
Reducing Complexity in A Systemic Parser

Michael O'Donnell

Department of Linguistics,
University of Sydney
email: mick©isi . edu

Abstract

Parsing with a large systemic grammar brings one face-to-face with the problem of unifica­tion with disjunctive descriptions. This paper outlines some techniques which we employed in a systemic parser to reduce the average-case complexity of such unification.
1 Introduction

Systemic grammar has been used in several text generation systems, such as PENMAN (Mann - Matthiessen 1985), PROTEUS (Davey, 1978), SLANG (Patten, 1986), GENESYS (Fawcett -Tucker, 1990) and HORACE (Cross, 1991). Sys­temics has proved useful in generation for sev­eral reasons: the orientation of Systemics towards representing language as a system of choices, the strongly semantic nature of the grammar, and the extensive body of systemic work linking dis­course patterns and grammatical realisation (e.g., Halliday, 1985; Halliday - Hasan, 1976; Martin, 1992). Parsing with systemic grammar has not, how­ever, been as successful. To date, there have been six parsing systems using systemic gram­mar: Winograd (1972), McCord (1977), Cum­mings - Regina (1985), Kasper (1988a, 1988b, 1989), O 'Donoghue (1991a, 1991b) and Bateman et al. · (1992). However, each of these systems has been limited in some way, either resorting to a simplified formalism (Winograd - Cummings - Mc Cord), or augmenting the systemic analysis by initial segmentation of the text using another grammar formalism (Kasper: Phrase Structure Grammar; Bateman et al. : Head-driven Phrase Structure Grammar; O 'Donoghue: his 'Vertical Strip Grammar' (VSG)). There has not so far been a parser that parses using the full systemic formalism, without help from another formalism. The reasons for this failure relate to those rea-

sons which favour generation. Firstly, the orien­tation of systemic grammar towards choice means that the grammar is organised into a form full of disjunctions, which leads to complexity problems in parsing. Secondly, the strongly semantic con­tent of systemic grammars (including roles such as Actor, Process and Circumstance in the gram­mar) leads to a structural richness which adds to the logical complexity of the task. One result of the work in Systemic generation has been the availability of a large computational generation grammar using the systemic formal­ism - the Nigel grammar (Matthiessen - Mann, 1985, Matthiessen - Bateman, 1992). As this resource is available, it is desirable to use it for parsing. However, complexity problems have so far made this impossible, except by pre-parsing with another formalism. In the last few years, we have developed a parser for Systemic grammar, particularly for use with the Nigel grammar. The parser han­dles the full Systemic formalism, and does not depend on another formalism for segmentation. The parser uses a bottom-up, breadth-first algo­rithm. A chart is used to handle some of the non-determinism. This paper focuses on some methods we have used in the parser to reduce the complexity prob­lems associated with using the Nigel grammar. In particular, we focus on the means used to make disjunctive unification more efficient. Section 2 discusses the problem of disjunc­tive expansion, and some means of making it
203

204

more efficient at a general level. Before becom­
ing more specific, the Systemic formalism is intro­
duced (section 3) . Section 4 explores one method
of avoiding complexity - reducing the size of
the disjunctive description by working with sub­
descriptions rather than the whole description.
Section 5 presents three ways of making expan­
sion, when necessary, more efficient . We conclude
the paper with a brief summarisation of our work.

2 Unification with Disjunc­
tive Descriptions

Parsing with a systemic grammar involves much
unification of disjunctive descriptions. The usual
way to unify such is as follows:

1 . Expand out the disjunctive descriptions
to Disjunctive Normal Form (DNF) - a
form with all disjunction at the top level
of the description - a disjunction of non­
disjunctive forms.

2 . Unify each term of the first DNF form with
each term of the other.

DNF expansion of a description is however
an expensive task - the process takes exponen­
tial time in the worst case (Kasper - Rounds,
1986) . Space is also a problem - DNF expansion
is a transformation whereby a disjunctive descrip­
tion is replaced with a set of descriptions each of
which contains no disjunction. For a description
containing a high level of disjunction, the size of
the DNF form can be excessive.

Space has not however been a problem in our
processing, but time has. Systemic parsing is very
slow. We thus focus on means for speeding up, or
avoiding, the unification process.

2 . 1 A voiding Expansion

There have been proposals for unification with­
out DNF expansion. Karttunen, for instance, has
proposed an algorithm which "uses constraints on
disjuncts which must be checked whenever the
disjunct is modified" (Kasper, 1987, p81) . How­
ever, as noted by Kasper (1987, p61) , Karttunen's
unification algorithm works only for a limited
type of disjunctive description, and not for gen­
eral disjunction as is needed in the present work.

O 'DONNELL

Kasper has proposed a method of re­
representing disjunctive descriptions which in
some cases avoids the need for expansion. His
approach separates a disjunctive description into
two parts - a definite component (which con­
tains no disjunction) , and an indefinite compo­
nent (containing the disjunctive information of
the description) . A unification process can first
check whether the definite components of two de­
scriptions unify, and only proceeds to unify the
indefinite components if the definite components
unify successfully. The unification of the indefi­
nites is avoided if the unification of the definites
fails .

