
1

GLR* -

An Efficient Noise-skipping Parsing Algorithm

For Context Free· Grammars

Alon Lavie and Masaru Tomita

School of Computer Scienc�, Carnegie Mellon University
5000 Forbes- Avenue, Pittsburgh, PA 15213

email: lavie©cs . emu . edu

Abstract

This paper describes GLR*, a parser that can parse any input sentence by ignoring unrec­ognizable parts of the sentence. In case the standard parsing procedure fails to parse an input sentence, the parser nondeterministically skips some word(s) in the sentence, and returns the parse with fewest skipped words. Therefore, the parser will return some parse(s) with any input sentence, unless no part of the sentence can be recognized at all. The problem can be defined in the following way: Given a context-free grammar G and a sentence S, find and parse S' - the largest subset of words of S, such that S' E L(G) . The algorithm described in this paper is a modification of the Generalized LR (Tomita) parsing algorithm [Tomita, 1986] . The parser accommodates the skipping of words by allowing shift operations to be performed from inactive state nodes of the Graph Structured Stack. A heuristic similar to beam search makes the algorithm computationally tractable. There have been several other approaches to the problem of robust parsing, most of which are special purpose algorithms [Carbonell and Hayes, 1984) , [Ward, 1991] and others. Because our approach is a modification to a standard context-free parsing algorithm, all the techniques and grammars developed for the standard parser can be applied as they are. Also, in case the input sentence is by itself grammatical, our parser behaves exactly as the standard GLR parser. The modified parser, GLR*, has been implemented and integrated with the latest version of the Generalized LR Parser/Compiler [Tomita et al. , 1988] , [Tomita, 1990] . We discuss an application of the GLR* parser to spontaneous speech understanding and present some preliminary tests on the utility of the GLR* parser in such settings.
Introduction and practically unimportant.

In this paper, we introduce a technique for sub­stantially increasing the robustness of syntactic parsers to two particular types of extra- gram­maticality: noise in the input, and limited gram­mar coverage. Both phenomena cause a common situation, where the input contains words or frag­ments that are unparsable. The distinction be­tween these two types of extra� grammaticality is based to a large extent upon whether or not the unparsable fragment, in its context, can be considered grammatical by a linguistic judgment. This distinction may indeed be vague at times,

Our approach to the problem is to enable the parser to overcome these forms of extra­grammaticality by ignoring the unparsable words and fragments and focusing on the maximal sub­set .of the input that is covered by the gram­mar. Although presented and implemented as an enhancement to the Generalized LR parsing paradigm, our technique is applicable in general to most phrase- structured based parsing for­malisms. However, the efficiency of our parser is due in part to several particular properties of GLR parsing, and may thus not be easily trans-
123

124

£erred to other syntactic parsing formalisms.
The problem can be formalized in the follow- ,

ing way: Given a context-free grammar G and a
sentence S, find and parse S' - the largest subset
of words of S, such that S' E L(G) .

A naive approach t o this problem i s t o exhaus­
tively list and attempt to parse all possible sub­
sets of the input string. The largest subset can
then be selected from among the subsets that are
found to be parsable. This algorithm is clearly
computationally infeasible, since the number of
subsets is exponential in the length of the input
string. We thus devise an efficient method · for
accomplishing the same task, and pair it with
an efficient search approximation heuristic that
maintains runtime feasibility.

The algorithm described in this paper, which
we have named GLR*, is a modification of
the Generalized LR (Tomita) parsing algorithm.
It has been implemented and integrated with .
the latest version of the GLR Parser/Compiler
[Tomita et al. , 1988) , [Tomita, 1990) .

There have been several other approaches to
the problems of robust parsing, most of which
have been special purpose algorithms. Some
of these approaches have abandoned syntax as
a major tool in handling extra-grammaticalities
and have focused on domain dependent seman­
tic methods [Carbonell and Hayes, 1984] , [Ward,
1991] . Other systems have constructed grammar
and domain dependent fall-back components to
handle extra-grammatical input that causes the

LAVIE - TOMITA

main parser to fail [Stallard and Bobrnw; 1992] ,
[Seneff, 1992).

