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Abstract 

In stochastic language processing, we are often interested in the most probable parse of an input 
string. Since there can be exponentially many parses, comparing all of them is not efficient. The 
Viterbi algorithm (Viterbi, 1967; Fujisaki et al., 1989) provides a tool to calculate in cubic time 
the most probable derivation of a string generated by a stochastic context free grammar. However, 
in stochastic language models that allow a parse tree to be generated by different derivations -
like Data Oriented Parsing (DOP) or Stochastic Lexicalized Tree-Adjoining Grammar (SLTAG) 
- the most probable derivation does not necessarily produce the most probable parse. In such 
cases, a Viterbi-style optimisation does not seem feasible to calculate the most probable parse. In 
the present article we show that by incorporating Monte Carlo techniques into a polynomial time 
parsing algorithm, the maximum probability parse can be estimated as accurately as desired in 
polynomial time. Monte Carlo parsing is not only relevant to DOP or SLTAG, but also provides 
for stochastic CFGs an interesting alternative to Viterbi. Unlike the current versions of Viterbi­
style optimisation (Fujisaki et al., 1989; Jelinek et al., 1990; Wright et al., 1991), Monte Carlo 
parsing is not restricted to CFGs in Chomsky Normal Form. For stochastic grammars that are 
parsable in cubic time, the time complexity of estimating the most probable parse with Monte 
Carlo turns out to be O(n3c:-2), where n is the length of the input string and c: the estimation 
error. In this paper we will treat Monte Carlo parsing first of all in the context of the DOP 
model, since it is especially here that the number of derivations generating a single tree becomes 
dramatically large. Finally, a Monte Carlo Chart parser is used to test the DOP model on a set 
of hand-parsed strings from the Air Travel Information System {ATIS) spoken language corpus. 
Preliminary experiments indicate 96% test set parsing accuracy. 

1 Motivation 

As soon as a formal grammar characterizes a non­
trivial part of a natural language, almost every input string of reasonable length gets an unman­ageably large number of different analyses. Since most of these analyses are not perceived as plausi­ble by a human language user, there is a need for distinguishing the plausible parse(s) of an input string from the implausible ones. In stochastic language processing, it is assumed that the most plausible parse of an input string is its most prob­able parse. Most instantiations of this idea esti­mate the probability of a parse by assigning appli­cation probabilities to context free rewrite rules (Jelinek et al., 1990; Black et al., 1992; Briscoe 
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- Carroll, 1993), or by assigning combination probabilities to elementary trees (Resnik, 1992; Schabes, 1992). 
There is some agreement now that context free rewrite rules are not adequate for estimating the probability of a parse, since they do not capture lexical context, and hence do not describe how the probability of syntactic structures or lexical items depends on that context. In stochastic lex­icalized tree-adjoining grammar (Schabes, 1992), this lack of context-sensitivity is overcome by as­signing probabilities to larger structural units. However, it is not always evident which structures should be considered as elementary structures. In (Schabes, 1992), it is proposed to infer a stochas-
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tic TAG from a large training corpus using an by combining other corpus subtrees, for instance: inside-outside-like iterative algorithm. 

Data Oriented Parsing (DOP) (Scha, 1990,1992; Bod, 1992,1993), distinguishes itself from other statistical approaches in that it omits the step of inferring a grammar from a corpus. Instead, an annotated corpus is directly used as a stochastic grammar. An input string is parsed by combining subtrees from the corpus. In this view, every subtree can be considered as an _elementary structure. As a consequence, one parse tree can usually be generated by several derivations that involve different subtrees. This leads to a statis­tics where the probability of a parse is equal to the sum of the probabilities of all its derivations. It is hoped that this approach can accommodate all statistical properties of a language corpus. 
Let us illustrate DOP with an extremely simple example. Suppose that a corpus consists of only two trees: 

NP VP 

I �p 
John I I 

likes Mary 

NP VP 

I I\ 
�er 

I T 
hates Susan 

Suppose that our combination operation (in­dicated with o) consists of substituting a subtree on the leftmost identically labeled leaf node of an­other tree. Then the sentence Mary likes Susan can be parsed as an S by combining the following subtrees from the corpus. (For an exact definition of subtree, see section 2.) 
s 

