
Stochastic Lexicalized Context-Free Grammar

Yves Schabes and Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway, Cambrid�e, MA 02139

email: {schabes I dick}©merl . corn

Abstract Stochastic lexicalized context-free grammar (SLCFG) is an attractive compromise between the parsing efficiency of stochastic context-free grammar (SCFG) and the lexical sensitivity of stochas­tic lexicalized tree-adjoining grammar (SLTAG) . SLCFG is a restricted form of SLTAG that can only generate context-free languages and can be parsed in cubic time. However, SLCFG retains the lexical sensitivity of SLTAG and is therefore a much better basis for capturing distributional information about words than SCFG.
1 Motivation

The application of stochastic techniques to syntax modeling has recently regained popularity. Most of the work in this area has tended to empha­size one or the other of the following two goals . The first goal is to capture as much distributional information about words as possible . The second goal is to capture as many of the hierarchical con­straints inherent in natural languages as possible. Unfortunately, these two goals have been more or less incompatible to date. Early stochastic proposals such as Markov Models, N-gram models [2, 14] and Hidden Markov Models [7] are very effective at captur­ing simple distributional information about adja­cent words. However , they cannot capture long range distributional information nor the hierar­chical constraints inherent in natural languages. Stochastic context-free grammar (SCFG) [1 , 3, 5] extends context-free grammar (CFG) by as­sociating each rule with a probability that con­trols its use. Each rule is associated with a single probability that is the same for all the sites where the rule can be applied . SCFG captures hierarchical information just as well as CFG; however , it does not do a good job of capturing distributional information about words. There are at least two reasons for this . F irst, many rules do not contain any words and

therefore the associated probabilities do not have any direct link to words. Second, distributional phenomena that involve the application of two or more rules do not have a direct link to any of the stochastic parameters of SCFG, because the probabilities apply only to single rules. It has been observed in practice that SCFG performs worse than non-hierarchical approaches. This has lead many researchers to believe that simple distributional information about adjacent words is the most important single source of in­formation. In the absence of a formalism that adequately combines this information with other kinds of information, the emphasis in research has been on simple non-hierarchical statistical models of words, such as word N-gram models . Recently, it has been suggested that stochastic lexicalized tree-adjoining grammar (SLTAG) [8, 9] may be able to capture both distributional and hierarchical information. An SLTAG grammar consists of a set of trees each of which contains one or more lexical items. These elementary trees can be viewed as the elementary clauses (including their transformational variants) in which the lex­ical items participate. The elementary trees are combined by substitution and adjunction. Each possible way of combining two trees is associated with a probability. Since it is based on tree-adjoining grammar (TAG) , SLTAG can capture some kinds of hier-
257

258

archical information that cannot be captured by SCFG. However , the key point of comparison be­tween SLTAG and SCFG is that since SLTAG is lexicalized and uses separate probabilities gov­erning each possible combination of trees, each probability is directly linked to a pair of words. This makes it possible to represent a great deal of distributional information about words. Unfortunately, the statistical algorithms for SLTAG [9] require much more computational re­sources than the ones for SCFG. For instance, the algorithms for estimating the stochastic parame­ters and determining the probability of a string require in the worst case O(n6)-time for SLTAG [9] but only O(n3)-time for SCFG [3]. Stochastic lexicalized context-free grammar (SLCFG) is a restricted form of SLTAG that re­tains most of the advantages of SLTAG with­out requiring any greater computational resources than SCFG. SLTAG restricts the elementary trees that are possible and the way adjunction can be performed. These restrictions limit SLCFG to producing only context-free languages and allow SLCFG to be parsed in O(n3)-time in the worst case. However, SLCFG retains most of the key features of SLTAG enumerated above. In par­ticular, the probabilities in SLCFG are directly linked to pairs of words. SLCFG is a stochastic extension of lexical­ized context-free grammar (LCFG) [12, 13]. The following sections, introduce LCFG, define the stochastic extension to SLCFG, present an al­gorithm that can determine the probability of a string generated by an SLCFG in O(n3)-time, and discuss the algorithms needed to train the parameters of an SLCFG.
2 LCFG
Lexicalized context-free grammar (LCFG) [12, 13] is a tree generating system that is a re­stricted form of lexicalized tree-adjoining gram­mar (LTAG) (4]. The grammar consists of two sets of trees: initial trees, which are combined by substitution and auxiliary trees, which are com­bined by adjunction. An LCFG is lexicalized be­cause every initial and auxiliary tree is required to contain a terminal symbol on its frontier.