Our approach can be viewed as an attempt
to extract from the input the maximal syntactic
structure that is possible, within a purely syn­
tactic and domain independent setting. Because
the GLR* parsing algorithm is an enhancement
to the standard GLR context-free parsing algo­
rithm, all of the techniques and grammars devel­
oped for the standard parser can be applied as
they are. In particular, the standard LR parsing
tables are compiled in advance from the grammar
and used "as is" by the parser in runtime. The
GLR* parser inherits the benefits of the original
parser in terms of ease of grammar development,
and, to a large extent, efficiency properties of the
parser itself. In the case that the input sentence
is by itself grammatical, GLR* behaves exactly
as the standard GLR parser.

The remaining sections of the paper are or­
ganized in the following way: Section 2 presents
an outline of the basic GLR* algorithm itself, fol­
lowed by a detailed example of the operation of
the parser on a simple input string. In section 3
we discuss the search heuristic that is added to
the basic GLR* algorithm, in order to ensure its
runtime feasibility. We discuss an application of
the GLR* algorithm to spontaneous speech un­
derstanding, and present some preliminary test
results in section 4. Finally, our conclusions and
further research directions are presented in sec­
tion 5.

(1) S --+ NP VP
(2) NP --+ det n
(3) NP --+ n

2

(4) NP, --+ NP PP
(5) VP --+ v NP
(6) PP --+ p NP

Figure 1 : A Simple Natural Language Grammar

The GLR* Parsing Algo­

rithm

the Universal Parser Architecture developed at
CMU [Tomita, 1986) . This implementation in­
corporates an SLR(0) parsing table.

The GLR* parsing algorithm is an extension of
the Generalized LR Parser, as implemented in The parser accommodates skipping words of

G LR * - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FOR CFG 's 125
the input string by allowing shift operations to be performed from inactive state nodes in the Graph Structured Stack (GSS) . Shifting an in­put symbol from an inactive state is equivalent to skipping the words of the input that were en­countered after the parser reached the inactive state and prior to the current word being shifted. Since the parser is LR(O) , reduce operations need

Reduce Shift State det n V 0 sh3 sh4 1 2 sh7 3 sh9 4 r3 5 rl 6 r4 7 sh3 sh4 8 sh3 sh4 9 r2 10 r5 1 1 r6

not be repeated for skipped words (the reductions do not depend on any lookahead) . Information about skipped words is maintained in the symbol nodes that represent parse sub-trees. An initial version of the GLR* parser has been implemented in Lucid Common Lisp, in the inte­grated environment of the Universal Parser Ar­chitecture.
Goto p $ NP VP pp s

2 1 ace sh8 5 6

10 1 1
sh8 6 sh8 6

Table 1 : SLR(O) Parsing Table for Grammar in Figure 1
2 . 1 An Example

To clarify how the proposed GLR* parser actu­ally works, in lieu of a more formal description of the . algorithm itself, we present a step by step runtime example. For the purpose of the exam­ple, we use a simple natural language grammar that is shown in Figure 1 . The terminal sym­bols of the grammar are depicted in lower-case, while the non-terminals are in upper-case. The grammar is compiled into an SLR(O) parsing ta­ble, which is displayed in Table 1 . Note that since the table is SLR(O) , the reduce actions are inde­pendent of any lookahead. The actions on states 10 and 1 1 include both a shift and a reduce. To understand the operation of the parser, we now follow some steps of the GLR * parsing al­gorithm on the input x = det n v n det p n. This input is ungrammatical due to the second
"det" token. The maximal parsable subset of the

input in this case is the string that includes all words other than the above mentioned "det" . In the figures ahead, which graphically display the GSS of the parser in various stages of the pars­ing process, we use the following notation:
• An active (top level) state node is repre­sented by the symbol "©" , with the state number indicated above it . Actions that are attached to the node are indicated to the right of the node.
• An inactive state node is represented by the symbol "*" . The state number is indi­cated above the node and actions that are attached to the node are indicated above the state number.
• Grammar symbol nodes are represented by the symbol "#" , with the grammar symbol itself displayed above it .

