
The Use of Bunch Notation in Parsing Theory

Rene Leerll1!akers

Institute for Perception Research
P.O. Box 513, 5600 MB EINDHOVEN

email: leermake©prl . philips . nl

Abstract Much of mathematics, and therefore much of computer science, is built on the notion of sets. In this paper it is argued that in parsing theory it is sometimes convenient to replace sets by a related notion, bunches. The replacement is not so much a matter of principle, but helps to create a more concise theory. Advantages of the bunch concept are illustrated by using it in descriptions of a formal semantics for context-free grammars and of functional parsing algorithms.
1 Introduction

The semantics of a context-free grammar can be given in a number of ways. In the three most important interpretations, a grammar is viewed as a rewriting system, or as a set of inequalities, or as an abstract program. The latter two in­terpretations are discussed in this paper, using a variant of set notation, called . bunch notation. Subsequently, a new Earley-like recursive-ascent parser is formulated with the same notation. There are two major differences between sets and bunches. One difference is that a bunch with one element is identified with that one element (the singleton property). Moreover, a function or operator that is defined on some domain may be
applied to a bunch of elements that belong to that domain. Such an application, say J(X) , causes the function f to be applied to each separate el­ement of the bunch X, after which the results are combined in a bunch, which is the result of J(X) . This is called the distributivity property of bunches. To define bunch-valued expressions, a variant of the notation of (Norvell - Hehner, 1992) is used. A language can be defined as a bunch of strings rather than as a set of strings. Then, both the singleton and · distributivity properties of bunches simplify the formalization of the nat-

ural interpretation of context-free grammars, in which grammar rules are seen as constraints on the possible assignments of languages to nonter­minals.
Multiple-valued (recursive descent and ascent) parsing functions can be defined as bunch-valued functions. Again, both the singleton and distribu­tivity properties have advantages. The singleton property smoothes the transition from parsing al­gorithms for general grammars to deterministic algorithms for LL(k) and LALR(k) grammars . The distributivity property makes it possible to write succinct formulae in bunch notation, that 'blow up' if translated into set notation. Finally, Norvell - Hehner's (1992) bunch notation has an advantage over standard set notation when it comes to defining functional algorithms, in that it resembles traditional notation for specifying pro­grams. In particular, the definition of recursive parsing algorithms is in terms of a construct akin to Dijkstra's guarded commands (Dijkstra, 1976).
The paper starts with an introduction to bunch notation. The first application of the nota­tion is a reformulation of the natural semantics of context-free grammars. Subsequent sections give functional definitions of known recursive descent algorithms and a new recursive ascent recognition algorithm.

135

136

2 Bunch notation
In standard mathematics, a (total) function f A 1-+ B associates one element of B with each element of A. A function is a special case of a relation, which may associate any number of ele­ments of B with each element of A. Conversely, each relation can be seen as a special kind of a function too: a set-valued function that, if ap­plied to a E A, yields the set of elements of B associated with a by the relation. Alternatively, a relation may be viewed as a nondeterministic function: of all elements of B related to some el­ement a E A, the nondeterministic function arbi­trarily picks one. The set-valuedness of functions associated with a relation has one peculiar consequence. Take a function f : A 1-+ B, and view it as a rel�tion with the special property that it relates only one element of B to each element of A. Next, use the mapping from relations to set-valued or nondeterministic functions to view the relation as a function again. Then one would expect to re-obtain the original function f. If the relation is mapped to a nondeterministic function, this is indeed the case: the function happens to be deterministic and is equal to f. Using standard sets, however, the set-valued function associated with the relation associated with f, produces a set with exactly one element (a singleton) where
f produces that element. This suggests that it is better not to see relations as set-valued functions, but rather as bunch-valued functions. A bunch is a set with some non-standard properties, so that it can be interpreted in an alternative way: a bunch is also a process that nondeterministi­cally produces one of its values. The alternative interpretation implies the following three proper­ties of bunches:

1. The process that corresponds to a bunch with one value (a singleton) is determin­istic: it can only produce that one value. Therefore: a singleton is identified with its only element.
2. The process that corresponds to a bunch produces definite values. Therefore: ele­ments of bunches can not be bunches with cardinality f:. 1.
3. If f is a function and x is a bunch that can produce the values e1 ... ek, then f(x)

LEERMAKERS

can take the values f(e1) ... f(ek)- There­fore: functions distribute over bunches.
With these properties, a bunch simultaneously al­lows two interpretations. In the set-valued inter­pretation it is just a collection of values. In the nondeterministic interpretation one value is ran­domly taken out of this collection. Bunches are the result of bunch expressions. Given two bunch expressions x and y, their bunch union xly denotes a process that could either pro­duce a value of x or a value of y. Bunch union has the same properties as set union: it is · asso­ciative, commutative and idempotent. The main difference with sets is that a bunch is not 'one thing' if it has more than one element. This is why a bunch with many elements cannot be one element of another bunch: it can only be many elements of another bunch. This is also why a bunch with many elements cannot be passed to a function or operator as one thing. Here are a few examples of equalities for bunch expressions that illustrate the above:

3 + (1 12) = 4 15 (3 14) + (1 12) = 4 15 1 5 16 = 4 15 16
cos(1rlO) = -1 1 1 (1 12) > 3 = false lfalse = false

If e is one of the values a bunch expression x can take, we write e � x. Here and henceforth, e is a definite value or, what is the same, a singleton bunch. As definite values are also bunches, and elements of bunches cannot be bunches with car­dinality unequal to one, the distinction between E and � is no longer needed: if, for all e, e � x implies e � y then we write x +-'- y. In words, x is a sub-bunch of y, or, x is smaller than y. Bunch expressions can be simple or com­plex. The simplest simple bunch expression is the empty bunch null. It is the identity of bunch union. Other simple bunch expressions are enu­merations. The following is a formal definition of simple bunch expressions with elements from a (possibly infinite) set of definite values:
1. null is a simple bunch expression;
2. if e is a definite value then e is a simple bunch expression;
3. if x and y are simple bunch expressions then xly is a simple bunch expression.

THE USE OF BUNCH NOTATION IN PARSING THEORY 137

A simple bunch expression may be rewritten
into an equivalent simple bunch expression using (x jy) j z = x j (y j z) = x jy jz , x jy = y jx, x jx = x
and x lnull = x . Assuming some ordering on the
set of definite values, it is not difficult to define
a canonical form for each simple bunch expres­
sion, which may serve as a unique representation
of the bunch denoted. The bunch expression all
denotes the smallest bunch such that e +- all for
all definite values e .

Complex bunch expressions are constructed
with variables. Unless stated otherwise, variables
have types that consist of definite values only.
Such variables are called definite; they cannot
be bound to bunches with cardinality unequal to
one. Given a proposition P and bunch expres­
sions x and y, the expression

if P then x else y (I)

is a complex bunch expression. I t contains free

variables if P, x, or y contain free variables (non­
tri vial P do) . It will be clear that for each as­
signment of values to the variables the complex
expression (I) is equivalent to x if P is true and to
y otherwise. Free variables in bunch expressions
can be bound by A-abstraction. If i is a variable
and x is a bunch expression, then

Ai . X

is a bunch-valued function. For any definite value
e,

Ai • x(e) di Substitute e for free variables i ev­
erywhere in x .

This definition holds only for definite values e .
Note, therefore, that i t i s important to distin­
guish between functions and expressions. In ex­
pression x in Ai · x, variable i may occur more
than once. If function Ai · x is applied to a
bunch y, then the distributivity of functions over
bunches means that the function applies to each e +- y separately. That is, if x = mult(i , i) then Ai · x(2 13) = mult(2, 2) l mult(3, 3) ; mult(2,3) is
not included. In jargon, our functional language
is characterized as having a semantics such that
functions are not unf oldable: a function invoca­
tion cannot be textually replaced by the expres­
sion that defines the function, if function parame­
ters are not definite (Sondergard - Sesoft , 1990).