SCHABES - WATERS

Definition 1 An LCFG is a five-tuple (E,NT,I, A, S), where E is a set of terminal symbols, NT is a set of non-terminal symbols, I and A are fi­nite sets of finite trees labeled by terminal and non-terminal symbols, and S is a distinguished non-terminal start symbol. The set I U A is re­ferred to as the elementary trees. The interior nodes in each elementary tree are labeled by non-terminal symbols. The nodes on the frontier of each elementary tree are la­beled with terminal symbols, non-terminal sym­bols, and the empty string (c). At least one fron­tier node is labeled with a terminal symbol. With the possible exception of one (see below), the non­terminal symbols on the frontier are marked for substitution. (By convention, substitutability is indicated in diagrams by using a down arrow (l).) The difference between auxiliary trees and ini­tial trees is that each auxiliary tree has exactly one non-terminal frontier node that is marked as the foot. The foot must have the same label as the root. (By convention, the foot of an auxiliary tree is indicated in diagrams by using an asterisk (*).) The path from the root of an auxiliary tree to the foot is called the spine. Auxiliary trees in which every non-empty fron­tier node is to the left of the foot are called
left auxiliary trees. Similarly, auxiliary trees in which every non-empty frontier node is to the right of the foot are called right auxiliary trees. Other auxiliary trees are called wrapping auxil­iary trees.1

LCFG does not allow adjunction to apply to foot nodes or nodes marked for substitution. LCFG allows the adjunction of a left auxiliary tree and a right auxiliary tree on the same node. However , LCFG does not allow the adjunction of either two left or two right auxiliary trees on the same node. Crucially, LCFG does not allow wrapping aux­iliary trees. It does not allow elementary wrap­ping auxiliary trees, and it does not allow the ad­junction of two auxiliary trees, if the result would be a wrapping auxiliary tree.
Figure 1, shows seven elementary trees that might appear in an LCFG for English. The trees containing 'boy ' , 'saw' , and 'left ' are initial trees. The remainder are auxiliary trees.

1 In (13) these three kinds of auxiliary trees are referred to differently a.s right recursive, left recursive, and centrally
recursive, respectively.

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR 259

s

�
s NPiJ.(+wh) S s

/\ I\ /\
NP NPoJ. VP NPo VP VP N VP NPoJ. VP

I\ I\ I I I\ I\ /\ I\
DJ. N V NP1J. E i V V VP"' A N* VP"' Adv V S 1* NA

I I I I I I I
boy saw left seems pretty smoothly think

Figure 1 : Example LCFG trees.

(a) (b)

(c)

Figure 2: Tree combination: (a) substitution, (b) left adjunction, (c) right adjunction, and (d) wrap­ping adjunction, which is not allowed by SLCFG.

An LCFG derivation must start with an ini­tial tree rooted in S. After that, the tree can be repeatedly extended using substitution and ad­junction. A derivation is complete when every frontier node is labeled with a terminal symbol. As illustrated in Figure 2a, substitution re­places a node marked for substitution with a copy of an initial tree. Adjunction inserts a copy of an auxiliary tree
T into another tree at an interior node T/ that has the same label as the root (and therefore foot) of T. In particular , T/ is replaced by a copy of
T and the foot of the copy of T is replaced by the subtree rooted at T/· The adjunction of a left auxiliary tree is referred to as left adjunction (see Figure 2b). The adjunction of a right auxiliary tree is referred to as right adjunction (see Fig­ure 2c). LCFG's prohibition on wrapping auxiliary

trees can be rephrased solely in terms of elemen­tary trees. To start with, there must be no el­ementary wrapping auxiliary trees. In addition, an elementary left (right) auxiliary tree cannot be adjoined on any node that is on the spine of an elementary right (left) auxiliary tree. Further , no adjunction whatever is permitted on a node 1/ that is to the right (left) of the spine of an elemen­tary left (right) auxiliary tree T. (Note that for
T to be a left (right) auxiliary tree, every frontier node subsumed by T/ must be labeled with c.)