126

0
<O sh3

after initialization
(and empty reduce phase)

LAVIE - TOMITA

Figure 2 : Initial GSS
sh4
0 det 3
•---#---© sh9

after first shift phase
(and empty reduce phase)

Figure 3: GSS after first shift phase

The parser operates in phases of shifts and reductions. We follow the GSS of the parser fol­lowing each of these phases, while processing the input string. Reduce actions are distributed to the active nodes during initialization and after each shift phase. Shift actions are distributed after each reduce phase. Note that the GLR* parsing algorithm distributes shift actions to all state nodes (both active and inactive) , whereas the original parser distributed shift actions only to active nodes. Reduce actions are distributed only to active state nodes. Figure 2 is the initial GSS, with an active state node of state 0. Since there are no reduce ac­tions from state 0 , the first reduce phase is empty. With the first input token being "det" , the shift action attached to state node O is "sh3" . Figure 3 shows the GSS after the first shift phase. The symbol node labeled "det" has been shifted and connected to the initial state node and to the new active state node of state 3. Since there are no reduce actions from state 3, the next reduce phase is empty. The next input token is "n" . Shift actions are distributed by the · algo­rithm to both the active node of state 3 and the inactive node of state 0, as can be seen in Fig­ure 3 . Figure 4 shows the GSS after the next shift phase. The input token "n" was shifted from both state nodes, creating active state nodes of states 9 and 4. The shifting of the input token "n" from state 0 corresponds to a parsing pos­sibility in which the first input token "det" is skipped. Reduce actions are distributed to both of the active nodes. The following reduce phase reduces both

branches into noun phrases. The two "NP"s are packed together by a local ambiguity packing pro­cedure. Using information on skipped words that is maintained within the symbol nodes, the am­biguity packing can detect that one of the noun phrases (the one that was reduced from "det n") is more complete, and the other noun phrase is discarded. The resulting GSS is displayed in Fig­ure 5 . Shift actions with the next input token "v" are then distributed to all the state nodes. However, in this case, only state 2 allows a shift of "v" into state 7. Figure 6 shows the GSS after the third shift phase. The state 7 node is the only active node at this point. Since no reduce actions are specified for this state, the fourth reduce phase is empty. Shift actions with the next input token "n" are distributed to all state nodes, as can be seen in the figure. Figure 7 shows the GSS after the fourth shift phase and Figure 8 after the fifth reduce phase. Note that there are no active state nodes after the fifth reduce phase. This is due to the fact that none of the state nodes produced by the reduce phase allow the shifting of the next input token
"det" . The original parser would have thus failed as this point. However, the GLR* parser succeeds in distributing shift actions to two inactive state nodes in this case.

For the sake of brevity we do not continue to further follow the parsing step by step. The final GSS is displayed in Figure 9. Several different parses; with different subsets of skipped words are actually packed into the single "S" node seen at the bottom of the figure. The parse that corre-

GLR* - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FQR CFG 's 127
sponds to the maximal subset of the input is the skipped.
one in which the second "det" is the only word

O det 3 n 9 after second shift phase
•---#---•---#---© r2
I n 4
1 -----#--------© r3

Figure 4: GSS after second shift phase

2 .2 Efficiency of the Parser

Efficiency of the parser is achieved by a number of
different techniques. The most important of these
is a sophisticated process of local ambiguity pack­
ing and pruning. A local ambiguity is a part of
the input sentence that corresponds to a phrase
(thus, reducible to some non-terminal symbol of
the grammar) , and is parsable in more than one
way. The process of skipping words creates a large
number of local ambiguities. For example, the
grammar in Figure 1 allows both determined and
undetermined noun phrases (rules 2 and 3). As
seen in the example presented earlier, this results
in the creation of two different noun phrase sym­
bol nodes for the initial fragment "det n" . The
first node is created for the full phrase after a
reduction according to the first rule. A second
symbol node is created when the determiner is
skipped and a reduction by the second rule takes
place.