2 .2 Delaying disjunctive expansion
until necessary

The Kasper-Rounds form also allows us to de­
lay expansion until a later time. When two de­
scriptions are unified, only the definite compo­
nents need to be checked for compatibility. The
result of a Kasper-Rounds unification contains
the indefinite descriptions from both descriptions
without expansion. At some point in the pro­
cessing it may be necessary to resolve the indefi­
niteness, and the disjunctive components are then
expanded. However, in many cases, the definite
component of the description may become incon­
sistent before this is necessary, expansion is thus
avoided.

2 .3 When expansion is necessary,
expand efficiently

If DNF-expansion is required, then it should be
performed as efficiently as possible. We here dis­
cuss some methods to achieve this goal:

1 . Reducing the disjunctiveness of the
description: By reducing the extent of the
description, we reduce the amount of dis­
junction to be expanded, and thus speed up
the expansion process. We use two methods
to reduce the size of descriptions:

(a) Extracting descriptions for special­
purpose: we segment the grammar de­
scription into sub-descriptions for par­
ticular purposes. We found that dif­
ferent parsing processes drew upon

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

only subsets of the grammar. Rather than working with the full grammar, sub-descriptions tailored for particular purposes can be compiled-out . These sub-descriptions are less complex to expand than the full description
{b) Register Specific Pruning: parts of the grammar which are not expected to be used in a particular set of target texts are 'pruned-out' before processing be­gins.

2. Expanding Disjunctions Efficiently: a disjunctive description may contain a num­ber of disjunctions. Ordering the expansion of these disjunctions in particular ways can result in improved expansion times:
(a) Multiplying together disjunctions with high likelihood of inconsistency first ,

205

grammar as a precompilation step, we avoid doing that calculation during the parsing of a sentence.

3 A Systemic Grammar

3 .1 Type and Role Logic

Systemic grammar, in distinction to value­attribute grammars, distinguishes type logic (the classes of units) and role logic (the constituency and dependency relations between units) . The type logic is expressed in a network, called a sys­tem network . The role logic is expressed as a set of constraints on the types of the grammar.

thus reducing the number of terms 3.2 System Networks which we continue with.
{b) Spotting inconsistent unifications with minimum of work e.g. , checking for in­consistencies between single terms be­fore checking for inconsistencies be­tween combinations of terms. (c) Using some form of structure sharing in the expansion process: in the expan­sion process, the same terms may be multiplied together a number of times. A form of structure-sharing, such as a parse chart, can reduce the redun­dancy in the expansion process.

2.4 Caching and precompilation:
avoiding repeating the same ex­
pansion.

The parser makes extensive use of caching - when any expansion is calculated which is likely to be used again, the result is stored away for later re­use. Precompilation has also been a useful tech­nique to improve parsing efficiency. Precompila­tion is basically a pre-caching of all the values which might be used in the parsing process. By performing most of the DNF expansion of the

Systemic grammar (e.g. , Halliday, 1985, Hudson, 1971 , Matthiessen - Mann, 1985) uses an in­heritance network to organise grammatical types (or 'feature' in Systemics1), and their structural consequences. A Systemic inheritance network is called a system network. A system network is used to organise the co­occurrence potential of grammatical types, show­ing which types are mutually compatible, and which are incompatible. It consists of a set of sys­tems , which are sets of mutually exclusive types . There is also a covering relation between the types of a system, meaning that if the entry con­dition of the system is satisfied, then one of the types in the cover must be selected. Figure 1 shows a system network for a sim­ple grammar of English. It includes 1 1 systems, representing various grammatical distinctions, for instance, between clause and word, between tran­sitive and intransitive clauses, or between nomi­native and accusative pronouns. Each type inherits the properties of types to its left in the network. Note that the system net­work may be logically complex, since entry con­ditions {the logical condition on a system) may consist of conjunctions and disjunctions of types. 1 Note that the term 'feature' is used distinctly from its use in most unification paradigms. In Systemics, a feature is what Functional Unification Grammar would call a value, e.g., active, transitive and noun are features.