NP VP 

I\ 
.r hkcs 

NP 

Mary 
Susan 

s 

NP VP 

I /\ 
Mary I . T 

likes Susan 

But the same parse tree can also be derived 

or 

s 
NP VP 

s 

I\ 
V 

r 
Susan 

NP VP 
T 

Mary 
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I 
likes 

VP 

I\ 
I NP 

tikl.-s 

" NP 

I 
Susan 

Thus, a parse can have several derivations in­volving different subtrees. These derivations have different probabilities. Using the corpus as our stochastic grammar, we estimate the probability of substituting a certain subtree on a specific node as the probability of selecting this subtree among all subtrees in the corpus that could be substi­tuted on that node. The probability of a deriva­tion can be computed as the product of the prob­abilities of the subtrees that are combined. As an example, we calculate the probability of the last derivation. The first subtree S{NP, VP) occurs twice in the corpus among a total of 20 su btrees rooted with an S. Thus, its probability is 2/20. The subtree NP(Mary) occurs once among a to­tal of 4 subtrees that can be substituted on an NP, hence, its probability is 1/4. The probability of selecting the subtree VP(V{likes},NP} is 1/8, since there are 8 subtrees in the corpus rooted with a VP, among which this subtree occurs once. Finally, the probability of selecting NP(Susan) is equal to 1/4. The probability of the resulting derivation is then equal to 2/20 * 1/4 * 1/8 * 1/4 
= 1/1280. The next table shows the probabilities of the three derivations given above. 
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P{lst example) P{2nd example) P{3rd example) 
= 1/20 * 1/4 * 1/4 

1/20 * 1/4 * 1/2 
= 1/320 
= 1/160 
= 1/1280 = 2/20 * 1/4 * 1/8 * 1/4 

This example illustrates that a statistical lan­
guage model which defines probabilities over 
parses by taking into account only one derivation, 
does not accommodate all statistical properties of 
a language corpus. Instead, we define the prob­
ability of a parse as the sum of the probabilities 
of all its derivations .  Finally, the probability of a 
string is equal to the sum of the probabilities of 
all its parses. 

An important advantage of using a corpus 
for probability calculation, is that no training 
of parameters is needed, as is the case for other 
stochastic grammars (Jelinek et al. ,  1990; Pereira 
- Schabes, 1992; Schabes, 1992) . Secondly, since 
we take into account all derivations of a parse, 
no relationship that might possibly be of statis­
tical interest is ignored. Moreover, this approach 
does not suffer from a bias in favor of 'smaller' 
parse trees, as is the case with stochastic CFGs 
where derivations involving fewer rules, generat­
ing 'smaller' trees, are almost always favored re­
gardless of the training material (Magerman -
Marcus, 1991 ;  Briscoe - Carroll, 1993) . Finally, 
by using corpus subtrees directly as its structural 
units, DOP is largely independent of notation sys­
tems. 

We will show that conventional parsing tech­
niques can be applied to DOP. However, in order 
to find the most probable parse, a Viterbi-style 
algorithm does not seem feasible, since the most 
probable derivation does not necessarily produce 
the most probable parse. We will show that by us­
ing Monte Carlo techniques, the maximum proba­
bility parse can be estimated in polynomial time. 

In the following, we first outline the DOP 
model in a more mathematical fashion, and pro­
vide an account of Monte Carlo parsing. Finally, 
we report on some experiments with a Monte 
Carlo Chart parser on the Air Travel Information 
System (ATIS) corpus as analyzed in the Penn 
Treebank. 

2 The Data Oriented Pars­

ing Model 

A DOP model is characterized by a corpus of tree 
structures, together with a set of operations that 
combine subtrees from the corpus into new trees. 
In this section we explain more precisely what we 
mean by subtree, operations etc. ,  in order to ar­
rive at definitions of a parse and the probability 
of a parse with respect to a corpus. 

A subtree of a tree T is a  connected subgraph S of T such that for every node in S holds that 
if it has daughter nodes, then these are equal to 
the daughter nodes of the corresponding node in 
T. It is trivial to see that a subtree of a tree is 
also a tree. In the following example T1 and T2 

are s:ubtrees of T, whereas T3 isn't . 