Tree adjoining grammar formalisms typically forbid adjunction on foot nodes and substitution nodes. In addition, they typically forbid multiple adjunctions on a node. However, in the case of LCFG, it is convenient to relax this latter restric­tion slightly by allowing right and left adjunction on a node, but at most once each. (Due to the other restrictions placed on LCFG, this relaxation

260

CFL

PATH SET POWER RL

RL

• LCFG

CFG •
TSG

CFL

LTAG •
TAG

TAL
STRING SET POWER

SCHABES - WATERS

Figure 3: The tree and string complexity of LCFG and several other formalisms

increases the trees that can be generated without
increasing the ambiguity of derivations.)

2 .1 Comparisons
The only important difference between LCFG
and LTAG is that LTAG allows both elementary
and derived wrapping auxiliary trees. The im­
portance of this is that wrapping adjunction (see
Figure 2d) encodes string wrapping and is there­
fore context sensitive in nature. In contrast, left
and right adjunction (see Figures 2b & 2c) merely
support string concatenation. As a result, while
LTAG is context sensitive in nature, LCFG is lim­
ited to generating only context-free languages.

To see that LCFG can only generate context­
free languages, consider that any LCFG G can be
converted into a CFG generating the same strings
in two steps as follows. First , G is converted into
a tree substitution grammar (TSG) G' that gen­
erates the same strings. Then, this TSG is con­
verted into a CFG G" .

A TSG is the same as an LCFG (or LTAG)
exc�pt ' that there cannot be any auxiliary trees.
To create G' first make every initial tree of G be
an initial tree of G' . Next, make every auxiliary
tree T of G be an initial tree of G' . When doing
this, relabel the foot of T with c (turning T into
an initial tree) . In addition, let A be the label of
the root of T. If T is a left auxiliary tree, rename
the root to AL ; otherwise rename it to AR ,

To complete the creation of G' alter every
node TJ in every initial tree in G' as follows: Let A
be the label of T/ · If left adjunction is possible at
T/, add a new first child of T/ labeled AL , mark it
for substitution, and add a tree corresponding to
AL --+ c if one does not already exist. Right ad-

junction is handled analogously by adding a new
last child of T/ labeled AR and insuring the exis­
tance of a tree corresponding to AR --+ c.

The TSG G' generates the same strings as
G, because all cases of adjunction have been
changed into equivalent substitutions. Note that
the transformation would not work if LCFG al­
lowed wrapping auxiliary trees. The TSG G' can
be converted into a CFG G" by flattening each
tree in G' into a context-free rule that expands
the root of the tree into the frontier in one step.

Although the string sets generated by LCFG
are the same as those generated by CFG, LCFG is
capable of generating more complex sets of trees
than CFG. In particular, it is interesting to look
at the path sets of the trees generated. (The path
set of a grammar is the set of all paths from root
to frontier in the trees generated by the grammar.
The path set is a set of strings over � U NT U { c} .)

The path sets for CFG (and TSG) are regu­
lar languages [15] . In contrast, just as for LTAG
and TAG, the path sets for LCFG are context-free
languages. To see this, consider that adjunction
makes it possible to embed a sequence of nodes
(the spine of the auxiliary tree) in place of a node
on a path. Therefore, from the perspective of the
path set , auxiliary trees are analogous to context­
free productions.

Figure 3 summarizes the relationship be­
tween LCFG and several other grammar for­
malisms. The horizontal axis shows the com­
plexity of strings that can be generated by the
formalisms, i.e . , regular languages (RL) , context­
free languages (CFL) , and tree adjoining lan­
guages (TAL) . The vertical axis shows the com­
plexity of the path sets that can be generated.

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR 261
CFG (and TSG) create context-free lan­guages, but the path sets they create are regular languages. LTAG and TAG generate tree adjoin­ing languages and have path sets that are context­free languages. LCFG is intermediate in nature. It can only generate context-free languages, but has path sets that are also context-free languages.