206

{ wh-

{

interrogative

{
indicative yeS/no

declarative imperative
clause { active { transitive passive intransitive { single-subject plural-subject

{verb word
pronoun

{ nomina�ive accusative
{ singular plural
{human nonhuman

Figure 1 : A partial Systemic network
3 .3 Structural Templates

Types of the system network are associated with structural realisations - the structural conse­quence of the type. Figure 2 shows the realisa­tions of the types in Figure 1 .
clause :

declarative :
yes-no :
transitive :

active :

passive :

intransitive :

Subject : nominative
Actor : human
Finite : finiteverb
Pred : lexical-verb
Subj ect AFinite
FiniteASubject
Object : accusative
Actee = []
Pred . . . Obj ect
Subject/Actor
Obj ect/Actee
Finite/Pred
Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM = "by"
Finite/Pass
Pred : en-verb
Pass APred
AgentWObject
Subject/Actor
Finite/Pred

O 'DONNELL

single-subj :
plural-subj :

Subj ect : singular
Subject : plural

Figure 2: Realisation Rules
This grammar deals mainly with some sys­tems involving the Subject and Object , what types of units fill these roles, and how these roles conflate with two other roles: Actor and Actee. The grammar assumes that both roles are filled by pronouns, which are either [nominative] or [accusative] , [singular] or [plural] , and [human] (e.g. , "I" , "you" , "he") or [nonhuman] (e.g. , "it" , "that") . Only [human] pronouns can fill the Ac­tor role of a clause. The realisation operators used in the formal­ism are as follows:
Insert e.g. , Finite = [J: indicates that the function Finite must be present in the structure.
Conflate e.g. , Modal/Finite : indicates that the two functions Modal and Finite are filled by the same grammatical unit .
Order e.g. , Subject " Finite : indicates the se­quencing of functions in the surface structure. In this example, the Subject is sequenced directly before the Finite . Any number of elements can be sequenced in a single rule.
Partition e.g. , Thing . . . Event . . . End: An­other sequence operator, specifies that the appear in this order, but not necessarily immediately ad­jacent (linear precedence) .
Preselect e.g. , Subject: nominal-group : indi­cates that the Subject element must be filled by a unit of type nominal-group.
Lexify e.g. , Deict = "the " : used to assign lex­ical items directly to elements of structure. Note that lexify overrides any preselect which may ap­ply to the same element of structure.

3.4 Logical Expression
Grammar

of the

For the purposes of the expansion of this gram­mar, we re-express it in a logical formalism. Fig­ure 3 shows Logical Form I of this grammar, in­cluding the structural constraints embedded in the form. Note that :xor indicates exclusive dis­junction.
(: xor
(: and clause

Subj ect : nominative

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

Actor : human
Finite : finite-verb
Pred : lexical-verb
(: xor

(: and declarative
Subject -Finite)

(: and yes-no
Finite-Subj ect))

(: xor
(: and transitive

Obj ect : accusative
Actee = []
Pred . . . Obj ect
(: xor

(: and active
Subj ect/Actor
Obj ect/Actee
Finite/Pred
(: and passive

(: and intransitive
Subj ect/Actor
Fin/Pred))

Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM= "by"
Pred : en-verb
Finite/Pass
Pass-Pred
AgentWObj ect))

(: xor (: and single-subj ect
Subject : singular))

(: and plural-subject
Subj ect : plural))))

(: and word
(: xor (: and pronoun

(: xor nominative
accusative)

(: xor singular
plural)

(: xor human
nonhuman))

(: and verb . . .))))

Figure 3 : Logical Form I of the Grammar
4 Extracting Sub-Gram-

mars for particular Pars­
ing Tasks

Rather than expanding out the whole grammar, it is more efficient to extract out subsets of the

207
grammar, to be used for particular tasks in pars­ing. In our systemic parser, the description is used for three purposes:

1 . Path Unification: checking that two type­paths can unify,
2. Predicting What Comes Next: seeing which function-bundle(s) can come next in the structure e.g. , we have just anal­ysed Subject/ Actor A Fin/Mod, and want to predict what function-bundle can occur next in the structure.
3 . Function-Bundle Assignment: seeing what function-bundle a given constituent can fill, e.g. , we have just parsed a nominal group, and want to see what function-bundles it can be the filler of.
Each of these uses makes only partial use of the grammar description. Thus, rather than ex­panding out the entire grammar, we can simplify the process by extracting out sub-grammars, one for each of these applications. Since the size of each sub-grammar is smalle_r, the complexity problem is reduced. This section looks at these three sub-descriptions in more detail.

4. 1 Separating Type Logic from
Role Information

It has proved useful to separate the type logic component of the grammar from the role logic. The two logic components have different patterns of use - type logic is used to test whether two par­tial type-paths can unify. We never try to unify a partial type description with the type grammar as a whole. The type-logic component of the gram­mar thus does not need to be DNF-expanded. The role logic, on the other hand, does need to be expanded. We expand the role-logic compo­nent to produce a set of non-disjunctive structure rules which can be applied during parsing (some­times termed 'chunking') .

208

(: and
; 1 . Type Logic Component
(: xor (: and clause

(: xor declarative yes-no)
(: xor (: and transitive (: xor active passive))

intransitive)
(: xor single-subj ect plural-subject))

(: and vord
(: xor (: and pronoun (: xor nominative accusative)

(: xor singular plural)
(: xor human nonhuman))

(: and verb . . .))))