'1' s '1'1 s 
� 

NP VP NP VP 

I �p John 

1 1 

'1'2 VP 

I\ 
r 

NP 

likes 

likes Mary 

'1'3 s 

� 
NP VP 

I I 
John NI 

V NP 

The definition above also includes subtrees con­
sisting of one node. Since such subtrees do not 
contribute to the parsing process, we exclude 
these pathological cases and consider only the 
set of subtrees consisting of more than one node. 
We shall use the following notation to indicate 
that a tree t is a subtree of a tree in a corpus C: ttC '=def 3T E C : t is a subtree of T, consisting 
of more than one node. 
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We will limit ourselves to the basic operation 
of substitution.  (Other possible operations which 
combine subtrees are left to future research.)  If t and u are trees, such that the leftmost non­terminal leaf of t is equal to the root of u, then t 
o u is the tree that results from substituting this 
non-terminal leaf in t by tree u. The partial func­
tion o is called substitution .  We will write ( tou) ov 
as touov, and in general ( . . .  ( (t1 ot2) ot3 )0  . . .  ) otn 
as t1 o t2 o t3 o . . .  o tn . 

Tree T is a parse of input string s with re­
spect to a corpus C, iff theyield of T is equal to 
s and there are subtrees t1 , . . .  , tn E C, such that 
T = t1 o . . .  o tn . This definition correctly includes 

. the trivial case of a subtree from the corpus whose 
yield is equal to the complete input string. 

A derivation of a parse T with respect to a 
corpus C is a tuple of subtrees < t1 , . . .  , tn > 
such that t1 , . . .  , tncC and t1 o . . .  o tn = T. 

Given a subtree t1 cC, a function root that 
yields the root of a tree, and a node labeled X, the 
conditional probability P(t = t1 I root(t) = X) 
denotes the probability that t1 is substituted on 
X. If root(t1 ) = X, this probability is 0. If root( t1 ) = X, this probability can be estimated 
as the ratio between the number of occurrences 
of t1 in C and the total number of occurrences of 
subtrees t' in C for which holds that root (tt) = 
X. Evidently, Li P( t = ti I root( t) = X) = 1 
holds. 

The probability of a derivation < tl ,  . . .  , tn > 
is equal to the probability that the subtrees 
t1 , . . .  , tn are combined. This probability can be 
computed as the product of the conditional prob­
abilities of the subtrees t1 ,  . . .  , tn . Let lnl(x) be 
the leftmost non-terminal leaf of tree x, then: 

P( < t1 , . . .  , tn >)  = P( t = t1 I root( t) = S) 
* IL=2 to n P(t = ti I root(t) 

= lnl(t1 o . . .  o ti- 1 )) 

The probability of a parse is equal to the prob­
ability that any of its derivations occurs. Since . 
the derivations are mutually exclusive, the prob­
ability of a parse is the sum of the probabilities of 
all its derivations. The conditional probability of 
a parse T given input string s ,  can be computed 
as the ratio between the probability_ of T and the 
sum of the probabilities of all parses of s .  

The probability of  a string is equal to  the prob­
ability that any of its parses occurs. Since the 
parses are mutually exclusive, the probability of 
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a string s can be computed as the sum of the 
probabilities of all its parses. It can be shown 
that Li P(si) = 1 holds. 

3 Monte Carlo Parsing 

It is easy to show that in DOP, an input string can 
be parsed with conventional parsing techniques, 
by applying subtrees instead of rules to the string 
(Bod, 1992) . Every subtree t can be seen as a pro­
duction rule root(t) � t, where the non-terminals 
of the yield of the right hand side constitute the 
symbols to which new rules/subtrees are applied . 
Given a cubic time parsing algorithm, the set of 
derivations of an input string, and hence the set 
of parses, can be calculated in cubic time. In or­
der to select the most probable parse, it is not 
efficient to compare all parses, since them can be 
exponentially many of them. Although Viterbi's 
algorithm enables us to derive the most probable 
derivation in cubic time (Viterbi, 1967; Fujisaki 
et al. ,  1989; Wright et al. ,  1991) ,  this algorithm 
does not seem feasible for DOP, since the most 
probable derivation does not necessarily produce 
the most probable parse. In DOP, a parse can 
be generated by exponentially many derivations. 
Thus, even for determining the probability of one 
parse, it is not efficient to add the probabilities of 
all derivations of that parse. 