This is practically all we need to know about
bunches. Let us just add some notations:

P t> x di if P then x else null
. def .

let i · x = Ai · x(all)
The bunch all will in general be infinite, so that
a function that distributes over it might produce
an infinite bunch as well. In our application, how­
ever, the structure of bunch expressions will be
such that let's produce only finite bunches.

The following laws are useful for manipulating
bunch expressions:

(Pi V A) t> x = (Pi t> x) l (P2 t> x) , (3)
let i · (i +- x t> l(i)) = l(x) . (4)

In (4) it is assumed that i does not occur free in x. These laws are easy to prove: the first two
follow from the definition of t> , and the third
follows from the distributivity of function appli­
cation over bunches.

Normally, set-valued functions are defined us­
ing set comprehension according to the schema

l(X) = {A(X, Y) l3zP(X, Y, Z) } , (5)

where P is a predicate, A is a function and

X, Y, Z are variables or sets of variables. Now let
us define a related bunch-valued function, called
lb :

lb = AX · (letY · (letZ · (P(X, Y, Z) t> A(X, Y))))
(6) It follows that 1 and lb are equivalent if the latter

is interpreted as producing a set . A nice aspect of
(6) is that its algorithmic content is more explicit
than the algorithmic content of (5); because let
is defined as a function application to all, it is
explicit that (6) involves searching over all values
of Y, Z.

In this paper we will use a notational conven­
tion that removes the Ns and the let 's from def­
initions such as (6) . Instead of (6) we write

lb(X) = P(X, Y, Z) t> A(X, Y) . (7)

138 LEERMAKERS .

So >i.X • has changed into a formal argument on sult" :
the left-hand side and we adopt the convention that free variables at the right-hand side (here Y,Z) are bound by let 's. The scope of such an implicit let is in practice always clear: it is from the first occurrence of the variable usually until
" I '' , or else until the end of the bunch expression. Thus, whenever an expression P t> x is encoun­tered in this paper, with some free variables, its meaning is that all possible values of the free vari­ables must be tried to make the guard P true and all results x must be combined in one bunch. Lastly, note that (7) is equivalent to

fb(X) = 3z (P(X, Y, Z)) t> A(X, Y) .
That is, both functions produce the same bunch for every X. The algorithmic interpretation ·of both formulae is not exactly the same, however (see below). Therefore, if a variable appears only in a guard, like Z in (7), it is implicitly subject to existential quantification.

Algorithmic interpretation

J(X) = result :=null; for all Yi such that Pi (X, Yi) do result:=result I A1 (X, Yi) od; for all � such that P2 (X, Y2) do result :=result I A2(X, Y2) od;

for all Yk such that Pk (X, Yk) do result:=result I, Ak (X, Yk) od; return result
The invocations Ai (X, Yi) and function applica­tions inside Pi are to be computed in the same vein. In this algorithmic interpretation, a func­tion may or may not terminate. If it does not ter� minate, J(X) does not define an algorithm. This may happen if the definition of J(X) is circular, i.e. if the' computation of some Pi or Ai involves J(X) again. The above func�ion f is deterministic if for each X at most one proposition Pi(X, �) can be true, for only one value of �, and function Ai is deterministic.

In what follows, bunch-valued functions are either known computable functions, or their definitions 3 have the following general format: The natural semantics of

grammars

J(X) = Pi (X, Y1) t> A1 (X, Y1) I P2(X, Y2) t> A2(X, Y2) I

where X is a collection of input parameters and Yi are collections of variables subject to let quantifi­cation. Pi are predicates and Ai are bunch-valued functions. Both Pi and Ai may involve other applications of bunch-valued functions. The in­tention is that bunches are interpreted as collec­tions: bunch-valued functions produce all their results simultaneously. Function f then has a simple algorithmic (imperative) interpretation, which makes use of a bunch-valued variable "re-

Within the family of rewriting systems, context­free grammars have a distinguishing property : they have a declarative meaning. This means that a grammar can be understood not only by pro­ducing a sample of trial sentences with it, but also by viewing it as a collection of static statements about the language to be defined. This is the un­derlying reason for their intelligibility and their usefulness. In the natural interpretation, gram­mar symbols are seen as variables over languages and grammar rules as stipulations of relations be­tween these variables. A grammar, in this view, is analogous to a collection of arithmetic inequal­ities with variables. Take, for instance, the fol­lowing inequalities:
k � l + 3, l � 5.