Locally ambiguous symbol nodes are detected
as nodes that are surrounded by common state
nodes in the GSS. The original GLR parser de­
tects such local ambiguities and packs them into
a single symbol node. This procedure was ex-

0 det 3 n 9
•---#---•---#---•

n 4
1 ----#--------•

I NP 2
1 -------#-------© sh7

tended in the GLR* parser. · Locally ambigu­
ous symbol nodes are compared in terms of the
words skipped within them. In cases such as the
example described above, where one phrase has
more skipped words than the other, the phrase
with more skipped words is discarded in favor of
the more complete parsed phrase. This subsum­
ing operation drastically reduces the number of
parses being pursued by the parser.

Another technique employed to increase the
efficiency of the parser is the merging of state
nodes of the same state after a reduce phase
and after a shift phase. This allows the pars­
ing through the GSS to continue with fewer state
nodes.

2.3 Selecting the Best Maximal
Parse

An obvious and unsurprising side effect of the
GLR * parser is an explosion in the number of
parses found by the parser. In principle, we are
only interested in finding the maximal parsable
subset of the input string (and its parse) . How­
ever, in many cases there are several distinct max­
imal parses, each consisting of a different subset

after third reduce phase

Figure 5: GSS after third reduce phase

128

sh4 sh9 after third shift phase

LAVIE - TOMITA

0 det 3 n 9 (and empty fourth reduce phase)
•---#---•---#---•

I n 4
1 ----#--------•

I NP 2 v 7
1 -------#-------•---#---© sh4

Figure 6: .GSS after third shift phase
after fourth shift phase

0 det 3 n 9
•---#---•---#---•

I I n 9
I 1 -----------#-------© r3
I n 4
1 ----#--------•

I NP 2 v 7
1 -------#-------•---#---•-\ n 4
I 1 --#---© r2
1 -------------------------/

Figure 7: GSS after fourth shift phase
after f ifth reduce phase

sh3
0 det 3 n 9
•---#---•---#---•

I n 9
1 -----------#-------• n 4

----#--------• sh3
NP 2 v 7

-------#-------•---#---•---\ n 4
I I 1 --#---•

--------------- 1 ------- 1 ---/

I I NP 10
I 1 -------#---•

I VP 5
1 -----------#-------•

S 1
------------------------------#----•

NP 2
------------------#----------------•

Figure 8: GSS after fifth reduce phase

GLR* - AN EFFICIENT No1sE-SKIPPING PARSING ALGORITHM FOR CFG 's

after final reduce phase

0 det 3 n 9
•---#---•---#---*

I n 9
1 -----------#-------*
1 --\ n 9 n 4

----#-----*
1 --#---*

--/
NP 2 v 7

-------#-------*---#---*---\ n 4
I I 1 --#---*

--------------- 1 ------- 1 ---/
I I NP 10
I 1 -------#--�*---- I
I I VP 5 I
l -----�- 1 ---#-------* I
I I s 1 I

------------- . - 1 ------- 1 ------#----* I
I I I
I 1 --\ det 3 I
I I I ---#---*----+------

--------------- 1 ------- 1 --/
I I NP · 2 1 ---\ p 8

--------------- 1 ------- 1 ----#------*---- I ---- I -#---*---\ n 4
1 ------- 1 ----------- 1 ---- 1 ---/ I 1 --#---*

--------------- l ------- 1 ----------- 1 ---- 1 ---------- I ---/
I I I I I NP 1 1
I I I I 1 ------�#---*
I I I I NP 2 ·

--------------- l ------- l ----------- 1 ---- 1 ------#---------------*
I I I I
I I I 1 --------\ PP 6
I I 1 -------------- 1 --#---------*
1 ------- 1 ---------------------�---/