; 2 . Role Logic Component
(: and (: implies clause (: and Subj ect : nominative

Actor : human
Finite : finite-verb
Pred : lexical-verb))

(: implies declarative Subj ect -Finite)
(: implies yes-no Finite-Subj ect)
(: implies transitive (: and Obj ect : accusative

Actee : []
Pred . . . Object))

(: implies active (: and Subject/Actor
Obj ect/Actee
Finite/Pred))

(: implies passive (: and Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM= "by"
Pred : en-verb
Finite/Pass
Pass-Pred)
AgentM-Object))

(: implies intransitive (: and Subject/Actor
Fin/Pred))

(: implies single-subj ect Subject : singular)
(: implies plural-subj ect Subj ect : plural)))

Figure 4: Logical Form II of the Grammar

role logic.

O 'DONNELL

Thse two components of the description have different properties: type logic is acyclic, while role logic is potentially cyclic. Type logic is con­strained such that types are always in disjoint coverings (which allows efficient negation) , while role logic doesn't have this constraint. 4 .1 . 1 Unification of Type Descriptions
Because of these differences in properties and uses, it has proved efficient to treat these two logics separately. Logical Form I of the sys­temic grammar provided in Figure 3 can be re­represented in the equivalent Logical form II · shown in Figure 4, separating out the type and

The parser uses the type-logic component of this grammar without fully expanding it . Partial ex­pansion, however, is performed, whereby the type­path (the logical-entailment of a system, i .e . , the logical expression of types leading back to the

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

root of the network)2 is pre-compiled for each system.3 The negation of each type in the system is also pre-compiled, which speeds up unification involving negation of types. Type-paths are represented in the form pro­posed by Kasper (1987), and his unification al­gorithm is used when two type-paths are uni­fied. The main use of the type-logic component is checking the compatibility of two types or type­paths. Type logic has thus been simplified using three strategies:
1 . Separating from Role Logic
2 . Using Kasper's 'delayed expansion' tech­nique.
3. Precompiling each system's logical entail-ment , and the negation of types.

Because of these methods, unification of type­paths using even quite complex grammars oper­ates quite quickly.
4.2 Function Assignment

Another use made of the grammatical description in parsing is to assign a set of structural roles to a unit . The set of roles a unit fills is called in Systemics the function-bundle of the unit . The systemic formalism allows each unit to be as­signed multiple functions. For instance, using the NIGEL grammar, 'the cat' in "the cat scratched the woman" would be assigned the function­bundle . Subject/ Agent/ Actor/Theme. The pos­sibility of a unit serving multiple functions is a major source of complexity in systemic parsing.
Assigning function-bundles to a unit is one of the tasks in systemic parsing. For instance, as­sume we have just parsed a pronoun "he" , as­signing it a type-path:

(: and vord : pronoun : nominative : human : singular)

Now, we wish to find what function-bundles the pronoun can serve at a higher level. One result could be:

[pronoun]
I

"he"

[clause : transitive]
______ I ___ . . .

=> I
Subj ect/Actor

[pronoun]

209

This process draws upon three parts of our grammar:
• Preselection and Lexify rules: used to dis­cover what functions different units can fill.
• Conflation rules: used to discover which functions a unit can serve simultaneously, and thus, which of the preselection and lex­ify rules can combine.
• The Type Logic: to show which of these preselection, lexify and conflation rules are systemically compatible.

Since we have already set up the type-logic for path unification, we can draw upon that re­source as needed. We do not need to include the type-logic in the sub-description for the function­assignment process.
4.2.1 Extracting the relevant description
For the function-assignment process, we do not need all of the role logic description. We can se­lect out only those rules involving preselection, lexify, and conflation. See Logical Form III in Figure 5 .
(: and (: implies clause

(: and Subject : nominative
Actor : human
Finite : finite-verb
Pred : lexical-verb))

(: implies transitive
Obj ect : accusative)

(: implies active
(: and Subject/Actor

Object/Actee
Finite/Pred))

(: implies passive
(: and Subject/Actee

Object/Actor
Pass : be-aux 2Note that since entry conditions of systems can be logically complex, the path itself can contain disjunctions and conjunctions. · 3Paths are stored with systems rather than types, since the path of all types in a system are identical.

210
AgentM= "by"
Pred : en-verb
Finite/Pass))

(: implies intransitive
(: and Subj ect/Actor

Fin/Pred))
(: implies single-subject

Subj ect : singular)
(: implies plural-subject

Subj ect : plural)))

Figure 5 : Logical Form III: The Function Assignment Sub-Description
4.2 .2 Implications Out
We next put this description into a form more suitable for DNF-expansion. Note that implica­tion can be re-expressed using disjunction, con­junction and negation:
(: implies a b) is-equivalent-to

(: xor (: and a b) (: not a))

Using this rule, we can re-express the logical form III as Logical Form IV, as shown in Figure 6.
(: and (: xor (: and clause

(: xor

(: xor

(: xor

(: xor

(: xor

(: not
(: and

(: not
(: and

(: not

Subj ect : nominative
Actor : human
Finite : finite-verb
Pred : lexical-verb)
clause))
transitive
Obj ect : accusative)
transitive))
active
Subj ect/Actor
Obj ect/Actee
Finite/Pred))
active))