THE USE OF BUNCH NOTATION IN PARSING THEORY 139

A formal interpretation of this is that there are two symbols k and l here, that there is some as­signment function h from these symbols to num­bers, and that the inequalities restrict the possi­ble values of h, via
h(k) � h(l) + 3, h(l) � 5.

Of course, there are still many functions h that satisfy these constraints but there is one that as­signs the smallest possible numbers to the sym­bols: h(k) = 8, h(l) = 5.
Notation
A context-free grammar is a four-tuple G = (VN , Vr , P, S), where S is the start symbol, VN is the bunch of nonterminals, Vr is the bunch of terminals. Furthermore, V = V N IVr is the bunch of grammar symbols. Relating to grammar symbols, the following typed variables are used: x, y .- Vr , �, TJ, p, (.- Vr , A, B .- VN , X, Y .- V , et., /3, 1, 8, µ, v .- V *. Lastly, P is the collection of grammar rules. A grammar rule for nonterminal A, with right-hand side et., is denoted as A --+ et.. If /3 can be derived from et. in any number of steps, we write a � /3.
Languages
A language is a bunch of strings of terminals, i.e. a subbunch of v,; . Concatenation is an operation that is defined for (pairs of) strings. Therefore, it distributes over languages L and M, if these are concatenated:

LM = � .- L A p.- M t> �P- (8)

This equation is referred to as the definition of language multiplication, although it is not really a definition: it follows from the distributivity prop­erty.
The interpretation
A nonterminal can be seen as a variable of type language (like k, l are variables of type integer) , a terminal is a constant language (like 3,5 are con­stant integers) . Just like in the arithmetic exam­ple, we assume an assignment function that per­forms the mapping from symbols to their inter­pretation. This function is called La, as its value will be determined by the grammar G. Take, for

example, the grammar rule A --+ xBy. In the natural interpretation this rule means
xLa(B)y .- La(A).

That is, the grammar rule is a constraint on La . In principle, La need only apply to nonterminals, but it is convenient to extend it , via
La(x) = x, for all x .- Vr,

to all grammar symbols. Moreover, we further ex­tend it to arbitrary strings of grammar symbols, via La(a/3) = La(a)La(/3), La(€) = €,
so that the following equalities hold true:

(9)

xLa(B)y = La(x)La(B)La(y) = La(xBy).
Equation (9) states that La not only maps grammar-symbol strings into languages: it also maps an operation on its input objects (concate­nation) to an operation on its output objects (lan­guage multiplication) . In other words, the ex­tended La is a homomorphism. The interpretation of any grammar rule A --+ et. now reads

La(et.) .- La(A).
In other words, the language assoc�ated with A and the language associated with et. are related: the latter is a sub-bunch of the former. Just like in the arithmetic example, a collection of such in­equalities does not define the assignment function uniquely. There is one La, however, that assigns the smallest possible languages to grammar sym­bols. This smallest homomorphism is what the grammar is intended to define. Inspired by the arithmetic analogue one may write X instead of La(X) and insist that A --+ et. means et. .- A: et. is a sub-bunch of A. Rules A --+ et.1 , . . . ,A --+ Ct.k , for the same non terminal, are often abbreviated to A --+ et.1 1 - - - let.k . This is very natural here; it means that et.1 1 - - - lak is a sub­bunch of A. A rule A --+ et.1 1 - - - let.k involves a list of alterna­tive strings. For completeness, and for later ref­erence, let us give the formal semantics of more general rules A --+ a, with a denoting arbitrary regular expressions. As above, this semantics is La(a) .- La(A), where the application of La to

140
regular expressions is defined by (a, b are regular expressions)

(concatenation) (alternation) (optionality) (iteration)
La(ab) = La(a)La(b) , La(alb) = La(a) I La(b) , La((a)) = f I La(a) , La({a}) = f I La({a})La(a) , . (10) where the brackets () �ere used for optionality instead of the more usual [] to avoid confusion later on.