2 .2 LCFG lexicalizes CFG

As shown in [12, 13] LCFG lexicalizes CFG with­out changing the trees derived. Further, a con­structive procedure exists for converting any CFG
G into an equivalent LCFG G' . The fact that LCFG lexicalizes CFG is signifi­cant, because every other method for lexicalizing CFGs without changing the trees derived requires context-sensitive operations [4] and therefore dra­matically increases worst case processing time. As shown in [12, 13] (and in Section 4) LCFG can be parsed in the worst case just as quickly as CFG. Since LCFG is lexicalized, it is expected that it can be parsed much faster than CFG in the typical case.
3 Stochastic LCFG
The definition of stochastic lexicalized context­free grammar (SLCFG) is the same as the defini­tion of LCFG except that probabilities are added that control the combination of trees by adjunc­tion and substitution.
Definition 2 An SLCFG is an 1 1-tuple (E,NT, I,A,S,P1 ,Ps ,PL ,PNL ,Pn ,PNR) , where (E,NT,I, A,S) is an LCFG and Pi , Ps , PL , PNL , PR, and PN R are statis_tical parameters as defined below. For every root p of an initial tree, P1 (p) is the probability that a derivation starts with the tree rooted at p. It is required that :

Note that P1 (p) # 0 i f and only i f p i s labeled S . For every root p of an initial tree and every node 'TJ that is marked for substitution, Ps(p, 'TJ) is the probability of substituting the tree rooted at p for 'T/· For each 'T/ it is required that:

For every node TJ in every elementary tree, PN L ('TJ) is the probability that left adjunction will not occur on 'T/· For every root p of a left auxiliary tree, PL (p, 'TJ) is the probability of adjoining the tree rooted at p on 'T/· For each 'T/ it is required that :
PNL ('TJ) + L PL (P, 'TJ) = 1

p

PN L ('TJ) = 0 if and only if left adjunction on 'T/ is obligatory. The parameters PNR('TJ) and PR(P, 1J) control right adjunction in an exactly analogous way.
An SLCFG derivation is described by the ini­tial tree it starts with, together with the sequence of substitution and adjunction operations that take place. The probability of a derivation is defined as the product of: the probability P1 of starting with the given tree, the probabilities Ps , PL , and . PR of the operations that occurred, and the probabilities PNL and PNR of adjunction not occurring at the places where it did not occur. The probability of a string is the sum of the probabilities of all the different ways of deriving it . A most likely derivation of a string is a deriva­tion that has as large a probability as any other derivation for the string. The probability of a tree generated by an SLCFG for a string is the sum of the probabilities of every way of deriving the tree. (Unlike in SCFG, in SLCFG there .ean be more than one way to derive a given tree .) A mo_st likely tr.ee generated for a string is a tree whose probability is as large as any other tree generated for the string. (Note that a most likely derivation need not generate a most likely tree.)

4 Parsing SLCFG
Since SLCFG is a restricted case of SLTAG the (6) . ' 0 n -time SLTAG parser [9] can be used for parsing SLCFG. Further, it can be straightfor­wardly modified to require at most O(n4)-time when applied to SLCFG. However, this does not take full advantage of the context-freeness of SLCFG. This section demonstrates that SLCFG can be parsed in O(n3)-time by exhibiting a CKY-style

262
bottom-up algorithm for computing the probabil­ity assigned to a string by an SLCFG. This algo­rithm can be trivially modified to extract a most probable derivation of the given string. More effi­cient SLCFG processors can be based on the Ear­ley style LCF G recognizer presented in [12].
4. 1 Terminology

Suppose that G is an SLCFG and that a1 · · · an is an input string. Let 1J be a node in an elementary tree (identified by the name of the tree and the position of the node in the tree). Label(1J) E E U NT U c is the label of the node. The predicate IslnitialRoot(1J) is true if and only if 1J is the root of an initial tree. Parent(1J) is the node that is the parent of 1J or ..L if 1/ has no par­ent. F irstChild(rJ) is the node that is the leftmost child of 1J or ..L if 1J has no children. Sibling(rJ) is the node that is the next child of the parent of 1J (in left to right order) or ..L if there is no such node. The predicate Substitutable(µ, rJ) is true if and only if 1J is marked for substitution and p is the root of an initial tree that can be substituted for 1/· The predicate Radjoinable(p, rJ) is true if and only if p is the root of an elementary right aux­iliary tree that can adjoin on 1/· The predicate Ladjoinable(p, 1J) is true if and only if p is the root of an elementary left auxiliary tree that can adjoin on 1/· The concept of covering is critical to the bottom-up algorithm shown below. Informally speaking, a node 7J covers a string if and only if the string can be derived starting from 1/· More precisely, for every node 1J in every ele­mentary tree in G, let T' be a copy of the subtree of T that is rooted at 1/· Extend T' by adding a new root whose only child is the original root of
T' . Label the new root of T' with a unique new symbol S' . If there is a node on the frontier of
T' that is marked as the foot, relabel this node with c. This converts T' into an initial tree. Let
a,, be an SLCFG that is identical to G except that .. T' .is�introduced as an additional initial tree and the start symbol of G77 is S' . The probabil­ities associated with the the interior nodes of T' are identical to those for the corresponding nodes in T. The probabilities for the root of T' are Ps = PL = PR = 0, PNL = PivR = 1, and cru.:. dally P1 = 1. P1 = 0 for the other initial trees.