(: and passive
Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM : "by"
Pred : en-verb
Finite/Pass)

(: not passive))
(: and intransitive

Subj ect/Actor
Fin/Pred)

(: not intransitive))
(: and single-subject

O 'D ONNELL

Subj ect : singular)
(: not single-subj ect))

(: xor (: and plural-subj ect
Subj ect : plural)))

(: not plural-subj ect)))

Figure 6: Logical Form Form IV: The Function Assignment
4.2.3 Expansion to DNF
Simple algorithms exist to expand Logical Form IV into DNF (see section 5 . 1) . A small part of the result appears in Logical Form V of the grammar, shown in Figure 7.
(: xor

(: and clause transitive active
single-subj ect
Subj ect/Actor : (: and nominative

human singular)
Obj ect/Actee : accusative
Finite/Pred : (: and verb finite-verb

lexical-verb))
(: and clause transitive

etc . . .

active plural-subj ect
Subj ect/Actor : (: and nominative

human plural)
Object 1 Actee : accusative
Finite/Pred : (: and verb finite-verb

lexical-verb))

Figure 7: Logical Form Form V: The Function Assignment Sub-Description in DNF
The order of worst-case complexity of the ex­pansion to DNF is easily calculated - it is simply two to the power of the number of disjunctions, which is equal to the number of types which have realisation rules of type conflation, insertion, or preselection. By opting to expand only subsets of the whole grammar, we have reduced the complexity of the description, since the size of n for this sub­description is smaller than for the whole descrip­tion. However, for a real-sized grammar such as NIGEL, the size of n is still large.

4.2.4 Re-expression in terms of Function Bundles
From the DNF-form of this description, we can extract out partial-descriptions for each function bundle. We now re-express this logical form in

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

terms of the type constraints on each function­
bundle, including both the constraint on the
type of unit the function-bundle can be part
of (the 'parent-constraint ') , and the constraint
on the filler of the function-bundle (the 'filler­
constraint ') . We show this as a set of triplets,
of the form:

(<parent-types>
<function-bundle>
<child-types>)

1 . { { : and clause transitive
active single-subject)

Subj ect/Actor
(: and nominative human singular)))

2 . ((: and clause transitive
active single-subj ect)

Obj ect/Actee
accusative)))

3 . ((: and clause transitive
active plural-subject)

Subj ect/Actor
(: and nominative human plural)

4 . ({ : and clause transitive

5 .

active plural-subject)
Obj ect/Actee
accusative)

(: and clause transitive
active singular-subj ect

Finite/Pred
(: and verb finite-verb lexical-verb))

etc

This representation can now be used to assign
function-bundles A unit can take on a function­
bundle if it can unify with the filler-constraint on
the function-bundle.

For the instance we started with, "he" ,
with types: (: and pronoun nominative human
singular) , only one triplet would unify. We
could thus posit structure for our unit :

[clause : transitive : active : single-subj ect]
. . __________ ! __________ . . .

I
Subject/Actor

I
[pronoun : nominative : human : singular]

I
"he"

211

Note that we have also gained information
about the types of the parent-unit of which the
unit is a constituent.

4.2.5 Reducing the number of Rules

Note that there is another simplification we can
make to the triplet list. We can take all triplets
with identical function bundle and child-type
specification, and join them. The parent-types
slot is replaced with the disjunction of the two
parent-type slots. Thus, elements 2 and 4 above
become a single item. This process reduces the
number of rules to apply:

2 , 4 . ((: and clause transitive active)
Obj ect/Actee
accusat ive)))

4.3 Predicting What Comes Next

Another process we use in parsing involves the
prediction of what function-bundles can come
next in a partially completed structure. With a
systemic grammar, this process requires:

• Ordering and Partition rules: to see which
function can come next.

• Conflation rules: to see which functions can
conflate with the function predicted to come
next.

• The type logic: to show which of these or­
dering, partition and conflation rules are
systemically compatible.

The processing of this sub-description, and any
others, is exactly the same as for function­
assignment .

1 . Extract from the role logic description the
relevant realisation rules;

2. Replace implications with disjunction and
negation;

3. Expand out the grammar;

4. Index the rules in a form useful for the pro­
cessing.

212
4.4 Register Restriction

Another means of reducing the overall complexity of the descriptions involves eliminating from the grammar parts which are unlikely to be utilised in the target texts. In systemic terms, we apply register restrictions to the grammar. For example, in a domain of computer manu­als, the description of interrogative structures is not likely to be drawn upon.4 By eliminating this sub-description, we reduce the degree of disjunc­tion in the whole description, and thus speed up the parsing of the forms which do appear in the text . The method of deriving the register­restrictions was as follows:
1 . We parsed by hand5 a chapter of the com­puter manuals we were attempting to parse, building up a register-profile of our target texts.
2 . An automatic procedure then extracted out all the grammatical types which occur in these sentences.
3. The process used this information to dis-

