
Generalized LR parsing and attribute evaluation

Paul Oude Luttighuis and Klaas Sikkel

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE, Enschede, the Netherlands

email: { oudelutt I s ikkel }©cs . utwente . nl

Abstract

This paper presents a thorough discussion of generalized LR parsing with simultaneous at­tribute evaluation. Nondeterministic parsers and combined parser/evaluators are presented for the LL(O) , LR(O) , and SKLR(O) strategies. SKLR(O) parsing occurs as an intermediate .strategy between the first two. Particularly in the context of simultaneous attribute evaluation, generalized
SKLR(O) parsing is a sensible alternative for generalized LR(O) parsing.

1 i Introduction

Natural language theory and programming lan­guage theory have a common foundation in formal language theory. In particular, context-free gram­mars find broad application in both fields. Yet, whereas programming language theory allows for restriction of the class of applicable grammars in order to obtain more efficient parsers, natural language theory typicaly demands parsing algo­rithms for general context-free grammars. Semantic issues are generally handled by dif­ferent . formalisms in both theories. While at­tribute grammars (AGs) are widely used in pro­gramming language circles, natural language se­mantics are dealt with by e.g. feature-structure grammars. A well-known problem in program­ming language theory is the evaluation of the at­tributes of an AG during parsing. Attribute eval­uation during parsing allows for refraining from storing the parse tree and can therefore be space efficient. Moreover, attribute values, which have been computed during parsing, .may be used to control the parser, for instance by (partly) resolv­ing parsing conflicts. This paper reports on such attribute evalua­tion during parsing. The parsing algorithm used, however, is a typical natural language parsing algorithm: generalized LR parsing, also called Tomita's algorithm. By combining Tomita's al­gorithm with simultaneous attribute evaluation,

programming language theory may benefit from the virtues of Tomita's algorithm, while natural language theory may benefit from the efficient techniques for simultaneous attribute evaluation, found in programming language theory. Tomita's algorithm provides . a clever deter­ministic implementation of the nondeterminism occurring in parsing non-LR grammars in an LR fashion. Attribute evaluation during determin­istic LR parsing is a non-trivial problem and has raised considerable interest in literature on programming language implementation. On the other hand, attribute evaluation during determin­istic LL parsing is simple, provided ' we restrict ourselves to the use of L-attributed AGs only, which is what we will do in the entire paper. L­attributed AGs are such that dependencies be­tween attribute values do not flow but from left to right in the parse tree. Because of this observation, we structured our paper as follows. We start with ' discussing non­deterministic LL parsing. By means of an inter­mediate step (yielding a technique called SKLR parsing) , this is transformed into LR parsing. Then, the nondeterministic LL parser is enhanced with simultaneous attribute evaluation and the same transformation steps are used to obtain at­tribute evaluation during nondeterministic LR parsing. The most severe difficulties occur in the first transformation step. The following principles characterize our dis-
219

220

cussion.
• Generality. No determinism is required be­forehand.
• Finiteness. Except for the attribute do­mains, the data and control structures of our algorithms must be finite.
• Static evaluation. There must be no need at all to check at evaluation time whether an attribute instance has been evaluated yet. An attribute instance must be evaluated at the moment the parser enters the state with which the instance is associated.

Within the bounds of these principles, we push the combination of attribute evaluation and pars­ing to its very limits. Efficiency is not our first concern. We refrain from using dynamic evalu­ation techniques, by which the evaluation of at­tribute values can be postponed. Efficiency con­siderations may afterwards be used to obtain ef­ficient implementations.
2 Context-free grammars

and attribute grammars

We assume that the reader is familiar with context-free grammars (CFGs). The CFGs in this paper always have a production of the form S -► #X$ such that S does not occur in any . other production. Left-recursive CFGs have a nonterminal A and a string a of grammar sym­bols for which A ⇒;t Aa. Hidden-left-recursive CFGs have a non terminal A and a strings a, /3 of grammar symbols for which A ⇒;t aA/3 and a ⇒;t c. We will not present a formal definition of at­tribute grammars (AGs). An AG is based on a CFG. Every grammar symbol carries a series of attributes of a certain type. In a parse tree, there­fore, instances of these attributes occur. The at­tribute instances in one production in the parse tree are functionally dependent on one another. In the AG, this dependence is specified by a set of semantic rules , associated with that produc­tion. The function of an attribute evaluator is to assign values to the attribute instances according to these semantic functions.

0UDE LUTTIGHUIS - SIKKEL

We distinguish two kinds of attributes: syn­thesized and inherited ones. Synthesized at­tributes of a symbol depend on other attributes in the production below that symbol, whereas inher­ited attributes depend on attributes in the pro­duction above it. In order to simplify the discussion, we use a special form of AGs, caled untyped L-attributed A Gs, or ULA Gs. In fact, an ULAG is an AG,
• which is L-attributed. This means that in­herited attribute occurrences of right-hand side symbols cannot depend on synthesized attribute occurrences of right-hand symbols to their right.
• in which all attributes have the same type;
• in which every symbol has exactly one inherited and exactly one synthesized at­tribute.
• in which any attribute occurrence depends on all used attribute occurrences to its left in that production.
The first restriction is the most severe of all. The other three are easily dealt with by simple rewrites of the AG.

3 LL(O) and LR(O) parsers

This section present a nondeterministic LL(0) parser and transform it, via an SKLR(0) parser into an' LR(0) parser.
3 . 1 · L-parsers

This subsection gives a short description of the parser model, called L-parser, used in this paper, without presenting a formal definition. The core of an L-parser is a transition relation between instantaneous descriptions. Such an in­stantaneous description consists of a stack con­tents, which is a string of states, and a (remain­ing) input, which is a string of grammar symbols. Operation starts with a special stack contents, consisting of a special state, the initial state and the input string. This instantaneous description may be turned into other ones by means of the transition relation. Operation stops if the top of the stack is another special state, the final state.