SCHABES - WATERS

The node 1J covers a string a1 · · · an with probability p in G if and only if the probabil­ity of a1 · · · an in G77 is p. The node 1J covers a string a1 · · · an without left (right) adjunction with probability p in G if and only if the proba­bility of a1 · · · an in G77 is p without considering derivations where left (right) adjunction occurs on the original root of T' . (Note that if 1J is a foot node, T' is an empty tree. The only string covered by 1J is the empty string; however, the empty string is covered with probability 1, because the empty string is the only string derived by Gw)
4.2 A bottom-up Algorithm

We can assume without loss of generality that every node in / U A has at most two children. (By adding new nodes, any SLCFG can be trans­formed into an equivalent SLCFG satisfying this condition. This transformation can be readily re­versed after parsing has been completed.) The algorithm stores triples of the form [rJ, code, p] in an n x n array C. In a triple,
code is a set over the universe L (for left adjunc­tion) and R (for right adjunction). The fact that [rJ, code, p] E C[i, k] means that 1J accounts for the substring ai+1 · · · ak with probability p. More precisely, for every node 1J in every elementary tree in G, the algorithm guarantees that when the computation concludes:

• [rJ, 0, p] E C[i, k] if and only if 1J covers ai+l · · · ak with probability p without left or right adjunction.
• [rJ, {L}, p] E C[i, k] if and only if 1J covers ai+l · · · ak with probability p without right adjunction.
• [rJ, {R}, p] E C[i, k] if and only if 1J covers ai+1 · · · ak with probability p without left adjunction.
• [rJ, {L, R}, p] E C[i, k] if and only if 1J covers ai+l · · · ak with probability p.

The process starts by placing each foot node and each frontier node that is labeled with the empty string in every cell C[i, i] with probability one. This signifies that they each cover the empty string at all positions. The initialization also puts each terminal node 1/ in every cell C[i, i + 1] where

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR

(a)

a . . . a .
i + I J

a •• • ak j + l
a
i + I

Figure 4 : Sibling concatenation.

& +...i. � &
a

.
.
.

ak
a. ·•• a .A* a ••• ak j + l z + l l i + l (b)

a • • • a .
i + l J

Figure 5: (a) Left concatenation and (b) right concatenation.

Procedure Probability(a1 · · · an)
begin

for i = 0 to n
for all foot nodes </J in A, Add(</J, 0, i , i , 1)
for all frontier nodes rJ in A U J where Label(rJ) = c, Add('f/, 0, i , i , 1)

for i = 0 to n - l
for all frontier nodes rJ in A U J where Label(rJ) = ai+1 , Add(TJ, 0, i, i + 1 , 1)

for d = 0 to n
for i = 0 to n - d

set k = i + d
for j = i to k

for all nodes 'f/ in G
if ['fJ, {L, R} ,P1] E C[i , j] and [Sibling(rJ) , {L, R} , P2] E C[j, k]

then Add(Parent(TJ) , 0, i , k ,p1 x P2)
for all nodes p and 'f/ in G where Ladjoinable(p, rJ)

if [p, {L, R} , pi] E C[i , j] and [rJ , code, p2] E C[j, k] and L rt code
then Add('f/, L U code, i , k ,p1 x P2 x PL (P, rJ))

for all nodes p and 'f/ in G where Radjoinable(p, 'f/)
if [rJ, code, p1] E C[i , j] and R rt code and [p, {L, R} , P2] E C[j, k]

then Add(17, R U code, i , k, p1 x P2 x PR(P, rJ))
p = O
for all nodes p in G where IsinitialRoot(p) and Label(p) = S