O 'DONNELL
5 Improving the Efficiency

of Expansion

Section 4 has proposed techniques which reduce the size of the description which needs to be ex­panded. However, for large-sized descriptions, the expansion is still complex. This section briefly explores two methods which increase the effi­ciency of the expansion process. If we can't avoid full expansion, then at least we can make the ex­pansion process more efficient .
5 . 1 "Structure Sharing" in Expan­

sion

This section assumes a disjunctive description of the following form:
(: and (: xor A B) (: xor C D) (: xor E F))

Logical form V introduced above was of this form. Much of the pre-processing in the parser in­volves the DNF-expansion of disjunctions in this form.
cover the types not occurring in the sample. 5 1 1 Full E . . xpans10n

4. The process then eliminated these types and their realisations from the description.
We were thus left with a restricted grammar which was capable of parsing the sentences in the sample, and also parsing many which were not in the sample (under the assumption that the gram­matical forms in the sample were representative of the forms found in the manual as a whole) . We reduced the size of the grammar by approxi­mately 60% using this method.
4.5 Summary

By extracting out sub-descriptions from the full description, we reduce the complexity of the description-to-be-expanded.

The brute force method for expanding this form involves :
1 . Find all combinations of terms, taking one term from each disjunction.
2 . Test compatibility of each combination, eliminating combinations which are inter­nally inconsistent.

Step 1 of this process produces the following DNF form:
(: xor (: and A C E) (: and A C F)

(: and A D E) (: and A D F)
(: and B C E) (: and B C F)
(: and B D E) (: and B D F)) 4Note that some of the forms we restrict through register restriction may actually appear in any one text, although quite rarely. We are trading off between speed for the majority of sentences, and ability to parse all sentences in a text. 5The hand-parsing is really computer-assisted, - a tool was developed to traverse the system network for each sen­tence (and each constituent of the sentence) asking the human which feature was appropriate for the target string. This process guaranteed that the human-analysis conformed to the computer grammar.

REDUCING C OMPLEXITY IN A SYSTEMIC PARSER

The problem with this approach is with the
incompatibility checking - the same checks will
be repeated over and over again. For instance,
the incompatibility check between A and C is re­
peated twice: (:and A C E) and (:and A C F) .
This repetition occurs for every pair of terms in
the conjuncts. The- problem gets worse exponen­
tially as we add more disjuncts.

To avoid this redundancy, we need something
like a chart in parsing, a method to record the re­
sults of each unification and thus avoid repeating
any unification.

Unfortunately, DNF expansion is not quite
like parsing. We can test the consistency between
any two pairs of terms (for instance A and C
in the above), but we also need to know about
the consistency of terms in combination e.g. , the
pairs: A&C, A&E and C&E may be consistent,
but the combination A&C&E may not be.

The rest of this section describes two tech­
niques which allow some redundancy reduction,
sometimes known as structure-sharing.

5 . 1 .2 Tree Organisation of Expansion

The disjunctive description above can easily be
re-represented in the form below:

(: and (: and (: xor A B)
(: xor C D))

(: xor E F))

The process here involves expanding out the
first two disjunctions, eliminating inconsistent re­
sults, and then expanding the result out with the
next disjunction. The incremental expansion is
illustrated il

l
Figure 8.

a&c&e

a&c&f
<

a&c <

/

a
a&d--- a&d&e

--- a&d&f
"- b . b&c&e

"'- b
<

&c
< b&c&f <b&d&e b&d

Figure 8: Tree expansi8���thod

This method is more efficient than the full ex­
pansion method, since: •

• Some terms, such as a&c, a&d etc. are uni­
fied only once. However note that terms e
and f are still involved in multiple products.

213

• the failure of a combination of terms early
in the unification process eliminates a large
number of expansions by the end of the pro­
cess.

5 .1 .3 Binary Organisation of Expansion

A third approach aims at maximising the degree
of 'sharing' unifications in the expansion. The
disjunctions in the description are split into pairs,
and unified. The results of these unifications are
then unified in the same pair-wise manner. This
expansion for a conjunction of four disjunctions
is shown in Figure 9.

AvB> A&C A&D A&C&E&G B&C A&C&E&H CvD B&D > A&C&F&G A&C&F&H A&D&E&G EvF > E&G A&D&E&H E&H A&D&F&G F&G A&D&F&H GvH F&H et<;
Figure 9: Binary expansion method

The advantage of this approach is that we are
maximising the amount of structure-sharing in
the unification.

5 .1 .4 Comparison of Expansion Ap-
proaches

We compared the number of unifications which
take place using each of these methods for vari­
ous numbers of disjunctions (all disjunctions hav­
ing two disjuncts).

One can see from Table 1 that the worst-case
score for the full expansion method is far worse
than the other methods. It is not a practical
method.

Comparing the worst-case for the 'tree' and
the 'binary' expansion method, we see that the bi­
nary method clearly comes out better, by around
50%.