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 221

As opposed to more common parser models,
an L-parser is allowed to pre-append symbols to
the remaining input during reduction steps. Our
reduction steps are such that they pre-append the
lhs of the associated production to the input, in­
stead of shifting it immediately. This shift is per­
formed by a compulsory subsequent shift step.
Advantages are that

• It simplifies the description of parsers.

• It facilitates the definition of attribute eval­
uation during parsing.

• It enables parsing of arbitrary sentential
forms, instead of just terminal strings.

• It nicely generalizes to parsers for context­
sensitive grammars.

3 .2 Dotted rules

LR parsing was introduced by Knuth (1965) . Al­
though LL and LR parsing can be elegantly de­
scribed as being each other's duals (Sippu and
Soisalon-Soininen, 1990), they can both be seen

as (implicitly) performing a depth-first left-to­
right walk over the (virtual) parse tree.

Positions in this walk are indicated by dotted rules . In essence, a dotted rule is a production to­
gether with some position in its rhs. This position
is rather between symbols that at them. A dotted
rule [A ---+ X1 . . . Xi • Xi+i . . . Xnl , where n 2'.: 0
and O � i � n , indicates that the parser's cur­
rent position during the tree walk is in an appli­
cation of A ---+ X1 . . . Xn at the position between
Xi and Xi+1 . Dotted rules of the form [A ---+ •a]
are called starting dotted rules, others are called proper dotted rules.

During a tree walk, three kinds of steps oc­
cur: production steps, shift steps, and reduction
steps. Production steps are steps down in the
parse tree. They always leave from a dotted rule
of the form [A ---+ a1 • Ba2] and arrive at a dot­
ted rule of the form [B ---+ •,BJ . Shift steps are
steps to the right, leaving from a dotted rule of
the form [A ---+ a1 • X a2] and arriving at one of
the form [A ---+ a1X • a2) . Finally, reduction-shift
steps are steps up in the parse tree and they leave
from a dotted rule of the form [B ---+ ,B•] to arrive
at one of the form [A � a1B • a1] . See Figure 1 .

Figure 1 : Production, shift , and reduction-shift steps in a parse tree.

3 .3 LL(O) parsers

Dotted rules are the states of our LL(O) parsers.
The initial state is [S ---+ # • X$] , the final one
[S ---+ #X$•] . At any moment, the LL(O) parser
may perform

• a production step. In this case, the current
state must be of the form [A ' -+ a1 • Ba2] .
Any dotted rule of the form [B � •,B] , can
be the next current state, and hence be

pushed onto the stack. The remaining input
is not changed;

• a shift step, in which case the current state
must be of the form [A ---+ a1 • X a2] and
the remaining input must start with an X.
The new current state is [A ---+ a1X • a2]
and is pushed onto the stack. The X lead­
ing the remaining input is removed;

222

• a red.tiction-shift step. In this case,
the current state must be of the form
[A ...:..+ X1 . . . Xn•] . Now, by the nature of
the algorithm, the topmost n + 2 elements
of the stack1 are

[B � /31 • A/32] [A � •X1 . . . Xn]
. . . [A � X1 . . • Xn•]

The topmost n+ 1 of these are popped. A is
pre-appended to the input . Finally, a shift
step is performed.

Nondeterminism only occurs in two cases.

• If the current state is of the form
[A � a1 • Ba2] and there is more than one
rule with B at its lhs, different production
steps are possible. This is called a produce­produce conflict.

• If the current state is of the form
[A � a1 • Ba2] , both a shift step and at
least one production step is possible, pro­
vided the remaining input is headed by B.
This is called a produce-shift conflict.

3.4 SKLR(O) parsers
For most CFGs the LL(O) parser is very nondeter­
ministic. As soon as a nonterminal occurs as the
lhs of more than one production, nondeterminism

Uniting states is a technique, taken from LR
parsing, for increasing determinism. The trans­
formation from LL to LR parsing can be seen to
consist of two subsequent steps, which we will call production step elimination and determinization.

A glance at the LL(O) parser shows that non­
determinism occurs at production steps. The first
transformation step, production step elimination,
consists in eliminating explicit production steps
by uniting those dotted rules into one state that
are interrelated by such a step.

Hence, in singleton-kernel LR(O) parsing, or SKLR(O) parsing, states are sets of dotted rules.
Every state contains one proper dotted rule, its kernel. The other dotted rules in a state are those
that can be obtained from the kernel by means of
one or more production steps.

For an SKLR(O) parser, being in some state
implies that the parser is, in the virtual parse tree, simultaneously at all positions that are indicated

0UDE LUTTIGHUIS � SIKKEL

by a sequence of dotted rules in this state, that
starts with the kernel and of which every follow­
ing dotted rule can be reached from the preceding
one by means of a production step.

Let us discuss some differences with LL(O)
parsers.

• First of all, there are no production steps
here. This is the very essence of our first
transformation step. A sequence of consec­
utive production steps is made at once upon
entering a new current state.

• Therefore, states changed from being dot­
ted rules to sets of dotted rules.

• A reduction step involves popping n ele­
ments from the stack, rather than n + 1 ,
because a production step does not cause a
push any more.

Nondeterminism occurs in an SKLR(O) parser
in the following cases .

• If some state contains two different dot­
ted rules of the form [A � a1 • X a2] and [B � /31 • X /32] , a shift step leaves the
next current state not uniquely determined.
This is a shift-shift conflict,

• If some state contains a dotted rule of the
form [A � a • X /3] and a dotted rule of the
form [A � a•] , so that both a shift and a
reduction step are possible (a shift-reduce conflict) ,

• If some state contains more than one dot­
ted rule of the form [A � a•] , so that more
than one different reduction step is possible
(a reduce-reduce conflict).