4 General recursive descent

parsing

Given some input string { of terminal symbols, a grammar determines for each string of grammar symbols a whether or not { can be derived in any number of steps from a, i.e. whether a � {. Also, for each substring 1/ of { it may be deter­mined whether or not a � 1/· Let us define for each a a bunch-valued recognition function [a] from Vr to Vr , as follows:
[a]({) = a � 1/ I\ ! = 1/P t> p. (11)

Stated differently, this defines a function [·] that operates on two strings of grammar symbols, such that [·](a, !) = [a](!). Similar recognition func­tions, with lists instead of bunches, were intro­duced in (Wadler, 1985). Note that f � fS] (!) , equivalent to S � !, means that ! is a correct sentence. In (1 1), the argument is split into two parts, the first of which is derivable from a. The second part is output by the function. It follows, for all a and /3, that
[a/3](!) = a/3 � 1/ I\ ! = 1/P t> P

= a � 1/1 A ! = 1/1 Pl A /3 � 1/2 /\ Pl = TJ2P t> p
= a � 1/1 A ! = 1/1 Pl t> (/3 � 1/2 /\ Pl = 1/2P t> p)
= Pl � [a](!) t> [,8](p1)
= [,B]([a]({)).

Here (2) and (4) were used in the second and fourth transitions, respectively. Thus, [a,8] = [a] [/3], where [a] [/3] is the composition of func­tions [a] and [,B], defined by
(Jg) (!) = g(J(!)) . (12)

LEERMAKERS

In other words, a = X1 • • • Xk implies [a] . = [X1] .. . [Xk] and [€]({) = !- In algebraic terms, the mapping [·] is a homomorphism from V* to a function space of bunch-valued functions. As the functions [a] are compositions of functions [X], an implementation for the latter implies an im­plementation of the former. Now,
[X] (!) = X � 1/ I\ ! = 1/P t> p

= ((X � Vr I\ X = 11) V (X -+ /3 A /3 � 11)) A ! = TJP t> P = (X � Vr " e = Xp t> p) I (X -+ /3 A /3 � 1J I\ ! = 1/P t> p)
= (X � Vr " e = Xp t> p) I

(X -+ /3 t> (,8 � 1/ I\ ! = 1/P t> P))
= (X � Vr A ! = Xp t> p) I · (X -+ ,8 t> [,B]({)).

Here (3) was used to eliminate the disjunction V and (2) to eliminate a conjunction A. To summa­rize, we have, for terminals x and nonterminals A: [x](!) = ! = xp t> p, [A]({) = A -+ a t> [a](!), [XY/3]({) = [Y,B]([X](!)), (13)
[f](e) = e.

Note the use of the distributivity property of bunches in the third line. If rules have regular expressions at their right-hand sides, all this is easily extended (compare with (10)):
[x](!) = ! = xp t> p, [A](!) = A -+ a t> [a](!), [ab] (!) = [b]([a](!)), [alb]({) = [a]({) I [b]({), (14) [(a)](e) = e I [a](!), [{a}]({) = e I [{a}]([a](e)), [f](e) = e.

The right-hand sides of lines three to six in (14) depend on a, b only via the functions [a] and [b]. For this reason, these definitions are sometimes seen as applications of combinators, i.e., higher­order functions. With f, g denoting arbitrary bunch-valued functions from some domain (e.g.,
v;) to itself, {!}, [!], f ig are other such func­tions, defined by

(J ig)(!) = !(!) I g(!) , (alternatives f, g) UHe) = e I {f}(J(e)), (iterative f)
UH e) = e I f (e). (optional f)