We also did a simulation to check an aver­
age case score, since the worst-case score doesn't
take into account that many later unifications are
avoided when early unification proves inconsis­
tent. We found that while the binary method
still seems superior, in some instances the tree
method requires fewer unifications. More work is
needed here.

214

N Full Tree Binary
1 1 20480 4092 2364
12 45056 8188 4424
13 98304 16380 8448
14 212992 32764 16780
15 458752 65532 33236
16 983040 131068 66144
17 2097152 262140 133528
18 4456448 524284 266660
19 9437184 1048572 526956
20 19922944 2097148 1053304

Table 1: Worst-case comparison
5 .2 Ordering Incompatible Dis-

junctions First

When using either the Tree or Binary expansion methods, fewer unifications will be required if we place the disjunctions with the greatest chance of inconsistency first. In a sense, we are pruning in­consistent branches of the expansion tree 'at the root'. In the systemic parser , several heuristics have been used to group disjunctions which are most likely to produce the fewest cross-products, and perform these first. One possible method for utilising this phe­nomenon is :
1 . Separate the disjunctions into sub-sets which maximise likelihood of incompatibil­ity between rules inside the sub-expressions.
2. Expand out the disjunctions inside each sub-set. The results of each sub-set are cached so they need only be expanded once.
3. Expand out the results of (2) against each other.

5 .3 Avoiding Expansion of Incom-
patible Terms

Sometimes, it is possible to tell without full uni­fication that a set of rules will not unify with an­other set . For instance, assume a larger gram­mar than the one we have been using, a grammar which includes clauses, nominal-groups6 , prepo­sitional phrases, adverbial phrases and words.

O 'DONNELL

These categories are all types in the system net­work, just like any other types. Since these types won't unify with each other, we can also know that types which inherit from one of these basic types will not unify with the the sub-types of another basic type. We thus do not need to try to unify descriptions which differ in their basic type . If we split any disjunctive de­scription into sub-components for each basic type, we know a priori that there is no unification be­tween these sub-components. Before trying any of the expansion techniques outlined in this paper , the whole grammar is segmented into sub-descriptions, one for each of these basic types. The complexity of the expan­sion of each of these sub-grammars is less than for the grammar as a whole. Other principles can be used to locate sets of rules which will not unify. These can be applied also.
6 Conclusion

While the techniques outlined here have been ap­plied in ways particular to a systemic grammar, and for a particular implementation, there are principles behind the re-representations which are general to all implementations :
1 . Avoid DNF-expansion where possible, as in Kasper 's unification algorithm.
2. Delay expansion to a later time - informa­tion gained later may show the description to be inconsistent in the definite compo­nent.
3. When expansion is necessary,

(a) Try to extract out sub-descriptions which can be used , rather than ex­panding the entire grammar.
(b) Expand out first disjunctions which are most likely to conflict, since this will reduce the total number of terms which will n�ed to be multiplied .
(c) A void expanding terms that can be known to be incompatible. 6Systemics prefers the term 'nominal-group' over the equivalent term 'noun-phrase' .

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

As a result of the application of these techniques (and others not here mentioned) , we have been able to implement a parsing system which parses using a large systemic grammar.
1. We start with the Nigel grammar, as used in the Penman Generation System, slightly modified for parsing purposes.
2. This grammar is then reduced by applying register-restrictions, leaving a less complex grammar, but a grammar which still han­dles the bulk of the phenomena in the target texts.
3. Sub-descriptions of the grammar tailored for particular processes are then extracted, and expanded out as a precompile step, pro­ducing a set of 'chunks' which can be used in parsing. This expansion takes approxi­mately 2 minutes using Sun Common Lisp on a Sun Spare II.
4. The 'chunked' grammar is then used to parse sentences. On the above-mentioned platform, parsing a sentence like "A user­password is a character string consisting of a maximum of eight alpha-numeric char­acters." took 35 seconds to parse7 • This parser is slow, compared to most non­systemic parsers, but is far faster than the

215

parser would be without the methods out­lined here.
Future work will attempt to reduce this parsing time. Three directions are being followed:

• Streamlining the parsing process to further reduce the parsing time.
• Moving more processing to the pre­compilation stage.
• Reducing the complexity of the description without reducing its coverage.
• Incorporating heuristics to resolve ambigu­ities without full expansion.

Acknowledgements

The parser discussed in this paper was partially developed in the Electronic Discourse Analyser project , funded by Fujitsu (Japan) . The devel­opment was aided by discussions with the mem­bers of that project: Christian Matthiessen, John Bateman, Zeng Licheng, Guenter Plum, Arlene Harvey and Chris Nesbitt. Thanks to Cecile Paris for profuse comment­ing on this paper, and teaching me Latex, and to Vibhu Mittal, who solved the trickier Latex bugs.

7Note that when the parser is given a less complex systemic grammar, the parsing time is under two seconds for this sentence.