As opposed to the LL(O) parser, the SKLR(O)
parser applies to at least some left-recursive
grammars. Though nondeterministic, SKLR(O)
parsers are terminating for a reasonable class of
left-recursive CFGs. An advantage of SKLR(O)
parsers over LR(O) parsers is that the parsing ta­
bles are more space efficient, in the worst case.
Any SKLR(O) parser will have a number of states
that equals the sum of the lengths of the rhss.
However, SKLR(O) parsers are more nondeter­
ministic than LR(O) parsers. 1 When writing down stack contents as a string, the top will be at this string's right.

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 223

3.5 LR(O) parsers

As mentioned, three kinds of nondeterminism oc­cur in SKLR(O) parsers. The second transforma­tion step, determinization, completely abolis�es the shift-shift conflicts. Wherever such a conflict may occur, all possible next current states are taken together to form a new state. So, states in LR(O) parsers will be unions of SKLR(O) parser states. Unfortunately, shift-reduce and reduce� reduce conflicts remain, and generally even grow in number. Hence, in LR(O) parsers,
• states are unions of SKLR(O) states, and
• there are no shift-shift conflicts.
Nondeterminism occurs in LR(O) parsers only as shift-reduce or reduce-reduce conflicts.

4 Extending parsers with

attribute evaluation

In this section, we add attribute evaluation to the LL(O) parser and present transformations of this attributed parser, via an attributed SKLR(O) parser to an attributed LR(O) parser. It appears that production step elimination causes problems related to attribute evaluation. Remember that the discussion is restricted to ULAGs.
4. 1 L-parser/evaluators

This · subsection presents L-parser/evaluators. They form the basis for the parser/evaluators of this section. When attribute evaluation is performed dur­ing parsing and the parse tree should not be stored, entirely nor partially, the attribute val­ues should be calculated at the moment that the parser, during its walk through the virtual parse tree is at the corresponding node. The attribute valu�s are kept within the states on the stack. First of all, we must capture the fact that the lexical analyzer yields, instead of a string of al­phabet symbols, a string of pairs, each pair con­sisting of a symbol and a synthesized attribute value associated with the symbol. This also en­ables us to pre-append the lhs of a production, after a reduction step, to the remaining input; together with its synthesized attribute value.

Also, we have to be careful with the defini­tion of the states of a parser/evaluator. In some way, the attribute values must be attached to the states. However, at parser/evaluator-generation time attribute values are not known yet . They ' are calculated at run time. Therefore, we make a distinction between static and dynamic states. Dynamic states are those entities that occur on the stack during an actual run of the parser/eval­uator. Static states underlie dynamic states. Static states are constructed at parser/ evaluator­generation time. Obviously, the only part of a dynamic state that cannot be calculated at parser/ evaluator-generation time concerns the ac­tual attribute values.
4.2 LL(O) parser/ evaluators

This subsection introduces the LL(O) parser/eval­uator. Within states of the form [A -+ a1 • X a2] , the value of the inherited attribute occurrence of X is kept. Within states of the form [A -+ a1 X • a2] , the value of the synthesized attribute occurrence of X is kept. Notice that in most states, being those that have at least one symbol (say Y) fol­lowing and one symbol (say X) preceding the dot , carry a value of the inherited attribute occurrence of Y as well as the value of the synthesized one of X. Yet, the synthesized attribute occurrence of X is evaluated earlier than the inherited one of Y. Now let us consider the three kinds of steps ' of the LL(O) parser.
• Consider the production steps. A new state of the form [B -+ •.B] is pushed. If ,B -I c, the inherited attribute value of the first symbol of ,B, say X, must be calculated. By the L-attributedness of the AG, it can only depend on the inherited attribute oc­currence of B, of which the value can be found in the state [A -+ a1 • Ba2] , below the current one on the stack.
• Consider the shift steps. A new state of the form [A -+ X1 . . . XnX • a] is pushed. We have two cases.

- If a -:j; c, this state must contain the synthesized attribute value of X and the inherited attribute value of

224
the first symbol of a, say Y. The synthesized attribute value of X is copied from the remaining input. It has been put there by the lexical an­alyzer or by the preceding reduction action. The inherited attribute value of Y must be calculated. Because of the L-attributedness of the AG, it only depends on the synthesized attribute occurrences of X1 , . . . , Xn , X and on . the inherited attribute occurrence of A. The synthesized attribute value of X is taken from the stack. The oth­ers can be found at a distance from the stack's top that equals the position number of their corresponding symbol in the string Xn . . . X1A.

- If a = c:, it suffices to copy the synthe­sized attribute value from the remain­ing input .
• Consider a reduction step with A � X1 . . . Xn as the production involved. No new states are pushed. However, A is pre-appended to the remaining input. It must be accompanied by its synthesized at­tribute value. This value is calculated by using the values of the synthesized attribute occurrences of X1 , . . . , Xn and the inher­ited attribute of A. These can be found at a distance from the stack's top that equals the position number of their corresponding symbol in the string Xn . . . X1A. Also, a reduction step is only made if the semantic condition associated with the production evaluates to TRUE.
A dynamic state must contain an inherited and a synthesized attribute value. The function needed to calculate the inherited attribute value {rom another one is determined by the dotted rule it�e.lf. This is not the case for the synthesized att,ribute since its corresponding function is de­termined by the production applied beneath the dotted rule's production. Now, suppose we have the dotted rule [A � X1 . . . Xm • Y1 . . . Yn] as the state's core. If m > 0, the synthesized attribute value of Xm is simply copied into the synthesized attribute 'slot ' of the state. If n > 0, we must cal­culate the inherited attribute value of Y1 , which

