, and the correct structure is produced. Transformation number 10 results from the fact that a number usually follows a dollar sign, and these two lexical items should be bracketed together. Transformations 3 and 6 result from the fact that a comma is a good indicator of the preceding phrase being terminated. Since each transformation is carried out only once per en­vironment, multiple listings of a transformation are required if the transformation is to be ap­plied multiple times to a single environment . The sentence We called them , but they left . would initially be bracketed as:

18
((We/PP (called/VBD (them/PP (,/, (but (they left)))))) .)
The first applicable transformation is number 3 , whose application results in:
((We ((called them) (, (but (they left))))) .)
The next applicable transformation is number 6, whose application results in the correct structure:
(((We (called them)) (, (but (they left)))) .)
4 Results

In the first experiment we ran, training and testing were done on the Texas Instru­ments Air Travel Information System (ATIS) corpus[HGD90].7 In table 2, we compare results we obtained to results cited in [PS92] using the inside-outside algorithm on the same corpus. Ac­curacy is measured in terms of the percentage of noncrossing constituents in the test corpus, as described above. Our system was tested by us­ing the training set to learn a set of transforma­tions, and then applying these transformations to the test set and scoring the resulting output. In this experiment, 64 transformations were learned (compared with 4095 context-free rules and prob­abilities used in the inside-outside algorithm ex­periment). It is significant that we obtained com­parable performance using a training corpus only 21 % as large as that used to train the inside­outside algorithm.
of Method Training Corp Accuracy Sentences Inside-Outside 700 90.4% Transformation Learner 150 91.1%

Table 2: Comparing two learning methods on the ATIS corpus.
After applying all learned transformations to the test corpus, 60% of the sentences had no cross­ing constituents, 74% had fewer than two crossing

BRILL

constituents, and 85% had fewer than three. The mean sentence length of the test corpus was 11.3. In figure 2, we have graphed percentage correct as a function of the number of transformations that have been applied to the test corpus. As the transformation number increases, overtrain­ing sometimes occurs. In the current implemen­tation of the learner, a transformation is added to the list if it results in any positive net change in the training set. Toward the end of the learning procedure, transformations are found that only affect a very small percentage of training sen­tences. Since small counts are less reliable than large counts, we cannot reliably assume that these transformations will also improve performance in the test corpus. One way around this overtraining would be to set a threshold: specify a minimum level of improvement that must result for a trans­formation to be learned. Another possibility is to use additional training material to prune the set of learned transformations.

Q)

Q)

LO
0,

0

LO
CX)

0
CX)

0

0 10 20 30 40 50 60

RuleNumber

Figure 2: Accuracy as a function of transformation number for the ATIS Corpus.

We next ran an experiment to determine what performance could be achieved if we dropped the initial right-linear assumption. Using the same 7In all experiments described in this paper, results are calculated on a test corpus which was not used in any way in either training the learning algorithm or in developing the system.

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 19
training and test sets as above, sentences were ini­tially assigned a random binary-branching struc­ture, with final punctuation always attached high. Since there was less regular structure in this case than in the right-linear case, many more transfor­mations were found, 147 transformations in total. When these transformations were applied to the test set , a bracketing accuracy of 87. 1 % resulted.

The ATIS corpus is structurally fairly regular. To determine how well our algorithm performs on a more complex corpus, we ran experiments on the Wall Street Journal. Results from this exper­iment can be found in table 3.8 Accuracy is again measured as the percentage of constituents in the test set which do not cross any Penn Tteebank constituents. 9

Training # of Sent . Corpus Trans- % Length Sents formations Accuracy 2-15 250 83 88. 1 2- 15 500 163 89.3 2-15 1000 221 91 .6 2-20 250 145 86.2 2-25 250 160 83.8

Table 3 : WSJ Sentences
In the corpus we used for the experiments of sentence length 2-15, the mean sentence length was 10.80. In the corpus used for the experi­ment of sentence length 2-25, the mean length was 16.82. As would be expected, performance degrades somewhat as sentence length increases. In table 4, we show the percentage of sentences in the test corpus that have no crossing constituents, and the percentage that have only a very small number of crossing constituents. 10

Training % of % of Sent Corpus 0-error :::;2-error Length Sents Sents Sents 2-15 500 53.7 84.6 2- 15 1000 62.4 87.8 2-25 250 29.2 59.9

Table 4: WSJ Sentences
In table 5, we show the standard deviation measured from three different randomly chosen training sets of each sample size and randomly chosen test sets of 500 sentences each, as well as the accuracy as a function of training corpus size for sentences of length 2 to 20.