THE USE OF BUNCH NOTATION IN PARSING THEORY 141
It follows that [al b] = [a] l [b] , [{a}] = { [a] } , and [(a)] = ([a]) . Finally, [ab] = [a] [b] , where [a] [b] is the functional composition of [a] and [b] , defined in (12) . In other words, the recognition function [a] for regular expression a can be obtained by replacing every grammar symbol X that occurs in it by its function [X] and interpreting all con­structors in the regular expression (alternation, concatenation, iteration, optionality) as combi­nators of recognition functions. For a detailed exposition of combinator parsing, see (Hutton, 1992) . (Norvell - Hebner, 1992) issued a warn­ing that higher-order programming with bunch­valued functions may lead to paradoxes that were noted by (Meertens, 1986) in the case of nonde­terministic functions. The above combinators do not suffer from problems of this kind.
5 Deterministic recursive

descent parsing

The singleton property of bunches is notation­ally convenient if one applies a general parsing technique to grammars for which the technique happens to provide a deterministic recognizer. If the general technique is defined with set-valued recognition functions, in the deterministic case all these functions produce sets with at most one value. If a function produces the empty set , this means that an error has been detected. If one works with bunch-valued functions instead, in a deterministic recognizer these produce null if an error has occurred and definite values otherwise. There is a standard method to make parsing algorithms more deterministic: the addition of look-ahead (Aho - Ullman, 1977) . The applica­tion of look-ahead techniques to recursive descent parsing involves two functions, first and follow:

first(a) = x � Vr I\ a � x/3 t> x,
follaw(X) = A � o:X/3 t> Jirst(/3) I A � o:X/3 A /3 � f t> follaw(A).

Although follow not necessarily terminates if it is interpreted as an algorithm, it uniquely de­fines a smallest bunch follow(X), for every X. It is convenient to add to each grammar the rule S' � S ..L, where S' and ..L are new symbols which appear only in this rule. S' is the new start sym­bol and ..L is formally added to Vr. Of course, any

correct input must now end with ..L. The above then implies that .1� follow(S), and it is guar-anteed that follow(X) =I- null if :30,0 (8 � aX {3). If X is one of the added symbols S' , ..L then follow(X) = null. It is not difficult to verify that if for A =I- S' function [A] is redefined as
[A](e) = A � a " e = XTJ " (x � first(a) V (a � f A x � follaw(A))) t> [a](e),

the result of [S'] (e) is not affected. If for all A =I- S' and every x at most one a exists that makes the guard true, the choice of grammar rule is always unique. This is the case for LL(l) gram­mars. For such grammars, the look-ahead tech­nique makes each invocation [A] (e) produce either null if an error in the input string has been en­countered, or a string of terminals that still have to be parsed; the general algorithm specializes to a fully natural deterministic recognizer.
6 Recursive ascent parsing

Bunch notation is equally useful for bottom-up parsing. To illustrate this, let us start from the following specification of an Earley-like parser (o � (v; ivNv;)) =
[A � a · {31(8) = 8 � v; " /3 � f t> A8 I (15) 8 = X(I\ /3 � XTJ I\ (= TJP t> Ap.

If applied to a string e of terminal symbols, this specification reduces to

This means that, after adding a rule S' � S to the original grammar, it follows that
s' � [s' � -s] (e)

if and only if e is a correct sentence. The in­tuition behind this is that a function invocation [A � a · {3](8) investigates ,which prefixes of 8 can be rewritten to /3, in a bottom-up way (using grammar rules from right to left) . If a non-empty prefix can be found, this corresponds to a part of the input sentence, which is a string rewritable to the first symbol of 8 (i.e. X) followed by the remainder of the prefix (which are terminals) . If

142
/3 � f, the prefix may be empty. Assuming that the function is invoked only if a directly preced­ing part of the input sentence was rewritable to et , it is deduced that this preceding part, followed by the part that corresponds to the found prefix of 8 , "can be rewritten into A. The function thus returns A, followed by the part of the input sen­tence that has not yet been parsed. If more than one prefix can be found, the function delivers a bunch. We strive for an implementation of (15) of the recursive ascent type. To this end, we note that f3 � X 1/ means that either X is introduced by a grammar rule B -+ µXv, with µ � f, or X is already in /3: f3 = µXv, with µ � €:

[A -+ a · {3) (8) = o +- v,;. " /3 � € t> Ao I 8 = X (A /3 = µXv A µ � € A v � 1/ A
' = 1/P t> Ap I 8 = X' " f3 � B111 " B -+ µXV " µ � € /\ V � 1/2 I\ (= 1/21/lP t> Ap.