0UDE LUTTIGHUIS - SIKKEL

depends on m + 1 other values, being the inher­ited attribute value of A and the m synthesized ones of X1 , . . . , Xm . If n = 0, we do not have to calculate an inherited attribute value. A static state in our LL(0) parser/evaluator is a dotted rule, extended with the function that cal­culates the inherited attribute of this dotted rule. This is called an extended dotted rule. An ex­tended dotted rule contains a string of functions2 instead of just one. This is to prepare for future transformations. Extended dotted r·ules are de­noted by [A � a • ,B lcp] . A static attributed LL(0) state is an extended dotted rule. A dynamic attributed LL(0) state is a triple consisting of the associated static state, and the associated synthesized and inherited at� tribute value, respectively. An LL(0) parser/evaluator is as (non)deterministic as its underlying LL(0) parser.
4.3 SKLR(O) parser/ evaluators

This subsection will present SKLR(0) parser/evaluators and the problems involved in their definition. Basically, two main techniques are used. First, we use string rewrite systems in order to capture semantic knowledge of the semantic functions. We need this knowledge in order to keep our states finite, but they also help decreasing nondeterminism. Second, the problem of how to address the proper inherited attribute value in a state is solved by including a kind of place marker in the dynamic states.
4.3.1 Production step elimination

Let us first consider which attribute values are as­sociated with an SKLR(0) state. First of all, we have the inherited and synthesized attribute value of the kernel of the state. Also, we have the in­herited attributes of the other dotted rules. They have no synthesized attributes because they are starting dotted rules. So, every SKLR(0) state contains exactly one synthesized _attribute value, but generally more than one inherited attribute value. Hence, in order to extract an inherited at­tribute value from a state, one needs more argu­ments than just the state itself. A first guess, of course, is that the additional argument should be 2Concatenation is this string denotes function composition.

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 225

the dotted rule with which the intended value is
associated. Unfortunately, this has two problems.

• Inherited attribute values (of a nontermi­
nal A) are needed only when a shift or
reduction-shift step is made according to a
production that has A as its lhs. Therefore,
at the moment of extracting the value, the
only information available is the symbol im­
mediately following the dot in the intended
dotted rule (being A) , and not the entire
dotted rule. In general, the same symbol
may immediately follow the dot in more
than one dotted rule in one state.

• Generally, even the entire dotted rule is not
sufficient to uniquely identify an inherited
attribute value. More than one inherited
attribute value may be associated with the
same dotted rule in the same state.

In an elegant definition, a static attributed
SKLR(O) state would be a set of extended dot­
ted rules, being the closure, with respect to some
relation, of some kernel element. A first concern
is whether the function, kept within the extended
dotted rule, should denote the function needed to
calculate the associated inherited attribute value
from the one immediately preceding it (with re­
spect to that relation) , or the function needed to
calculate the associated inherited attribute value
from the inherited attribute value of the kernel.
In this last case, we have a string of functions,
which denotes composed functions, inside the ex­
tended dotted rule. We have decided for the sec­
ond alternative.

Unfortunately, such a definition yields static
states with infinitely many extended dotted rules
in case of left-recursion. A partial solution to this
problem may be obtained as follows.

In most of attribute grammar theory, the se­
mantics of the semantic functions is not taken
into account. Only attribute dependencies are
important. Evaluator implementation is based on
the a priori availability of implementations of the
semantic functions. If we persist in this princi­
ple here, we cannot but forbid ULAGs with left­
recursive underlying CFGs. However, being able
to handle left-recursive grammars is a major ad­
van�age of LR parsing over LL parsing. It is not
desirable to let the addition of simultaneous at­
trf�ute evaluation nullify this. So, we are forced

to pay attention to the semantics of the semantic
functions.

There are many formalisms by which we might
do this. Without indulging to elaborate discus­
sions of this area of computer science, we present
one solution, which enables to handle at least the
most practical cases. This solution uses string
rewrite systems.

4.3.2 String rewrite systems

A string rewrite system is a special kind of rewrite system. A (general) rewrite system contains an
arbitrary set of objects and a binary relation =>
on this set. A rewrite step transforms an object
into another one according to a rewrite rule. An
object that can be obtained from another object
by a (possibly empty) sequence of rewrite steps,
respectively one rewrite step, is called a descen­dant, respectively a direct descendant, of that ob­
ject. An object is called irreducible if no rewrite
rule can be applied to it any more. If an object
can be rewritten into an irreducible object, this
irreducible object is called a normal form of the
original one. If no infinite sequences of rewrite
steps can occur, the system is called terminating.
The system is called confluent if any two differ­
ent descendants of the same object have a com­
mon descendant . The system is called complete
if it is both terminating and confluent. Complete
rewrite systems implement a total function yield­
ing the (unique) normal form for any given object.

A string rewrite system (or semi- Thue system,
or STS, shortly) is a special kind of rewrite sys­
tem. The objects are strings over some set of
symbols. A rewrite rule here is a pair of strings.
An application of such a rewrite rule to a string
consists in substituting a substring, that matches
the lhs of the rule, by the rhs of the rule. A finite
STS has finitely many string rewrite rules.

Now, STSs are used in the following way.
When constructing a static state, which consists
of extended dotted rules, the function strings in
these extended dotted rules are first subjected to
the STS. Using STSs is only a partial solution to
the problems mentioned: particular ULAGs will
still have to be rejected, because they yield infi­
nite static states even after the use of the STS.