I I NP 10
I 1 ----------------------------#----------*
I w 5
1 -------- --------#-----------------------------*

S 1
--------------------------#------------------------------------©

Figure 9: GSS after final reduce phase

129

130

of words of the original sentence. Additionally, there are cases where a parse that is not maximal in terms of the number of words skipped may be deemed preferable. To select the "best" parse from the set of parses returned by the parser, we use a scoring procedure that ranks each of the parses found. We then select the parse that was ranked best. 1
Presently, our scoring procedure is rather simple. It takes into account the number of words skipped and the fragmentation of the parse (i.e. the num­ber of S-nodes that the parsed input sentence was divided into). Both measures are weighed equally. Thus a parse that skipped one word but parsed the remaining input as a single sentence is pre­ferred over a parse that fragments the input into three sentences, without skipping any input word. On the top of our current research goals is the enhancement of this simple scoring mecha­nism. We plan on adding to our scoring func­tion several additional heuristic measures that re­flect various syntactic and semantic properties of the parse tree. We will measure the effectiveness of our enhanced scoring function in ranking the parse results by their desirability.
3 The Beam Search Heuris­

tic
Although implemented efficiently, the basic GLR* parser is still not guaranteed to have a fea­sible running time. The basic GLR * algorithm described computes parses of all parsable subsets of the original input string, the number of which is potentially exponential in the length of the in­put string. Our goal is to find parses of maximal subsets of the input string (or almost maximal subsets). We have therefore developed and added to the parser a heuristic that prunes parsing op­tions that are not likely to produce a maximal parse. This process has been traditionally called "beam search" . A direct way of adding a beam search to the parser would be to limit the number of active state nodes pursued by the parser at each stage, and continue processing only active nodes that

LAVIE - TOMITA

are most promising in terms of the number of skipped words associated with them. However, the structure of the GSS makes it difficult to asso­ciate information on skipped words directly with the state nodes. 2 We have therefore opted to im­plement a somewhat different heuristic that has a similar effect. Since the skipping of words is the result of per­forming shift operations from inactive state nodes of the GSS, our heuristic limits the number of in­active state nodes from which a input symbol is shifted. At each shift st�ge, shift actions are first distributed to the active state nodes of the GSS. This corresponds to no additional skipped words at this stage. If the number · of state nodes that allow a shift operation at this point is less than a predetermined constant threshold (the "beam­limit"), then shift operations from inactive state nodes are also considered. Inactive states are pro­cessed in an ordered fashion, so that shifting from a more recent state node that will result in fewer skipped words is considered first. Shift operations are distributed to inactive state nodes in this way until the number of shifts distributed reaches the threshold. This beam search heuristic reduces the run­time of the GLR* parser to within a constant fac­tor of the original GLR parser. Although it is not guaranteed to find the desired maximal parsable subset of the input string, our preliminary tests have shown that it works well in practice. The threshold (beam-limit) itself is a param­eter that can be dynamically set to any constant value at runtime. Setting the beam-limit to a value of O disallows shifting from inactive states all together, which is equivalent to the original GLR parser. In preliminary experiments that we have conducted (see next section) we have achieved good results with a setting of the beam­limit to values in the range of 5 to 10. There exists a direct tradeoff between the value of the beam-limit and the runtime of the GLR* parser. With a set value of 5, our tests have indicated a runtime that is within a factor of 2-3 times that of the original GLR parser, which amounts to a parse time of only several seconds on sentences that are up to 30 words long. 1 The system will display the n best parses found, where the parameter n is controlled 1:>y the user at runtime. By default, we set n to one, and the highest ranking parse is displayed. 2This is due to the fact that state nodes are merged, so that a state node may be common to several different parses, with different skipped words associated with each parse.

G LR* - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FOR CFG 's 131

Robust Parser
number (and percent)

Parsable 99
Unparsable 1
Good/Close Parses 77
Bad Parses 22

Table 2: Performance of the GLR* Parser on Spontaneous Speech

4 Parsing of Spontaneous
Speech Using GLR*

4.1 The Problem of Parsing Spon-
taneous Speech

As a form of input, spontaneous speech is full of
noise and irrelevances that surround the meaning­
ful words of the utterance. Some types of noise
can be detected and filtered out by speech rec­
ognizers that process the speech signal. A parser
that is designed to successfully process speech rec­
ognized input must however be robust to various
forms of noise, and be able to weed out the mean­
ingful words from the rest of the utterance.

When parsing spontaneous spoken input that
was recognized by a speech recognition system,
the parser must deal with three major types of
extra-grammaticality:

• Noise due to the spontaneity of the speaker,
such as repeated words, false beginnings,
stuttering, and filled pauses (i.e. "ah" ,
"um" , etc.) .