It is an open question, whether there exists an 
adaptation of the Viterbi algorithm that selects 
the maximum probability parse in cubic time for 
DOP. In this paper, we pursue an alternative ap­
proach. In order to estimate the maximum proba­
bility parse efficiently, we will apply Monte Carlo 
techniques to the decoding problem. We intend to 
show that , with Monte Carlo, the maximum prob­
ability parse can be estimated as accurately as de­
sired, making its error arbitrarily small in polyno­
mial time. Moreover, Monte Carlo techniques can 
easily be incorporated into virtually any polyno­
mial time parsing algorithm. Thus, Monte Carlo 
parsing may also provide for stochastic CFGs an 
interesting alternative to Viterbi, which, in its 
current versions (Fujisaki et al. ,  1989; Jelinek et 
al. ,  1990; Wright et al. ,  1991) ,  is restricted to 
CFGs in Chomsky Normal Form. We will treat 
Monte Carlo parsing first of all in the context 
of the DOP model, since it is especially here that 
the number of derivations generating a single tree 
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becomes dramatically large. 
The esse:µce of Monte Carlo is very simple: it 

estimates q, probability distribution of events by 
taking random samples (Hammersley - Hand­
scomb, 1964) . The larger the samples we take, 
the higher the reliability. Since the events we are 
interested in are parses of a certain input string, 
we should randomly sample parses of that input 
string. The parse tree which is sampled most of­
ten is an estimation of the maximum probability 
parse. We. can estimate the maximum probabil­
ity parse as accurately as we want by choosing 
the number of randomly sampled parses as large 
as we want. The probability of a certain parse T given input string s can be estimated by di­
viding the number of occurrences of T by the 
total number of sampled parses N. According 
to the (Strong) Law of Large Numbers, the esti­
mated probability converges to the actual prob­
ability. In the limit of N going to infinity, the 
estimated probability equals the actual probabil­
ity: P(T I s) = #T / N. From a classical result 
of probability theory (Chebyshev's inequality) it 
follows that, independently of the distribution, 
the time· complexity of achieving a maximum es­
timation ·error e by means of random sampling, is 
equal to 'O(c2 ) .  

Let u s  now turn to the question of how to 
randomly sample a number of parses of an input 
string. The most straightforward way seems to be 
the following: first the set of parses of an input 
string is derived, yielding a shared parse forest. 
Next , random samples are taken from this forest, 
by randomly retrieving parses. Starting for in­
stance at. the S-node, a random expansion from 
the possible expansions is chosen at every node, 
taking into account the relative frequencies. The 
parse which is sampled most often is an estima­
tion of the maximum probability parse. Given a 
cubic time parsing algorithm and assuming that 
the construction of a parse forest and the retrieval 
and corn paring of parses can be done in cubic time 
(Leermakers, 1991) ,  the time complexity of this 
method is O(n3c2 ) for a string of length n and 
an estimation error e.  

Depending on the size and the redundancy of 
the corpu�, this method is not always the most ef­
ficient one. Instead of applying Monte Carlo tech­
niques after the parsing process, we might also 
incorporate them into the parsing process. This 
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second method consists of calculating a random 
subset of the parses. Instead of taking into ac­
count all candidates1 at every node in the parsing 
process, we take a random sample from the total 
number of candidates at every node. In this way, 
a set of parses is calculated which is smaller than 
the total set of parses of an input string. Repeat­
ing this process allows us to randomly generate as 
many parses of a string as desired. If no parses are 
found during a round, the samples from the can­
didates may be increased until at least one parse 
is generated. If, instead, for a new input string a 
large number of parses is found, the current value 
of the sample size may be decreased again, and 
so forth. In the worst case the sample size equals 
100% of the total number of candidates and no 
speedup is achieved. However, this can only hap­
pen with non-ambiguous grammars where every 
string has exactly one derivation. For an ambigu­
ous grammar, any ambiguous string can always 
be parsed by taking samples from the candidates 
smaller than the total number of candidates ( ex­
cept that taking a sample from 1 candidate must 
yield at least that candidate) . In our experi­
ments with the ATIS corpus (see next section) ,  
it turned out that taking maximally 5% of the 
candidate subtrees, sufficed to calculate at least 
one parse for the input string (though often more 
were found) . 