226

4.3-.3 · . High-lig·hts ·, , 7;· • • .:· t :

As mentioned earlier, we also need to include, in our dynamic states, an · indication that allows us to extract the proper inherited attribute value from it , the next time such a value is requested. For sake of brevity, the complicated discussion of these high-lights is omitted. We restrict ourselves to mentioning that, in principle , extended dotted rules suffice as high-lights. However , more sophis­tication, that is , using so-called extended symbols or even extended sets as high-lights decreases the amount of nondeterminism. Also , high-lights ap­pear to have syntactical consequences: a particu­lar high-light in a dynamic state res�ricts the set of possible steps. For instance, a certain high­light may forbid a shift of some symbol a, even when the underlying static state allows such a shift step. Unlike LL(O) parser/evaluators, SKLR(O) parser/evaluators may show more nondetermin­ism than their underlying parser. One can distin­guish syntactic conflicts form semantic conflicts. Semantic conflicts may occur when high-lights are changed and the next high-light is not uniquely determined .
4.4 LR(O) parser/evaluators

States in LR(O) parsers are unions of SKLR(O) parser states. Analogously, static attributed
LR(O) states are unions of static attributed
SKLR(O) states . This causes a technical prob­lem; . . because the static states may now con­tain multiple kernel elements. The solution in­volves the introduction of so-called selection func­tions . These form the most important differ­ence between LR(O) and SKLR(O) parser/eval­uators. However , we will refrain from discussing this problem here.
4.5 Examples of practical string

rewrite systems

In this subsection, we present some examples of STSs that are applicable to frequently appearing semantic functions in attribute grammars. First of all, copy rules often occur. A copy rule occurs when an attribute evaluation function is the identity function. For the identity function, say I , we have a simple rule.

0UDE LUTTIGHUIS - SIKKEL

I -+ c
In other words, the identity function can simply be removed from any string of functions . . A second class of functions suitable for rewrit­ing is formed by the constant functions. Let c : A -+ B be any constant function and f : B -+ B any function. Then, the rule

cf -+ C

can be added . It expresses that any function ap­plied before the constant function is superfluous. Finally, we notice that another rule can be used when f is , for instance, the logical negation, or a function, taking and yielding pairs, that ex­changes the pair's first and second constituent. This rule is

5 Implementing· parsers

In this section, we discuss implementation issues of the nondeterministic parsers as presented in Section 3 . A main problem here - is that the con­ceptual nondeterminism must be implemented on a deterministic machine. k first remark is that all parsers discussed here can be made table-driven in the usual way.
5 . 1 LL(O) parsers

In LL(O) parsers, a production step is performed as follows. Conceptually, the parser initiates a new parser for every possible new state to be pushed. A shift step is performed as follows. Suppose the current state is [A -+ a1 • X a2] and Y heads the remaining input. If X = Y, [A -+ a1X • a2] is pushed and Y is removed from the remaining input . If X f= Y, no shift step can be performed. A reduction step is performed as follows. If the current state is not of the form [A -+ X1 . . . Xn•] , no reduction step can be performed. If it is , n + l elements are popped from the stack and A is pre­appended to the input. After that, a compulsory shift step follows. If no production step, as well as no shift nor reduction step is possible, the parser dies. If more than one kind of step is possible, new parsers are initiated for both alternatives . In LL(O) parsers

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 227

this can occur with production and shift steps (a
produce-shift conflict) . If a reduction-shift step is
possible, no other steps are.

5.2 SKLR(O) parsers

In SKLR(O) parsers, a shift step is performed as
follows. Suppose X heads the remaining input.
Then, the set of all dotted rules in the current
state of the form [A --+ a1 • X a2] is determined.
For every such dotted rule, a new parser is initi­
ated, which pushes the state with [A --+ a1X • a2]
as its kernel.

A reduction step is performed as follows.
The set of all dotted rules of the form
[A --+ X1 . . . Xn•] in the current state is deter­
mined. For every such dotted rule, a new parser is
initiated, ·which pops n elements from the stack. If no shift nor reduction step is possible, the
parser dies. If both shift and reduction steps are
possible, new parsers are started for both.

5 .3 LR(O) parsers

In LR(O) parsers, a shift step is performed as
follows. Suppose X heads the remaining input.
Then, the set of all dotted rules in the current
state of the form [A --+ a1 · • X a2] is determined. If this set is empty, the parser dies. If not, a new
state is pushed with this set as its kernel set.

Reduction steps are performed as in SKLR(O)
parsers. If no shift nor reduction step is possible,
the parser dies. If both shift and reduction steps
are possible, new parsers are started for both.

· 5 .4 Handling nondeterminism: a
simple approach

Our parsers contain a possibly huge amount of
nondeterminism. Because our strategy is to try
out all possibilities in case of nondeterminism, we
must have a way to implement this. A simple ap­
proach is the following: a parser first determines
which production, shift and reduction steps are
possible. Suppose there are n different possible
next steps. Then the parser copies its instan­
taneous description n times, yielding one copy
for every possible step. Then, for every copy, it
performs the associated · step and initiates a new
parser to continue parsing with the resulting new

instantaneous description. After that , it dies. If
n = 0, the parser dies without initiating new ones.

A parser stops (successfully) when its instan­
taneous description has the final state qp as its
current state.

For the time being, a sequential implementa­
tion is intended. Words like 'parallelism', 'syn­
chronization' , and different 'parsers' are used in
a conceptual sense.

5.5 Sharing instantaneous descrip-
tions

There is a lot of unnecessary copying of instanta­
neous descriptions in the simple approach. Ma­
jor portions of the copies will coincide. Sharing
these coinciding parts may substantially increase
efficiency.

A parser can be seen to move on a tape that
is formed by the stack and the remaining input.
Upon a nondeterministic choice, originally, the
tape was copied several times before the step.
However, major parts of the tape are the same for
all copies. These parts, a bottom part (prefix) of
the stack and a suffix of the remaining input can
be shared by all alternatives. This yields a data
structure which we will call a graph-structured in­stantaneous description.

Basically, this is a directed acyclic graph, with
one source (the bottom of the stack) and one sink
(the end of the input) . It is maintained in such a
way, that every path from the source to the sink
corresponds to a single instantaneous description.
On every such path, there is one current position,
which marks the border between the stack and
the input of the corresponding. instantaneous de­
scription. Obviously, maximal sharing is reached when no parent has different but equally labeled
children (at the stack side) and no child has dif­
ferent but equally labeled parents (at the input
side). This technique will save space, and may
cost time (because of the additional problems of
manipulating shared data) , but it may save much
more (because instantaneous descriptions will not
be exhaustively copied) .