Training % Std. Corpus Sents Correct Dev. 0 63.0 0.69 10 75 .8 2.95 50 82. 1 1 .94 100 84.7 0.56 250 86.2 0.46 750 87.3 0.61
Table 5 : WSJ Sentences of Length 2 to 20.
In [SRO93] , an experiment was run using the inside-outside algorithm to train a grammar from the partially bracketed Wall Street Journal cor­pus. As in the experiment with the ATIS corpus, all possible binary context-free rules were initially allowed, and random probabilities were assigned to each rule. A comparison of this approach to the transformation-based approach is shown in tables 6 and 7. The inside-outside experiment was carried out on sentences of length 1-15, and the transformation-based experiment was carried out on sentences of length 2-15 . The inside-outside experiment had a grammar of 4095 probabilis­tic context free rules, which could be trimmed down to 450 rules without changing performan·ce. 221 symbolic transformations were learned in the transformation-based experiment. In table 6, the

8For sentences of length 2-15 , the initial right-linear parser achieves 69% accuracy. For sentences of length 2-20, 63% accuracy is achieved and for sentences of length 2-25, accuracy is 59%. 9In all of our experiments carried out on the Wall Street Journal, the test set was a randomly selected set of 500 sentences.
10For sentences of length 2-15 , the initial right linear parser parses 17% of sentences with no crossing errors, 35% with one or fewer errors and 50% with two or fewer. For sentences of length 2-25, 7% of sentences are parsed with no crossing errors, 16% with one or fewer, and 24% with two or fewer.

20

transformation-based learner is shown to outper­
form the inside-outside algorithm when parsing
accuracy is measured in terms of crossing brack­
ets. In table 7, accuracy is measured as the
percentage of sentences with no crossing bracket
violations. We believe these results are signifi­
cant , considering that the transformation-based
approach is only a weakly statistical learner (only
integer addition and comparison is done in learn­
ing) and is a completely symbolic parser that can
parse in linear time.

Training %
Method Corpus Sents Accuracy
Inside-
Outside 1095 90.2

Transformation
Learner 1000 91 .6

Table 6: Comparison of Two Learning
Algorithms on the Wall Street Journal:

Crossing Bracket Accuracy

Training Sentence
Method Corpus Sents Accuracy
Inside-
Outside 1095 57. 1

Transformation
Learner 1000 62.4

Table 7: Comparison of Two Learning
Algorithms on the Wall Street Journal:

Sentence Accuracy

A graph showing parsing performance for a
WSJ run trained on a 500-sentence training cor­
pus (training and testing on sentences of length
2-15) is shown in figure 3. We also ran an exper­
iment on WSJ sentences of length 2-15 starting
with random binary-branching structures with fi­
nal punctuation attached high. In this exper­
iment , 325 transformations were found using a
250-sentence training corpus, and the accuracy
resulting from applying these transformations to
a test set was 84.7%.

BRILL

co

Q)
0 co

Q)

0 50 1 00 1 50

RuleNumber

Figure 3: Accuracy as a function of
transformation number for the WSJ Corpus.

Finally, in figure 4 we show the sentence length
distribution in the Wall Street Journal corpus.

0
0
0 ,...

0
0 co

0
0 0 u (0

• .!!:
0

<ii 0
"<t

0
0

0

0 20 40 60 80 1 00

Sentence Length

Figure 4: The Distribution of Sentence Lengths
in the WSJ Corpus.

While the numbers presented above allow
us to compare the transformation learner with
systems trained and tested on comparable cor­
pora, these results are all based upon the as­
sumption that the test data is tagged fairly re-

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 21
liably (manually tagged text was used in all of these experiments, as well in the experiments of [PS92, SRO93] .) When parsing free text, we can­not assume that the text will be tagged with the accuracy of a human annotator. Instead, an au­tomatic tagger would have to be used to first tag the text before parsing. To address this issue, we ran one experiment where we randomly induced a 5% tagging error rate beyond the error rate of the human annotator. Errors were induced in such a way as to preserve the unigram part of speech tag probability distribution in the corpus. The exper­iment was run for sentences of length 2-15 , with a training set of 1000 sentences and a test set of 500 sentences. The resulting bracketing accuracy was 90. 1 %, compared to 91 .6% accuracy when using an unadulterated training corpus. Accuracy only degraded by a small amount when training on the corpus with adulterated part of speech tags.
5 Sample Output