As to the time complexity of this second 
method, it might seem that calculating a sub­
set of exponentially many parses, will yield again 
exponentially many parses. And comparing ex­
ponentially many parses takes exponential time. 
Nevertheless, by taking the sample sizes relatively 
small, a tractable upper bound N can be defined, 
which, if exceeded by the number of parses gen­
erated sofar, serves as a stop condition in the re­
peated parsing process. Secondly, N can be made 
arbitrarily large, in order to make the estima­
tic;m error e arbitrarily small in, as we have seen, 
quadratic time. Hence, given a cubic time pars­
ing algorithm and assuming that the sample sizes 
can be made smaller than the total number of 
candidates but large enough to generate at least 
one parse (as is the case for redundant grammars 
like DOP),  the time complexity of this method 
is· O(n3c2 ) . Often it suffices to stop repeating 
the algorithm if the total number of parses ex-1 I.e. 'predictions' or 'proposed edges' ,  depending of the kind of parser used. 
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ceeds a pre-determined bound N. The most fre­
quently generated parse is then an estimation of 
the maximum probability parse. We shall see in 
the next section that for the ATIS corpus it suf­
ficed to limit the number of randomly calculated 
parses to 100, in order to get high parsing ac­
curacy. Though such a small sample may yield 
inaccurate probabilities for the single parses, it 
apparently suffices to determine which parse is 
the most probable one. 

Although the worst time complexity of this 
second method is equivalent to that of the first 
one, the actual time cost turns out to be much 
lower. This can be explained by the fact that in 
the second method only a small part of the ac­
tual grammar is used. Since arbitrary CFGs are 
parsable in I G I 2 time, parsing a string 100 times 
using 5% of the grammar tends to be more effi­
cient than parsing the same string only once using 
the whole grammar. Secondly, it turns out that 
the probability estimation of the second method 
also converges significantly faster. Thus, it seems 
that this method is especially apt to stochastic 
parsing with huge amounts of redundant data. 

It should be stressed that incorporating Monte 
Carlo techniques into a parsing algorithm is only 
feasible if the samples from the candidates can 
be made much smaller than the total number of 
candidates, but still large enough to generate at 
least one parse. Secondly, the demanded maxi­
mum error should not be too small, in order to 
keep the actual time cost to an acceptable de­
gree. For those interested in the Theory of Com­
putation: the algorithms which employ the Monte 
Carlo techniques described here, are probabilistic 
algorithms belonging to the class of Bounded er­
ror Probabilistic Polynomial time (BPP) algo­
rithms. BPP-problems are characterized as fol­
lows: it may take exponential time to solve them 
exactly, but there exists an estimation algorithm 
with a probability of error that becomes arbitrar­
ily small in polynomial time. 

4 Experiments 

In  order to  test the DOP-model, in  principle any 
annotated corpus can be used. This is one of 
the advantages of DOP: its independence of a no­
tation system. For our experiments2 , we used 
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the naturally occurring Air Travel Information 
System (ATIS) corpus (Hemphill et al. ,  1990) as 
analyzed in the Pennsylvania Treebank (Marcus, 
1991 ;  Santorini, 1991) .  This corpus is of inter­
est since it is used by the DARPA community to 
evaluate their gram.mars and speech systems. 

We used the standard method of randomly di­
viding the corpus into a 90% training set and a 
10% test set . The 675 trees from the training 
set were directly used as our stochastic grammar, 
from which the subtrees and their relative fre­
quencies were derived..., The 75 part-of-speech se­
quences from the test set served as input strings 
that were parsed with the training set using a 
Monte Carlo Chart parser (Mijnlief, 1993) . To 
establish the performance of the system, the pars­
ing results were then compared with the trees in 
the test set . (Note that the "correct" parse was 
decided beforehand, and not afterwards . )  

To measure accuracy, one often uses the no­
tion of bracketing accuracy, i.e. the percentage 
of brackets of the analyses that are not "cross­
ing" the bracketings in the Treebank (Black et 
al. ,  1991 ;  Harrison et al. ,  1991 ;  Pereira - Sch­
abes, 1992; Grishman et al. ,  1992; Schabes et al . ,  
1993) . We believe, however, that the notion of 
bracketing accuracy is too poor for measuring the 
performance of a parser. A test set can have a 
high bracketing accuracy, whereas the percentage 
of sentences in· which no crossing bracket is found (sentence accuracy) is extremely low. In (Schabes 
et al. ,  1993), it is shown that for sentences of 10 to 
20 words (taken from the Wall Street Journal cor­
pus) , a bracketing accuracy of 82.5% corresponds 
to a sentence accuracy of 30%, whereas for sen­
tences of 20 , to 30 words a bracketing accuracy 
of 71 .5% corresponds to a sentence accuracy of 
6.8%! We shall employ the even stronger notion 
of parsing accuracy, defined as the percentage of 
the test sentences for which the maximum prob­
ability parse is identical to the test set parse in 
the Treebank. It is one of the most essential features of the 
DOP approach, that arbitrarily large subtrees are 
taken into consideration. In order to test the use­
fulness ·of this feature, we performed different ex­
periments constraining the depth of the subtrees. 
The d�pth of a tree is defined as the length of its 
longest path. The following table shows the re­
sults of seven experiments. The accuracy refers to 