• Ungrammaticality that is due t o the lan­
guage of the speaker, or to the coverage of
the grammar.

• Noise due to errors of the speech recognizer.
We have conducted two preliminary exper­

iments to evaluate the GLR* parser's abil­
ity to overcome the first two types of extra­
grammaticality. We are in the process of experi­
menting with the GLR* parser on actual speech
recognized output, in order to test its capabilities
in handling errors produced by the speech recog­
nizer.

4.2 Parsing of Noisy Spontaneous
Speech

The first test we conducted was intended to evalu­
ate the performance of the GLR * parser on noisy

sentences typical of spontaneous speech. The
parser was tested on a set of 100 sentences of tran­
scribed spontaneous speech dialogues on a con­
ference registration domain. The input is hand­
coded transcribed text, not processed through
any speech recognizer. The grammar used was
an upgraded version of a grammar for the con­
ference registration task, developed and used by
the JANUS speech-to-speech translation project
at CMU [Waibel et al. 1991] . Since the test sen­
tences were drawn from actual speech transcrip­
tions, they were not guaranteed to be covered by
the grammar. However, since the test was meant
to focus on spontaneous noise, sentences that in­
cluded verbs and nouns that were beyond the vo­
cabulary of the system were avoided. Also pruned
out of the test set were short opening and closing
sentences (such as "hello" and "goodbye") . The
transcriptions include a multitude of noise in the
input. The following example is one of the sen­
tences from this test set:

"fckn2_10 /ls/ /h#/ um okay {comma}
then yeah I am disappointed {comma}
pause but uh that is okay {period} "

The performance results are presented in Ta­
ble 2. Note that due to the noise contaminating
the input, the original parser is unable to parse
a single one of the sentences in this test set . The
GLR* parser succeeded to return some parse re­
sult in all but one of the test sentences. How­
ever, since returning a parse result does not by
itself guarantee an analysis that adequately re­
flects the meaning of the original utterance, we
reviewed the parse results by hand, and classi­
fied them into the categories of "good/close" and
"bad" parses. The results of this classification are
included in the table.

132

4.3 Grammar Coverage

We conducted a second experiment aimed ex­clusively on evaluating the ability of the GLR* parser to overcome limited grammar coverage. In this experiment, we compared the results of the GLR* parser with those of the original GLR parser on a common set of sentences using the same grammar. We used the grammar from the spontaneous speech experiment for this test as well. The common test set was a set of 1 17 sen­tences from the conference registration task of the JANUS project. These sentences are simple syn­thesized text sentences. They contain no spon­taneous speech noise, and are not the result of any speech recognition processing. Once again, to evaluate the quality of the parse results re­turned by the parser, we classified the parse re­sults of both parsers by hand into two categories: "good/close parses" and "bad parses" . The re­sults of the experiment are presented in Table 3. The results indicate that using the GLR * parser results in a significant improvement in per­formance. The percentage of sentences, for which the parser returned good or close parses increased from 52% to 70%, an increase of 18%. Fully 97% of the test sentences (all but 3) are parsable by the GLR* parser, an increase of 36% over the origi­nal parser. However, this includes a significant increase (from 9% to 27%) in the number of bad parses found. Thus, fully half of the additional parsable sentences of the set return with parses that may be deemed bad. The results of the two experiments clearly point to the following problem: Compared with the GLR* parser, the original GLR parser, al­though fragile, returned results of relatively good quality, when it succeeded in parsing the input. The GLR* parser, on the other hand, will sue-

LAVIE - TOMITA

ceed in parsing almost any input, but this parse result may be of little or no value in a significant portion of cases. This indicates a strong need in the development of methods for discriminating between good and bad parse results. We intend to try and develop some effective heuristics to deal with this problem. The problem is also due in part to the ineffectiveness of the simple heuristics currently employed for selecting the best parse re­sult from among the large set of parses returned by the parser. As mentioned earlier, . we intend to concentrate efforts on developing more sophis­ticated and effective heuristics for selecting the best parse.
5 Conclusions and Future