Below are ten randomly chosen parses from the Wall Street .Journal. In each case, the output of the bracketing program is listed first, and the Penn Tree bank bracketing is listed second. Cross­ing brackets are marked with a star.
((But (if * ((a raider) * (takes *((over (when ((the stock) (is weak)))) (, ((the shareholder) (never (gets (his recovery))))))*) *)*)) .) ((But (if ((a raider) (takes over (when ((the stock) (is weak)))))) , ((the shareholder) (never gets (his recovery)))) .)
(((The company) (expects (to (resume *((full operations) (by today))*)))) .) (((The company) (expects (to (resume (full operations)) (by today)))) .)
(((" It) * (('s * ((very likely) * ((((the next) (five years)) (will (be (strong (for funds))))) (, ")) *) *) (he says)) *) .) (((" It ('s (very likely ((the next five years) will (be strong (for funds))))) , ") (he says)) .)
(((The (latest report)) (compares (with (((a modest) (9.9 (% increase))) (in *((July (machine orders)) (from ((a year) earlier))

)*))))) .) (((The latest report) (compares (with (a modest 9.9 % increase (in (July machine orders)) (from ((a year) earlier)))))) .)
(((The goal) (was (to (boost ((the cir­culation) (above ((the (500,000 level)) ((considered significant) (by advertisers))))))))) .) (((The goal) (was (to (boost (the circula­tion) (above ((the 500,000 level) (considered significant (by advertisers)))))))) .)
(((Mr. Jones) (ran *((((for (the Senate)) (as (a Democrat))) (in 1986)) (, (but (lost (to ((incumbent Sen.) (Don Nickles)))))))*)) .) (((Mr. Jones) ((ran (for (the Senate)) (as (a Democrat)) (in 1986)) , but (lost (to (incumbent Sen. Don Nickles))))) .)
((Then (((the ((auto paint) shop)) fire) (sent ((an (evil-looking cloud)) * (of *((black smoke) (into (the air)))*)*)))) .) ((Then ((the auto paint shop fire) (sent (an evil-looking cloud (of (black smoke))) (into (the air))))) .)
((He (* (used *(to (be ((a boiler-room) salesman)))*)* (, (peddling (investments (* (in oil)* * (*((and (gas wells)) and)* (rare coins)) *)))))) .) ((He (used (to (be (a boiler-room salesman) , (peddling (investments (in ((oil and gas wells) and (rare coins))))))))) .)
(((The board) (is (scheduled (to (meet Tuesday))))) .) (((The board) is (scheduled (to (meet Tues­day)))) .)
((Ignore (the (preserit condition))) .) ((Ignore (the present condition)) .)

In the first example, there are three brack­eting errors, all arising from the failure to end the clause following if at the comma. The sec­ond sentence has one error, which is a preposi­tional phrase attachment error. The third sen­tence has three bracketing errors, arising from crossing matching quotes. Perhaps a number of meta-rules, either learned or manually coded,

22
such as information about matching parenthe­ses a�d quotes, would significantly improve per­formance. The fourth sentence has one error, which is again a prepositional phrase attach­ment error. The sixth sentence has one error, from attaching the clause following (and includ­ing) the comma to the preposition for instead of the verb ran. The seventh sentence has two errors, both due to prepositional phrase attach­ment . The eighth sentence has five errors, one of which is due to prepositional phrase attach­ment and two arising from a difficult coordinate structure. In addition to meta-rules, postproces­sors addressing particular parsing problems such as prepositional phrase attachment and coordina­tion could lead to significant system performance improvements . Progress has already been made on a transformation-based prepositional phrase attachment program (see [BR93]) .
6 Assiging N onterminal La­

bels

Once a tree is bracketed, the next step is to la­bel the nonterminal nodes. Transformation-based error-driven learning is once again used for learn­ing how to label nonterminals. Currently, a node is labelled based solely on the labels of its daugh­ters. Therefore, an unlabelled tree can be labelled in a bottom-up fashion. Instead of addressing the problem of labelling the unlabelled tree output of the previous section, we have addressed a slightly different problem. The problem is to assign a tag to a node of a properly bracketed tree given the proper labels for the daughter nodes. This prob­lem can be more easily evaluated and solving it is a significant step toward solving the problem of labelling the output of the transformation-based bracketer. The Penn Treebank bracketed Wall Street Journal corpus was used for this experiment. 1 1 Two training sets were used (training set A had 1878 sentences and training set B had 1998) , as well as a test set of 1971 sentences. In the first ex­periment , the initial state annotator assigned the label noun phrase to all nodes. Then, transfor­mations were learned to improve accuracy. The transformation templates are:

BRILL

1. Change the node label to X if Y is a daughter.12

2 . Change the node label to X if Y and Z are adjacent daughters.
Transformations were learned using train­ing set A. A total of 115 transformations were learned. Initially assigning the label noun phrase to all nonterminal nodes in the test set resulted in an accuracy of 44.9%. Applying all learned trans­formations to the test set resulted in an accuracy of 94.3%. Table 8 shows the first twenty learned transformations. Transformations 15 and 18, as well as a number of similar transformations in the entire list capture the general rule X � X and X for coordination. It appears that the transfor- . mation Change a label to S if VP is a daughter is particularly effective, appearing as transforma­tion 2, 9 and 14. After the second transformation is applied, the transformations that follow could undo the second transformation as a side-effect .
Transformation If Daughter Number Tag As Includes 1 pp IN 2 s VP 3 VP VBD 4 VP VB 5 VP VBN 6 VP VBG 7 VP VBZ 8 s , s

9 s VP 10 SBar -NONE- S
1 1 pp TO NP 12 SBar IN S 13 VP VBP 14 s VP 15 s cc s 16 WHNP WDT 17 SBar WHNP 18 VP CC VP 19 WHNP WP 20 ADJP JJR

Table 8: Transformations For Labelling 1 1Thanks to Rich Pito for providing corpus processing tools for running this experiment. 12Y can be a nonterminal or preterminal (and need not be the only daughter).

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 23

Non terminals.
So, this transformation applies a number of times to remedy this . Next, a less naive start state was used. A non­terminal node is assigned the most likely tag for its daughters, as indicated in a second training set (training set B) . Unseen daughter sequences are tagged with a default tag (noun phrase) . Trans­formations were learned after applying the start state annotator to training set A. On the test set , initial state accuracy was 92.6%. Applying the transformations resulted in an accuracy of 95.9%. A total of 107 transformations were learned. We are very encouraged by the accuracy ob­tained using such a simple learning algorithm that only makes use of very local environments with­out recourse to any lexical information. Hope­fully, adding richer environments such as the word X is a daughter, or the nonterminal to the left is Y will lead to an even more accurate nontermi­nal labeller. By first bracketing text and then labelling nonterminals, we can produce labelled parse trees in linear time with respect to sen­tence length. The bracketer runs in O(ln l * ITI) , where ln l is the length of the sentence and IT I is the number of bracketing transformations. The nonterminal labeller also runs in O(ln l * IT I) , as all transformations are tried at every non­terminal node. Therefore, parsing run time is: O (ln l * IT I) + O(ln l * IT I) = O(ln l * IT I) .
7 Conclusions

In this paper, we have described a new approach for learning a grammar to automatically parse text . The method can be used to obtain high parsing accuracy with a very small training set. Instead of learning a traditional grammar, an or­dered set of structural transformations is learned

that can be applied to the output of a very naive parser to obtain binary-branching trees with un­labelled nonterminals. Experiments have shown that these parses conform with high accuracy to the structural descriptions specified in a manually annotated corpus. Unlike other recent attempts at automatic grammar induction that rely heav­ily on statistics both in training and in the re­sulting grammar, our learner is only very weakly statistical. For training, only integers are needed and the only mathematical operations carried out are integer addition and integer comparison. The resulting grammar is completely symbolic. Un­like learners based on the inside-outside algorithm which attempt to find a grammar to maximiz"e the probability of the training corpus in hope that this grammar will match the grammar that pro­vides the most accurate structural descriptions, the transformation-based learner can readily use any desired success measure in learning. The transformation-based learner can easily be extended simply by adding transformation templates. In the future, we plan to experiment with other types of transformations. Currently, each transformation in the learned list is only ap­plied once in each appropriate environment . For a transformation to be applied more than once in one environment, it must appear in the transfor­mation list more than once. One possible exten­sion to the set of transformation types would be to allow for transformations of the form: add/ delete a paren as many times as is possible in a particu­lar environment . We also plan to experiment with other scoring functions and control strategies for finding transformations and to use this system as a postprocessor to other grammar induction sys­tems, learning transformations to improve their performance. We hope these future paths will lead to a trainable and very accurate parser for free text.