if [p, {L, R} , Po] E C[O, n] then p = p + Po x P1 (p)
return p

end
Procedure Add('f/, code, i, k, p)

begin
if [77 , code, p'] E C[i , k] for some p' then update [77, code, p'] in C[i , k] to ['fJ, code, p' + p]
else C[i , k] := C[i , k] U ['fJ, code, p]
if code = {L, R} then

if FirstChild(Parent(rJ)) = 'f/ and Sibling(rJ) = ..L then Add(Parent(rJ) , 0, i, k, p)
for each node </J such that Substitutable(rJ, <P) , Add(</J, 0, i , k, p x Ps(rJ, <P))

if L rt code then Add('f/, L U code, i, k, p x PNL (TJ))
if R rt code then Add('f/, R U code, i , k,p x PNR(rJ))

end

Figure 6: A procedure for computing the probability of a string given an SLCFG.

263

264

1J is labeled ai+l with probability one. The al­
gorithm then considers all possible ways of com­
bining matched substrings into longer matched
substrings-it fills the upper diagonal portion of
the array C[i , k] (0 � i � k � n) for increasing
values of k - i .

Two observations are central to the efficiency
of this process. Since every auxiliary tree (ele­
mentary and derived) in SLCFG is either a left
or right auxiliary tree, the substring matched by
a tree is always a contiguous string. Further,
when matched substrings are combined, the al­
gorithm only has to consider adjacent substrings.
(In SLTAG, a tree with a foot can match a pair
of strings that are not contiguous-one left of the
foot and one right of the foot .)

There are three situations where combination
of matched substrings is possible: sibling concate­
nation, left concatenation, and right concatena­
tion.

As illustrated in Figure 4, sibling concate­
nation combines the substrings matched by two
sibling nodes into a substring matched by their
parent. In particular, suppose that there is a
node 1/o (labeled B in Figure 4) with two chil­
dren 1/i (labeled A) and TJ2 (labeled A') . If
[1J1 , {L, R} , P1] E C[i , j] and [1J2 , {L, R} , P2] E
C[j, k] then [rJo , 0 , P1 x P2] E C[i , k] .

Left concatenation (see Figure 5a) combines
the substring matched by a left auxiliary tree with
the substring matched by a node the auxiliary
tree can adjoin on. Right concatenation (see Fig­
ure 5b) is analogous.

The algorithm (see Figure 6) is written in two
parts: a main procedure Probability(a1 · · · an)
and a subprocedure Add(rJ, code, i , k) , which adds
the triple [TJ, code, p] into C[i , k] .

The main procedure repeatedly scans the ar­
ray C, building up longer and longer matched
substrings until it determines all the S-rooted de­
rived trees that match the input. The purpose
of the codes ({ L, R} etc.) is to insure that left
and right adjunction can each be applied at most
once on a node. The procedure could easily be
modified to account for other constraints on the
way derivation should proceed, such as those sug­
gested for LTAGs [11] .

The procedure Add enters a triple [TJ, code, p]
into C[i , k] . If some other triple [71, code, p'] is al­
ready present in C[i , k] , then the probability p' is

SCHABES - WATERS

updated to p' + p to reflect the fact that an ad­
ditional derivation of ai+l · · · ak has been found.
Otherwise, a new triple [71, code, p] is added to C[i , k] .

The procedure Add also propagates informa­
tion from one triple to another in situations
where the length of the matched string is not
increased-Le. , when a node is the only child of
its parent , when substitution occurs, and when
adjunction is not performed.

The O(n3) complexity of the algorithm fol­
lows from the three nested induction loops on d,
i and j. (Although the procedure Add is defined
recursively, the number of pairs added to C is
bounded by a constant that is independent of sen­
tence length.)

The algorithm does not depend on the fact
that SLCFG is lexicalized-it would work equally
well if were not lexicalized. If the sum p' + p on
the third line of the Add procedure is changed to
max(p' , p) the algorithm computes the probabil­
ity of a most probable derivation. By keeping a
record of every attempt to enter a triple into a
cell of the array C, one can extend the algorithm
so that derivations and therefore the trees they
generate can be rapidly recovered.

5 Training an SLCFG

In the general case, the training algorithm for
SCFG [5] requires O(n3)-time for each sentence of
length n. A training algorithm for SLCFG can be
constructed that achieves these same worst case
bounds.