After a few elementary rewriting steps using (15), one finally obtains
[A -+ a · /3](8) = o +- v,;. " f3 � € t> Ao I 8 = X (A /3 = µXv A µ � € t> [A -+ aµX · v](() I (16)

* X * 8 = X (A /3 -+ B1 A B -+ µ v A µ -+ € t> [A -+ a · f3]([B -+ µX · v](()).
The conciseness of the last line is due to the dis­tributivity property of bunches. In deriving (16) a critical need is that not B +- VT, in other words, that terminals and nonterminals are disjoint. Note that if a function [A -+ a · /3] is invoked by another function, then its argument 8 is in v,;. . It may recursively call itself with rewritten ver­sions of this 8, i.e. , with prefixes of 8 replaced by some non terminal B, until this B appears in /3 in such a way that the symbols before B (in /3) may derive the empty string. The recognizer terminates for all non-cyclic grammars. Note that the conditions

/3 � € /3 = µXv i\ µ � f 37(/3 � B1) A B -+ µXv A µ � €
are independent of the input string, and for ev­ery /3, X the values of µ, v, B that make them

LEERMAKERS

true can be computed· before parsing. To get an efficient implementation such pre-computation is to be compounded with function memoization (Leermakers, 1992; 1993). In the case of a grammar without €-rules, (16) becomes even simpler:
[A -+ et · /3)(8) = 8 +- v,;. " /3 = f t> Ao I 8 = X(A /3 = Xv t> [A -+ aX - v](() I 8 = X (A /3 � B1 A B -+ Xv t> [A -+ et · /3]([B -+ X · v](()).
As far as I know, the recognizer of this sec­tion is a new variant of Earley-like parsing. In (Leermakers, 1992) a closely related algorithm was given, with two functions per dotted rule, instead of one. The functional parsing algorithm given in (Matsumoto et al. , 1983) is also quite similar to ours, even though it does not involve dotted rules. For a discussion of the relation of the above algorithm with the standard Earley ., parser , see (Leermakers, 1993). An analogous LR parser, with one function for each state (and, of course, without a parse stack), is also constructed in (Leermakers, 1993).

7 Conclusions

This paper should serve two purposes. F irstly, it should show the beauty of functional parsing the­ory. Secondly, the paper is meant to establish, by way of illustrative examples , that the bunch con­cept is a mathematical notion as respectable as sets and lists. The reader is invited to translate any of the sections into set notation and observe the notational burden that he/she has to add . One could argue that almost the same con­ciseness can be obtained using normal sets and an extra ('map') operator to distribute functions over sets. However, one should keep in mind that the bunch notion is more primitive than its set relative: a bunch is an aggregation, a set is an en­capsulated aggregation (Hebner, 1993). It is the encapsulation aspect of sets that leads to concep­tual problems, to students (a set that contains nothing is not nothing) as well as to scientists (the set that contains everything, including itself, leads to a paradox). Being essentially simpler ,

THE USE OF BUNCH NOTATION IN PARSING THEORY 143
bunches are not troubled by such intricacies. In practice, it is fine to implement bunches with sets, as long as one keeps in mind the difference be­tween a notion and its implementation. After all, the possibility of implementing sets in terms of lists does not mean that sets can be dispensed with. One distinguishing aspect of bunch-valued functions, which goes beyond notational issues, is that normal functions are embedded in them. "The conciseness of bunch notation is not its only virtue. Functions defined with bunch nota­tion look more 'algorithmic' than their transla­tion into set notation, which is not unimportant if one wants t.o define an algorithm, if only for pedagogical reasons. The notion of bunches has been introduced in (Hehner, 1984). Sets with nondeterministic in­terpretation, like bunches, were also proposed in (Hughes - O'Donnell, 1990). In (Wadler, 1992) a kind of bunch-valued lambda-calculus is dis­cussed. Bunch-valued functions also appear in (Meertens, 1986; Bauer et al., 1987; Norvell -Hehner, 1992), as nondeterministic specifications of programs. I refer to (Hehner, 1993) for further elabora­tions on the bunch theme, and many other ap­plications. This work also proposes to make a distinction between strings and sequences, which also exists between bunches and sets: strings have the singleton property, but sequences do not. As is apparent from the notation for elements of V *, it is natural to make no distinction between gram­mar symbols and elements of V* that have length