Research Directions

Motivated by the difficulties that standard syntactic parses have in dealing with extra­grammaticalities, we have developed GLR * , an enhanced version of the standard Generalized LR parser, that can effectively handle two particular problems that are typical of parsing spontaneous speech: noise contamination and limited gram­mar coverage. Given a grammar G and and input string S, GLR* finds and parses S' , the maximal subset of words of S, such that S' is in the language L(G) . The parsing algorithm accommodates the skip­ping of words and fragments of the input string by allowing shift operations to be performed from inactive states of the GSS (as well as from the ac­tive states, as is done by the standard parser) . The algorithm is coupled with a beam-search­like heuristic, that controls the process of shift­ing from inactive states to a limited beam, and
Original Parser Robust Parser number percent number percent Parsable 71 61% 1 14 97% Unparsable 46 39% 3 3% Good/Close Parses 61 52% 82 70% Bad Parses 10 9% 32 27%

Table 3: Performance of the GLR* Parser vs. the Original Parser

GLR* - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FOR CFG's 133

maintains computational tractability.
Most other approaches to robust parsing have

suffered to some extent from a lack of general­
ity and from being domain dependent. Our ap­
proach, although limited to handling only certain
types of extra-grammaticality, is general and do­
main independent. It attempts to maximize the
robustness of the parser within a purely syntac­
tic setting. Because the GLR* parsing algorithm
is a modification of the standard GLR context­
free parsing algorithm, all of the techniques and
grammars developed for the standard parser can
be applied as they are. In the case that the in­
put sentence is by itself grammatical, GLR* be­
haves exactly as the standard GLR parser. The
techniques used in the enhancement of the stan­
dard GLR parser into the robust GLR* parser are
in principle applicable to other phrase-structure
based parsers.

Preliminary experiments conducted on the
effectiveness of the GLR* parser in handling

noise contamination and limited grammar cover­
age have produced encouraging results. However,
they have also pointed out a definite need to de­
velop effective heuristics that can select the best
parse result from a potentially large set of possi­
bilities produced by the parser. Since the GLR*
parser is likely to succeed in producing some parse
in practically all cases, successful parsing by it­
self can no longer be an indicator to the value
and quality of the parse result . Thus, additional
heuristics need to be developed for evaluating the
quality of the parse found.

We intend to concentrate on developing such
effective heuristics that will complement the
GLR* parser, and boost its performance in han­
dling spontaneously spoken input . We plan to
conduct extensive experiments with speech rec­
ognized input to evaluate our system and guide
its further development . We also plan to investi­
gate the potential of the GLR * parser in several
other application areas and domains.

134

References

[Carbonell and Hayes, 1984) J . G. Carbonell and
P. J. Hayes. Recovery Strategies for Parsing
Extragrammatical Language. Technical Report
CMU-CS-84-107, 1984.

[Seneff, 1992) S . Seneff. A relaxation method for
understanding spontaneous speech uttera nces.
In Proceedings of DARPA Speech and Natural
Language Workshop, pages 299-304, February
1992.

[Stallard and Bobrow, 1992] D. Stallard
and R. Bobrow. Fragment processing in the
DELPHI system. In Proceedings of DARPA
Speech and Natural Language Workshop, pages
305-310, February 1992.

LAVIE - TOMITA

[Tomita et al. , 1988) M. Tomita, T. Mitamura,
H. Musha, and M. Kee. The Generalized LR
Parser/Compiler - Version 8 . 1 : User's Guide .
Technical Report CMU-CMT-88�MEMO, 1988.

[Tomita, 1986) M. Tomita. Efficient Parsing for
Natural Language. Kluwer Academic Publish­
ers, Hingham, Ma. , 1986.

[Tomita, 1990] M. Tomita. The Generalized LR
Parser/Compiler - Version 8.4. In Proceed­
ings of International Conference on Computa­
tional Lingui sties (COLING-90}, pages 59-63,
Helsinki, Finland, 1990.

[Ward, 1991] W. Ward. Understanding spon­
taneous speech: The Phoenix system. In
Proceedings of IEEE International Con/ ere nee
on Acoustics, Spee eh and Signal Processing
(ICASSP), pages 365-367, April 1991 .