Though this graph-structured instantaneous
description may seem symmetric, there is an
asymmetry to be found in that the stack part of
an instantaneous description is both growing and
shrinking during a run, whereas the input part
only shrinks (after initialization) . Therefore, re-

228
maining inputs of two different parsers will always be such, that one is a suffix of another. So, · at the remaining-input side, it is very easily assured that no parser destroys other parsers' data. This is dif­ferent at the stack side. There, a reduction step, causing stack elements to be popped, endangers other parsers' data. In this case, the instanta­neous description should be partially copied (that is , the endangered part only) before the step is ac­tually performed. The partial copy is connected with the original at the border of the endangered part . There is no reason, other than for efficiency, to decrease the amount of sharing used. One might even refrain from sharing data at one of both sides of the shared instantaneous description. In this case, our shared data structure has the struc­ture of a tree. Two possibilities occur. The first is when the input side lacks all sharing. This yields a tree-structured instantaneous description, which has one source (the bottom of the stack) and many sinks, indicating the end of the remain­ing input for every separate parser. The other possibility occurs when the stack side lacks all sharing. This causes a data structure with many sources and one sink. We will call this a funnel­structured instantaneous description . We refrain from giving technical details.
5 .6 Synchronizing the parsers

Additional efficiency may be gained by requiring parallelism to be synchronous, or, even stronger: by demanding synchronization on shift steps. To see this, notice that the shift step is the only step in which the input is affected (because of the combined reduce-shift step) . Then, if all parsers remove the same symbol from the input at the same time, they all will always have the same remaining input, which therefore can be fac­tored out of the graph-structured instantaneous description. This technique will save space, but cost time, since parsers may have to wait for syn­chronization. Because the remaining input is no longer part of the graph-structured instantaneous descrip­tion, it is rather a tree-structured stack, which has one source and multiple sinks, one for the top of the stack of every single parser. Now, be­cause the steps of the parser depend on the cur­rent state only, we know that all branches of this

0UDE ' LUTTIGHUIS - 8IKKEL

tree-structured stack, that . have the same state at their leaves, will have identical tree-structured substacks originating · from them in the future. Therefore, it might be advantageous to unify these leaves into one. This will save space, as well as time and/or processors, simply because iden­tical subruns will be performed only once. How­ever, it may also cost time, because searching for identically labeled leaves takes time. This data structure is called a graph-structured stack . It has one source and, at any moment, generally multi­ple sinks, one for every state occurring at the top of a stack at that moment. The idea of a graph-structured stack is not new. It originated from Tomita (1985) , in which, however, it is only used in the context of gen­eralized LR parsing. However, graph-structured stacks were introduced differently. There is no notion of asynchronous (pseudo-)parallelism nor . of graph-structured instantaneous descriptions. Moreover, the concept of a tree-structured stack is different , in that the sharing is the other way around: the tree has the current state at its root, and the stack bottom (or rather bottoms) at its leaves . We automatically arrived at the reverse notion of tree-structured stacks by not presupposing shift synchronization. In order to stay consistent with earlier terms, we use the name funnel-structured stack for Tomita's notion of tree-structured stacks.
5 . 7 Tree- and graph-structured

stacks in detail

A detailed discussion of the use of tree- and graph-structured stacks in generalized LL(O) ,
SKLR(O) , and LR(O) parsing is given in · Oude Luttighuis and Sikkel (1992) , but omitted here for brevity's sake.
5.8 Parallelism in parsers

Here, we will discuss ways to actually implement the defined parsers and parser/evaluators in par-allel. The parallelizations of these algorithms can be classified according to which data structure(s) is (are) distributed over different processors. By this distribution, we do not · necessarily mean physical distribution, but rather conceptual dis­tribution. Of course, parallelism may also be ob-

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 229

tained by distributing control structure, but in
our algorithms, control structure is captured in a
data structure.

The only data structure maintained in our
parsers and parser/evaluators is the (possibly
tree- or graph-structured) instantaneous descrip­
tion. Yet , it consists of the (remaining) input and
the stack part.

Because activity only occurs at the top of the
stack and the head of the input , it seems unprof­
itable to cut them into subsequent pieces and as­
sign these to processors. So, the only fruitful par­
allelism may be found in the pseudo-parallelism
already present. Different processors simply pro­
cess the different alternatives originating from
nondeterministic decision points.

5.8.1 Dividing multiple linear stacks and
tree-structured stacks

Parallel implementation of Tomita's algorithm
can be found in (Tanaka and Numazaki, 1989;
Numazaki and Tanaka, 1990) . Both divide the
different alternatives occurring at nondeterminis­
tic decision points over the processors. The first
uses no sharing whatsoever of the instantaneous
description: several different copies of (linear)
stacks are processed by different processors. The
second one uses the tree-structured stack.

5 .8.2 Dividing graph-structured stacks

Graph-structured stacks were introduced, be­
cause tree-structured stacks show many identical
activities, because many top nodes may be la­
beled with the same state. As discussed earlier,
sharing is best applied immediately after the shift
steps that start a tst-step.

What we might do is take a processor for ev­
ery state in the parser3 • Its task is to perform one
tst-step to the (shared) wait node that is labeled
with its associated state.

Because all shift steps shift the same symbol,
the maximum number of wait nodes resulting is
the maximum number of states that can occur af­
ter a shift of a particular symbol. So, if we choose
to assign a processor to all parser states, many of
them will be inactive at some time. This can be
improved by partitioning the parser states into a

set of blocks. Every block corresponds to a gram­
mar symbol X and contains those states that can
become current state after a shift of X. Now, we
take a number of processes such that , to each of
them, (at most) one state in every block is as­
signed. This calls for a number of processors that
equals the maximum block size.