one. Thus, elements of V * are strings , not se.: quences. In (Leermakers, 1993) bunch notation is adopted as a tool for the formulation of parsing theory, in the spirit of this paper. In this book, bunches are also used in the theory of attribute grammars. In conventional attribute grammars, each attribute has an associated function that computes its value in terms of the values of other attributes. It is very natural to take such an at­tribute function to be bunch-valued. If the func­tion produces null, this means that the computa­tion of its attribute fails. If it produces a bunch with more than one element, attribute computa­tion is ambiguous. Bunch-valued attribute func­tions are particularly apt for natural-language parsing, since both failure and ambiguity of at­tribute computation are natural phenomena in this application of attribute grammars.

Acknowledgement

I thank Theo Norvell for his useful comments on the first draft of this paper , and Lex Au­gusteijn, Paul Jansen, Frans Kruseman Aretz and Mark-Jan Nederhoffor their constructive remarks about the second draft. Triggered by (Norvell - Hehner , 1992), it was Lex Augusteijn who in­spired me to use bunches for the kind of parsing algorithms we are both engaged in.

144

References

Aho A.V. - J.D. Ullman (1977) Principles of Compiler Design. Reading, MA: Addison­
Wesley.

Bauer F .L. - H. Ehler - A. Horsch - B.
Moller - H. Partsch - 0. Puakner - P. Pep­
per (1987) The Munich Project GIP: Volume II: The Program Transformation System CIP­
S. Lecture Notes in Computer Science 292.
Berlin: Springer-Verlag.

Dijkstra E.W. (1976) A Discipline of Program­ming. London: Prentice Hall.

Hehner E.C.R. (1984) The Logic of Program­ming. London: Prentice-Hall.

Hehner E.C.R. (1993) a Practical Theory of Pro­gramming. Berlin: Springer-Verlag.

Hughes J. - J. O 'Donnell (1990), "Express­
ing and reasoning about non-deterministic
functional programs" . In: K. Davis and
J. Hughes (Eds) , Functional Programming.
Berlin: Springer-Verlag.

Hutton G . (1992) "Higher-order functions for
parsing" . In: Journal of Functional Program­ming 2(3) , 323-343.

LEERMAKERS

Leermakers R. (1992) "A recursive ascent Earley
parser" . In: Information Processing Letters
41 , 87-91 .

Leermakers R. (1993) The Functional Treatment of Parsing. Amsterdam: Kluwer Academic
Publishers.

Matsumoto Y. - H. Tanaka - H. Hirakawa -
H. Miyoshi - H. Yasukawa (1983) "BUP: a
bottom-up parser embedded in Prolog" New Generation Computing 1 (2) .

Norvell T.S. - E.C.R. Hehner (1992) "Logical
Specifications for Functional Programs" . In: Proceedings of the Second International Con­ference. on the Mathematics of Program Con­struction. Oxford: Oxford University Press.

Sondergard - Sesoft (1990) "Referential Trans-.
parency, Definiteness and Unfoldability" . Act a Inf ormatica 27, 505-51 7.

Wadler P. (1985) "How to replace failure by a list
of successes" . In: Conference on Functional Programming Lang;uages and Computer Ar­chitecture (Nancy, France) ; LNCS 201 . Berlin:
Springer-Verlag.

Wadler P. (1992) "The essence of functional pro­
gramming" , In: 19th Annual Symposium on Principles of Programming Languages Santa
Fe.