2Some of the experiments reported were published in (Bod, 1993). 
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the parsing accuracy at N = 100 sampled parses, and is rounded off to the nearest integer. 
I depth I accuracy I � 2  87% � 3  92% � 4  93% � 5  93% � 6  95% � 7  95% unbounded 96% 
Parsing accuracy for the ATIS corpus, at N = 100 

The table shows that there is a relatively rapid increase in parsing accuracy when enlarging the maximum depth of the subtrees to 3. The ac­curacy keeps increasing, at a slower rate, when the depth is enlarged further. The highest accu­racy is obtained by using all subtrees from the corpus: 72 out of the 75 sentences from the test set are parsed correctly. In the following figure, parsing accuracy is plotted against the number of randomly generated parses N for three of our experiments: the experiments where the depth of the subtrees is constrained to 2 and 3, and the experiment where the depth is unconstrained. 
) ()) r-------L----...1.-------..JL._ ___ ......, 

75 

25 

0 -------,-----�----.-----.....J 

25 50 

N 
75 

Parsing accuracy for the ATIS corpus, with depth � 2, with depth � 3 and with unbounded depth 

100 

It might also be interesting to look in detail at some parses derived with different constraints 
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on the depths of the subtrees. Consider the test sentence "Arrange the flight code of the flight from Denver to Dallas Worth in descending or­der" , which corresponds to the p-o-s sequence "* VB DT NN NN IN DT NN IN NP TO NP NP IN VBG NN" . 3 According to the Tree bank, this sentence has the following structure ( for a de­scription of the notation system see (Santorini, 1990, 1991) ) :  
S NP * 

VP VB Arrange 

NP NP .DT the 

NN flight 

NN code 

PP IN of 

NP NP DT the 

NN flight 

PP PP IN from 
NP NP Denver 

PP TO to 

NP NP Dallas 

NP Worth 

PP IN in 

NP VP VBG descending 

NN order 

Limiting the depth of the subtrees to 2, the fol­lowing maximum probability parse was estimated for this string ( where for reasons of readability the lexical items are added to the p-o-s tags) : 
S NP * 

VP VB Arrange 

NP NP DT the 

NN flight 

NN code 

PP IN of 

NP NP DT the 

NN flight 

PP PP IN from 

NP NP Denver 

PP TO to 

NP NP Dallas 

NP Worth 

PP IN in 

NP VP VBG descending 

NN order 

In this parse tree, we see that the preposi­tional phrase "in descending order" is incorrectly 
3Empty elements, like *, had to be treated as part-of-speech elements, in order to be able to use the training set 

directly as a grammar. 
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attached :to the NP · "the flight" instead of to the 
ve·ro "arrange"· .. This false attachment might be 
explained by the high relative frequencies of the 
following subtrees with depth 2 (that appear in 
structures of sentences like "Show me the trans­
portation from SFO to downtown San Francisco 
in August" , where the PP "in August" is attached 
to the NP "the transportation" , and not to the 
verb "show" ) .  

NP NP 
pp 
PP IN 

NP 

NP NP 
pp pp 

pp 
PP IN 

NP 

Only if the maximum depth of the subtrees 
was enlarged to 4, subtrees like the following 
could be sampled, which led to the estimation 
of the correct parse tree. 

VP VB 
NP NP 

pp 
pp IN 

NP VP VBG 
NN 

It is interesting to note that this su btree oc­
curs only once in the corpus. Nevertheless, it 
induces the correct parsing of the test sentence. 
This seems to contradict the observation that 
probabilities based on sparse data are not reli­
able (Gale - Church, 1990; Magerman - Mar­
cus, 1991 ) .  Since many large subtrees are once­
occurring events (hapaxes) ,  there seems to be a 
preference in DOP for an occurence-based ap­
proach if enough context is provided: large sub­
trees, even if they occur once, tend to contribute 
to the generation of the correct parse, since they 
provide much contextual information. Although 
these subtrees have low probabilities, they tend 
to induce the correct parse because fewer subtrees 
are needed to construct a derivation, and there­
fore the probability of such a derivation tends to 
be higher than a derivation constructed by many 
small highly frequent subtrees. 