5.8.3 Dividing the input

There exist other parallelizations of Tomita's al­
gorithm. In (Lankhorst and Sikkel, 1991) the
PBT (Parallel Bottom-up Tomita) algorithm is
presented. In this algorithm, the input is di­
vided over processors such that every processor
processes one input symbol. The processors op­
erate in a pipeline, communicating marked sym­bols from the end to the beginning of the string.
A marked symbol consists of a grammar sym­
bol (terminal or nonterminal) and two numbers,
which indicate the left and right border of a sub­
string of the input string, that is derivable from
that grammar symbol. Actual recognition of a
new marked symbol with left border i is done by
the processor associated with the ith input sym­
bol.

It was stated in the beginning of this section
that it seems unprofitable to cut the input (or the
stack) into subsequent pieces and assign these to
processors, because activity only occurs at the
head of the input (and the top of the stack).
Yet , this holds only for true parallelizations of
Tomita's algorithm. PBT is rather another al­
gorithm than Tomita's. The facts that PBT re­
quires different table construction and different
manipulation of the graph-structured stack sup­
port this view. A,lso, whereas Tomita's algorithm
cannot handle h.idden-left-recursive CFGs, PBT
can.

6 · Implementing parser/ eval­
uators

This section discusses implementation issues of
the nondeterministic parser/ evaluators as pre­
sented in section 4. The underlying syntactic part

3That is, a processor is associated with every parser state, not with every instance of a state on the graph-structured
stack.

230

can be made table'"driven in the usual way. Ad­ditionally, · in SKLR(O) and LR(O) parser/evalua­tors, high-lights have to be taken into account as well in the parser tables.
6 . 1 Calculating attribute values

Attribute values are computed upon syntactical steps. The (candidate) steps to be taken are chosen on purely syntactical grounds . In reduc­tion steps, the semantic condition may prohibit the step . In other cases, the calculation of at­tribute values simply follows syntactical process­ing. The argument values are extracted from the other states on the stack (and copied from the remaining input, in case of a shift step).
6 .2 Handling nondeterminism

In the parser/evaluators presented, attribute evaluation can influence parsing in two ways. First, a reduction step will be prevented if the se­mantic condition evaluates to FALSE. Second, the high-lights have syntactical consequences. Yet, the techniques of handling nondeterminism, as mentioned for parsers, can in principle all be used for parser/evaluators as well. However, imple­menting a graph-structured stack will not be as profitable for parser/evaluators as it is for parsers . This has two reasons.
• As opposed to the steps of the parsers, the steps of the parser/evaluator are not completely determined by the current state only. For the evaluation of attribute val­ues, argument values are needed that re­side in states further down in the stack. This causes complications when, somewhere within the sequence of states from which attribute values must be extracted, shar­ing has been applied, so that a new kind of semantic nondeterminism occurs. In other words, because more than one stack is asso­ciated with a top node in graph-structured stacks, different attribute values may be ex­tracted from states deeper in the stack.
• States may only be shared if they are iden­tical. Since dynamic states now include at­tribute values, these have to be identical as well. It is doubtful whether the time saved by sharing identical states outweighs the

0UDE LUTTIGHUIS - SIKKEL

time lost in verifying that states are identi­cal, given the dynamic nature of attribute values.
Both tree- as well as graph-structured stacks suf­fer from the fact that a larger portion of the stack is inspected for each step. This may cause more read conflicts in a parallel implementation. Still; a tree-structured stack seems feasible.
6.3 Parallel parser/ evaluators

This section will discuss ways to implement the defined parser/ evaluators in parallel. Because parsers are the skeleton of our parser/evaluators, we review the opportunities for parallelism, which are present in our parsers, and discuss whether they can be applied to parser/evaluators as well. Division of multiple linear stacks and tree- and graph-structured stacks can be carried over to parser/ evaluators. However, there are two dif­ficulties .
• Graph-structured stacks are hardly useful for parsing/ evaluation (as discussed ear­lier) . Therefore, the parallel parsing tech­nique for dividing the graph-structured stack over a (statically bounded) number of processors is not applicable.
• In tree-structured stacks (as well in graph­structured stacks) the sharing of parts of the data structure introduces the possibil­ity of read conflicts.
Unfortunately, dividing the input seems un­suitable as well, because the L-attributedness of ULAGs imposes a very sequential nature on at­tribute dependencies . Only when a left-to-right dependency is absent, possibilities for parallelism appear. This occurs, for instance, in case there are no inherited attributes, but only synthesized ones . However, if we allow ourselves to use dy­namic evaluation techniques, this changes, be­cause we may postpone evaluation . This is the subject of the next subsection .

6.4 Dynamic attribute evaluation

Although dynamic attribute evaluation is not a main topic of this paper, we will spend some re­marks on it .

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 231
Dynamic attribute evaluation abandons the need to (completely) evaluate attribute values be­fore they are used. Generally, a directed graph is maintained in which nodes are labeled with se­mantic functions and have outgoing arcs to all their arguments. Let us call such a graph an at­tribute graph. This graph can essentially be han­dled by two techniques.
• The first technique calculates an attribute value in the attribute graph only when all its argument values are completely evalu­ated. Let us call this the evaluation-before­use technique.
• In the other technique, the attribute graph is viewed as a syntactic description of a value. Rewrite rules are applied to it when­ever this is possible. A rewrite rule may, in principle, be performed to any part of the graph. This is the graph-rewriting tech­nique.