24 BRILL

References [ea91] E. Black et al. A procedure for quanti­
tatively comparing the syntactic cover­
age of English grammars. . In Proceed­ings of Fourth DARPA Speech and Nat­ural Language Workshop, pages 306-
311 , 1991 .

[Bak79] J . Baker. Trainable grammars for
speech recognition. In Speech commu­nication papers. presented at the 97th Meeting of the Acoustical Society of America, 1979.

[BM92a] E. Brill and M. Marcus. Automatically
acquiring phrase structure using distri­
butional analysis. In Darpa Workshop on Speech and Natural Language, Har­
riman, N.Y. , 1992.

[BM92b] E . Brill and M. Marcus. Tagging
an unfamiliar text with minimal hu­
man supervision. In Proceedings of the Fall Symposium on Probabilistic Ap­proaches to Natural Language - AAA! Technical Report. American Associa­
tion for Artificial Intelligence, 1992.

[BR93] E. Brill and P. Resnik. A transforma­
tion based approach to prepositional
phrase attachment. Technical report ,
Department of Computer and Informa­
tion Science, University of Pennsylva­
nia, 1993. Forthcoming.

[Bri92] E. Brill. A simple rule-based part
of speech tagger. In Proceedings of the Third Conference on Applied Natu­ral Language Processing, A GL, Trento,
Italy, 1992.

[Bri93] E. Brill. A Corpus-Based Approach to Language Leaming. PhD thesis, De­
partment of Computer and Informa­
tion Science, University of Pennsylva­
nia, 1993.

[BW92] T. Briscoe and N. Waegner. Robust
stochastic parsing using the inside­
outside algorithm. In Workshop notes from the AAA! Statistically-Based NLP Techniques Workshop, 1992.

[CC92] G. Carroll and E. Charniak. Learn­
ing probabilistic dependency grammars
from labelled text - aaai technical re­
port. In Proceedings of the Fall Sym­posium on Probabilistic Approaches to Natural Language. American Associa­
tion for Artificial Intelligence, 1992.

[HGD90] C. Hemphill, J. Godfrey, and G. Dod­
dington. The ATIS spoken language
systems pilot corpus. In Proceedings . of the DARPA Speech and Natural Lan­guage Workshop, 1990.

[HR91] D. Hindle and M. Rooth. Structural
ambiguity and lexical relations. �n Pro­ceedings of the 29th Annual Meeting of the Association for Computational Lin­guistics, Berkeley, Ca. , 1991 .

[LY90] K. Lari and S. Young. The estimation
of stochastic context-free grammars us­
ing the inside-outside algorithm. Com­puter Speech and Language, 4, 1990.

[MM90] D. Magerman and M. Marcus. Pars­
ing a natural language using mutual
information statistics. In Proceedings, Eighth National Conference on Artifi­cial Intelligence (AAA! 90), 1990.

[MM91] R. Weischedel M. Meteer, R. Schwartz.
Empirical studies in part of speech la­
belling. In Proceedings of the fourth DARPA Workshop on Speech and Nat­ural Language, 1991 .

[MSM93] M. Marcus, B. Santorini,

[PS92]

and M. Marcinkiewicz. Building a large
annotated corpus of English: the Penn
Treebank. To appear in Computational
Linguistics, 1993.

F. Pereira and Y. Schabes. Inside­
outside reestimation from partially
bracketed corpora. In Proceedings of the 30th Annual Meeting of the Asso­ciation for Computational Linguistics,
Newark, De. , 1992.

[Sam86] G. Sampson. A stochastic approach
to parsing. In Proceedings of COLING 1986, Bonn, 1986.

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 25

[SJM90] R. Sharman, F. Jelinek, and R. Mer­cer. Generating a grammar for sta­tistical training. In Proceedings of the 1990 Darpa Speech and Natural Lan­guage Workshop, 1990.

[SRO93] Y. Schabes, M. Roth, and R. Osborne. Parsing the Wall Street Journal with the inside-outside algorithm. In Pro­ceedings of the 1993 European A CL, Uterich, The Netherlands, 1993.

26 B RILL