216

References

Bateman, John - Martin Emele - Stefan Momma (1992) "The non directional repre­sentation of Systemic Functional Grammars and Semantics as Typed Feature Structures" in Proceedings of COLING-92 , Volume III, Nantes, France, 916-920.
Benson, J. - W. Greaves (eds.) (1985) Sys­

temic Perspectives on Discourse , Volume 1. Norwood: Ablex.
Cross, Marilyn (1991) Choice in Text: A

Systemic-Functional Approach to Computer
Modelling of Variant Text Production, Ph.D. thesis submitted June 1991, Macquarie Uni­versity.

Cummings, Michael - Al Regina (1985) "A PROLOG parser-generator for Systemic anal­ysis of Old English Nominal Groups", in Ben­son and Greaves, 1985.
Davey, Anthony (1978) Discourse Production:

a computer model of some aspects of a
speaker, Edinburgh: Edinburgh University Press. Published version of Ph.D. disserta­tion, University of Edinburgh, 1974.

Fawcett, Robin P. - Gordon H. Tucker (1990) "Demonstration of GENESYS: a very large se­mantically based Systemic Functional Gram­mar". In Proceedings of the 13th Int. Conf.
on Computational Linguistics (COL/NG '90) .

Halliday, M. A. K. (1985) Introduction to Func­
tional Grammar, London: Edward Arnold.

Halliday, M. A. K. - R. Hasan (1985) Cohesion
in English , London: Longman.

Hudson, R.A. (1971) English Complex Sentences, North-Holland.
Kasper, Robert (1986) "Systemic Grammar and Functional Unification Grammar" In Benson, J. and Greaves, W., Selected Papers from the

12th International Systemics Workshop, Nor­wood, N.J: Ablex.
Kasper, Robert (1987a) Feature Structures: A

logical Theory with Application to Language

O 'DONNELL

Analysis , PH.D. dissertation, University of Michigan
Kasper, Robert (1987b) "A Unification Method for Disjunctive Feature Descriptions" in Pro­

ceedings of the 25th Annual Meeting of the As­
sociation for Computational Linguistics , held July 6-9, 1987 Stanford, California.

Kasper, Robert (1988a) "An Experimental Parser for Systemic Grammars", Proceedings
of the 12th Int. Conf. on Computational Lin­
guistics , Budapest: Association for Computa­tional Linguistics.

Kasper, Robert (1988b) "Parsing with Systemic Grammar", Mimeo.
Kasper, Robert (1989) "Unification and Classifi­cation: An Experiment in Information-Based Parsing" In Proceedings of the International

Workshop on Parsing Technologies , pages 1-7, CMU, Pittsburgh.
Kasper, Robert (1990) "Performing Integrated Syntactic and Semantic Parsing Using Classi­fication" paper presented at Darpa Workshop on Speech and NL Processing, Pittsburgh, June 1990.
Kay, Martin (1979) "Functional Grammar" in

Proceedings of the Fourth Annual Meeting of
the Berkeley Linguistics Society .

Kay, Martin (1985) "Parsing In Functional Unifi­cation Grammar" in Dowty D., L. Karttunen , and A . Zwicky, (Eds): Natural Language
Parsing , Cambridge University Press, Cam­bridge, England.

Mann, W. C. and C. I. M. Matthiessen (1985) "Demonstration of the Nigel Text Generation Computer Program". in Benson and Greaves, 1985
Martin, James (1992) English Text: System and

Structure , Amsterdam: Benjamins.
Matthiessen, C. I. M. and W. C. Mann (1985) "NIGEL: a Systemic Grammar for Text Gen­eration" in Benson and Greaves, 1985
Matthiessen, C. I. M. and J. Bateman (1992)

Text Generation and Systemic Functional
Linguistics: Experiences from English and
Japanese. London: Pinter Publishers.

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

McCord, Michael (1977) Procedural Systemic Grammars in Int. J. Man-Machine Studies, 9, 255-286, London: Academic Press.
Mellish, Chris (1988) "Implementing Systemic Classification by Unification" , Computational Linguistics , Vol. 14, Number 1 , Winter 1988.
O'Donoghue, Tim F. (1991a) "The Vertical Strip Parser: A lazy approach to parsing" Research Report 91 . 15 , School of Computer Studies, University of Leeds, Leeds, UK.
O 'Donoghue, Tim F. (1991b) "A Semantic Inter­preter for Systemic Grammars" in Proceedings of the AGL Workshop on Reversible Gram­mars , University of California at Berkeley,

217
June 1991 .

Patten, Terry and Graeme Ritchie (1986) "A formal model of Systemic Grammar" , paper presented at 3rd International Workshop on Language Generation, Nijmegen, August 19-23, 1986.
Patten, Terry (1986) Interpreting Systemic Grammar as A Computational Representa­tion: A Problem Solving Approach to Text Generation, Ph. D. dissertation, University of Edinburgh.

Winograd, Terry (1972) Understanding Natural Language . New York: Academic Press.

218 O �D0NNELL