In both techniques, the attribute graph grows whenever the parser enters a new state and shrinks whenever a new attribute value is calcu­lated, or a rewrite rule has been applied. Dynamic evaluation may be helpful in pars­ing/evaluation in two ways. First, it allows for postponing (complete) evaluation of attribute values. Second, related with that, it allows for a less rigid approach to infinity problems in case of left recursion. Apparently, a combination of gen­eralized parsing/ evaluation techniques and dy­namic evaluation may be desirable. The fact that dynamic evaluation partly frees attribute evaluation from problems caused by syntactical processing also offers new possibilities for parallelism. For a more elaborate discussion, see Oude Lut­tighuis and Sikkel (1992) .
7 Related approaches

The only GLR parser generator that we know of is the incremental parser generator IPG (Heering et al. , 1990; Rekers, 1992) , from the ESPRIT project GIPE (generation of interactive programming en­vironments) . They chose Tomita's algorithm as a starting point for their incremental parser gener­ation because it provides a good mix of generality and efficiency. One of the reasons for · accepting

arbitrary context-free languages is that the gram­mar is allowed to be modular, and none of the classes of LR-grammars is closed under compo­sition. Rekers' thesis does not discuss attribute evaluation in the incremental parser generator. Affix Grammars over a Finite Lattice (AGFLs) (Weijers, 1986) are a sub-class of affix grammars specifically designed for natural lan­guages. The formalism can be located some­where between attributed grammars and feature­structure grammars (Shieber, 1986) . There are two basic ways to parse an AGFL: (1) Evaluate the affix values on-the-fly during the construc­tion of the parse forest, or (2) compute a parse forest according to the underlying context-free grammar and decorate it with affix values after­wards. Koster (1991) claims that the first ap­proach is more practical, provided that his "Re­cursive Backup" algorithm (Koster, 1975) is used, rather than an Earley or Tomita parser (despite the exponential worst-case complexity of the Re­cursive Backup algorithm) . Nederhof and Sarbo (1993) claim the reverse, however. They discuss how ambiguity can be handled practically in an interactive environment. A generalization of an LC parser, - based on the recursive backup method mentioned above, is used for the closely related formalism of Extended Affix Grammars in (Meijer, 1986) . A generalized LR parser for a query language for logical databases is described in (Lang, 1988) .
8 Conclusions

Contributions of this paper are
• a systematic treatment of generalized LL and LR parsing,
• the description of SKLR parsing as an in­termediate form of these,
• a correspondingly systematic treatment of attribute evaluation during LL, SKLR, and

LR parsing, with a precise identification of problematic issues in the case of SKLR and
LR parsing,

• (partial) solutions to these problems, viz. high-lights, string rewrite systems, and se­lection functions,

232

• · the technique of attribute evaluation during
generalized SKLR parsing, which is to be
preferred to evaluation during generalized

· LR parsing, because it avoids some techni­
cal complications while nondeterministism
is only marginally increased.

Future work may be done on the following
problems.

• What can be gained by adding the use of
look-ahead information to SKLR parsing?

OUDE LUTTIGHUIS - SIKKEL

• What is the relation�hip between SKLR
and LG parsing?

• Can our evaluation techniqll,es be efficiently
combined with dynamic evaluation tech­
niques?

• Is the use of string rewrite systems a real
gain in practice?

GENERALIZED LR PARSING 'AND ATTRIBUTE EVALUATION 233
References

Heering, J . - P. Klint - J. Rekers (1990) . In­cremental generation of parsers. IEEE Trans­actions on Software Engineering, SE-16:1344-1351 .
Knuth, D .E . (1965) . On the translation of lan­guages from left to right. Information and Control, 8:607-639.

Koster, C.H.A. (1975) . A technique for parsing ambiguous grammars. In D. Siefkes, editor, GI - 4. Jahrestagung. Lecture Notes in Computer Science 26.
Koster, C.H.A. (1991) . Affix grammars for natural languages. In H. Alblas and B. Melichar, editors, Proceedings of the Inter­national Summer School on Attribute Gram­mars, Applications and Systems (Prague, Czechoslovakia, June 4-13, 1991}, pages 469-484, Berlin, Germany. Springer-Verlag. Lec­ture Notes in Computer Science 545.
Lang, B . (1988) . Datalog automata. In Proceed­ings of the 3rd International Conference on Data and Know ledge Bases: Improving Us­ability and Responsiveness (Jerusalem, Israel, 1988 }, pages 389-404.
Lankhorst , M. - K. Sikkel (1991) . PBT: A parallel bottom-up Tomita parser. Memo­randa Inforinatica INF 91-69, Department of Computer Science, University of Twente, En­schede, The Netherlands, September.
Meijer, H. (1986) . Programmar: A Transla­tor Generator. PhD thesis, University of Ni­jmegen, Nijmegen, The Netherlands.
Nederhof, M.-J. - J.J . Sarbo (1993) . Efficient decoration of parse forests. In H. Trost, editor,

Feature formalisms and linguistic ambiguities, pages 95-109, Chicester, U.K. Ellis Horwood.
Numazaki, H. - H. Tanaka (1990) . A new par­allel algorithm for generalized LR parsing. In Proceedings of the 13th International Confer­ence on Computational Linguistics (Helsinki, Finland, 1990} (Vol. 2}, pages 304-310.
Oude Luttighuis, P. - K. Sikkel (1992) . At­tribute evaluation during generalized parsing. Memoranda Informatica 92-85, Department of Computer Science, Enschede, The Nether­lands.
Rekers, J. (1992) . Parser Generation for Interac­tive Environments. PhD thesis, University of Amsterdam, Amsterdam, The Netherlands.
Shieber, S.M. (1986) . An introduction to unification-based approaches to grammar. CSLI Lecture Notes 4, Center for the Study of Language and Information, Stanford Uni­versity, Stanford, California, USA.
Sippu, S. - E. Soisalon-Soininen (1990) . Parsing Theory, volume II LR(k) and LL(k) Parsing. Springer-Verlag, Berlin, Germany.
Tanaka, H. - H. Numazaki (1989) . Gener­alized LR parsing based on logic program­ming. In Proceedings of the International Workshop on Parsing Technologies (Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1989}, pages 329-328.
Tomita, M. (1985) . Efficient Parsing for Natu­ral Language. Kluwer Academic Publishers, Boston, Massachusetts, USA;
Weijers, G .A.H. (1986) . Affix grammars over finite lattices. Report No. 94, Department of Computer Science, University of Nijmegen, Nijmegen, The Netherlands.

234 0UDE LUTTIGHUIS · - SIKKEL