To start with, since SLCFG is a restricted case
of stochastic lexicalized tree-adjoining grammar
(SLTAG) , the O(n6)-time inside-outside reesti­
mation algorithm for SLTAG [9] can be used for
estimating the parameters of an SLCFG given
a training corpus. Straightforward modifications
lead to an O(n4)-time algorithm for training an
SLCFG. However, this alone does not achieve the
full potential of SLCFG.

The same basic construction that underlies
the algorithm in the last section can be used as
the basis for an O(n3) inside-outside training al­
gorithm for SLCFG. As in the last section, the
key reason for this is that computations involving
SLCFG only require the consideration of contigu­
ous strings.

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR 265

It should be noted that in the special case of a fully bracketed training corpus, the parameters of an SCFG can be estimated in linear time [6, 10] . It is an open question whether this can be done for SLCFG. However, it should be straightforward to design an O(n2)-time training algorithm for SLCFG given a fully bracketed corpus.

6 Conclusion

The preceding sections present stochastic lexi­calized context-free grammar (SLCFG) . SLCFG combines the processing speed of SCFG with the much greater ability of SLTAG to capture dis­tributional information about words. As such, SLCFG has the potential of being a very useful tool for natural language processing tasks where statistical assessment/prediction is required.

266
References

[1] T. Booth. Probabilistic representation of for­mal languages. In Tenth Annual IEEE Sym­posium on Switching and Automata Theory, October 1969.
[2] F. Jelinek. Self-organized language model­ing for speech recognition. In Alex Waibel and Kai-Fu Lee, editors, Readings in speech recognition. Morgan Kaufmann, San Mateo, California, 1990. Also in IBM Research Re­port (1985) .
[3] F. Jelinek, J. D . Lafferty, and R. L. Mer­cer. Basic methods of probabilistic context free grammars. Technical Report RC 16374 (72684) , IBM, Yorktown Heights, NY, 1990.
[4] Aravind K. Joshi and Yves Schabes. Tree­adjoining grammars and lexicalized gram­mars. In Maurice Nivat and Andreas Podel­ski, editors, Tree Automata and Languages. Elsevier Science, 1992.
[5] K. Lari and S . J. Young. The estimation of stochastic context-free grammars using the Inside-Outside algorithm. Computer Speech and Language, 4:35-56, 1990.
[6] Fernando Pereira and Yves Schabes. Inside­outside reestimation from partially brack­eted corpora. In 20th Meeting of the Association for Computational Linguistics (ACL '92), Newark, Delaware, 1992.
[7] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2) :257-285, February 1989.
[8] Philip Resnik. Probabilistic tree-adjoining grammars as a framework for statistical nat­ural language processing. In Proceedings of

SCHABES - WATERS

the 14th International Conference on Com­putational Linguistics (COLING'92), 1992.
[9] Yves Schabes. Stochastic lexicalized tree­adjoining grammars. In Proceedings of the 14th International Conference on Computa­tional Linguistics (COLING'92), 1992.

[10] Yves Schabes, Michael Roth, and Randy Osborne. Parsing the Wall Street Jour­nal with the inside-outside algorithm. In Sixth Conference of the European Chapter of the Association for Computational Linguis­tics {EACL '93), Utrecht, the Netherlands, April 1993.
[1 1] Yves Schabes and Stuart Shieber. An al­ternative conception of tree-adjoining deriva­tion. In 20th Meeting of the Association for Computational Linguistics (ACL '92), 1992.
[12] Yves Schabes and Richard C. Waters. Lex­icalized context-free grammar: A cubic-time parsable formalism that strongly lexicalizes context-free grammar. Technical Report 93-04, Mitsubishi Electric Research Labs, 201 Broadway. Cambridge MA 02139, 1993.
[13] Yves Schabes and Richard C. Waters. Lex­icalized context-free grammars. In 2ist Meeting of the Association for Computa­tional Linguistics (ACL '93), pages 121-129, Columbus, Ohio, June 1993.
[14] C. E. Shannon. Prediction and entropy of printed english. The Bell System Technical Journal, 30:50-64, 1951 .
[15] J. W. Thatcher. Characterizing deriva-tions trees of context free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences, 5:365-396, 1971 .