Additional experiments seemed to confirm this 
hypothesis. Throwing away all hapaxes, yielded 
an accuracy of 92% ( without constraints on the 
depth of the subtrees and for N = 100) , which is 
� d_ecrease of 4 % . . Distinguishing between small 
and large hapaxes, showed that the accuracy was 
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not affected by filtering the subtrees from hapaxes 
smaller than depth 2 ( although the convergence 
seemed to be slightly faster) . Eliminating the ha­
paxes larger than depth 3, however, decreased the 
accuracy. Thus, statistical reliability seems only 
to be relevant if not enough contextual informa­
tion is available. In such a case, best guesses must 
be as reliable as possible. When much struc­
tural/ contextual information is known, on the 
other hand, there tends to be only one choice. 
This seems to correspond to the fact that small 
parts of sentences tend to have many more real 
structural ambiguities (since not enough informa­
tion is known) than longer subsentences or whole 
sentences. 

Given the high accuracy achieved by the ex­
periments, we might conclude that the ATIS cor­
pus is a relatively large corpus for its small do­
main, where almost all relevant constructions oc­
cur. It seemed interesting to know how much the 
accuracy depends on the size of the corpus. For 
studying this question, we performed additional 
experiments with different corpus sizes. Start­
ing with a corpus of only 50 parse trees (ran­
domly chosen from the initial training corpus of 
675 trees) , we increased its size with intervals of 
50. As our test set , we took the same 75 p-o-s se­
quences as used in the previous experiments. In 
the next figure the parsing accuracy, for N = 100, 
is plotted against the corpu� size, using all corpus 
subtrees. 
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The figure shows the increase in parsing accu­
racy. For a corpus size of 450 trees, the accuracy 
reaches already 88%. After this , the growth de­
creases , but the accuracy is still growing at corpus 
size 675 . Thus, we might expect an even higher 
accuracy if the corpus is further enlarged. 

Finally, it might be interesting to compare our 
results with those of others. In (Pereira - Sch­
abes, 1992) ,  90.36% bracketing accuracy was re­
ported using a stochastic CFG trained on brack­
etings from the ATIS corpus. As said above, the 
notion of bracketing accuracy is much poorer than 
that of parsing accuracy. Thus, our pilot experi­
ment suggests that our model has better perfor­
mance than a stochastic CFG. Some work that 
achieved high parsing accuracy, though with dif­
ferent test data, are the parsers Pearl and Picky 
of (Magerman - Marcus, 1991) and (Magerman 
- Weir, 1992) .  In their work, a stochastic CFG is 
combined with trigram statistics, yielding about 
90% parsing accuracy with word sequences as in­
put strings. We do not yet know what accuracy 
is achieved if DOP is directly tested on word se­
quences, instead of on p-o-s sequences. It is likely, 
that larger corpora are needed for this task. 

5 Conclusions 

Although a Viterbi-style algorithm provides a 
tool to derive in cubic time the most probable 
derivation generated by a stochastic context free 
grammar, this algorithm does not seem feasible 
for stochastic language models that allow a parse 
tree to be generated by different derivations (like 
DOP or SLTAG) ,  since the most probable deriva-
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tion does not necessarily produce the most prob­
able parse. 

We showed that, by incorporating Monte 
Carlo techniques into a polynomial parsing algo­
rithm, the most probable parse can be estimated 
as accurately as desired, making its error arbi­
trarily small in polynomial time. For stochastic 
grammars that are parsable in cubic time, the 
time complexity of estimating the most probable 
parse with Monte Carlo turns out to be O(n3c2 ) ,  

for a string of length n and an estimation error c .  
We suggested that Monte Carlo parsing may also 
provide for stochastic CFGs an interesting alter­
native to Viterbi, which, in its current versions, 
is restricted to CFGs in Chomsky Normal Form. 
Nevertheless, Monte Carlo parsing seems espe­
cially apt to stochastic parsing with huge amounts 
of redundant data, where one parse is generated 
by exponentially many (different) derivations. 

A Monte Carlo Chart parser was used to test 
the DOP model on a set of hand-parsed strings 
from the ATIS corpus. It sufficed to limit the 
number of randomly calculated parses to 100, 
in order to get satisfying convergence with high 
parsing accuracy. It turned out that parsing ac­
curacy improved if larger subtrees were used. Our 
experiments suggest that statistical reliability is 
only relevant if not enough structural/ contextual 
information is available. 
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