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Abstract 
This paper describes a memory-based machine 
translation system developed for the Semantic Net- 
work Array Processor (SNAP). The goal of our 
work is to develop a scalable and high-performance 
memory-based machine translation system which 
utilizes the high degree of parallelism provided by 
the SNAP machine. We have implemented an ex- 
perimental machine translation system DMSNAP as 
a central part of a real-time speech-to-speech dia- 
logue translation system. It is a SNAP version of 
the ΦDMDIALOG speech-to-speech translation sys- 
tem. Memory-based natural language processing 
and syntactic constraint network model has been 
incorporated using parallel marker-passing which 
is directly supported from hardware level. Exper- 
imental results demonstrate that the parsing of a 
sentence is done in the order of milliseconds. 

1    Introduction 
In this paper, we will demonstrate that machine translation 
speeds in the order of milliseconds is attainable by using a 
marker-propagation algorithm and a specialized parallel hard- 
ware. 

The significance of the high-performance (or real-time) nat- 
ural language processing is well known. Parsing sentences 
at the milliseconds speeds enables the realization of a speech 
recognition module capable of real-time speech understand- 
ing which eventually leads to the real-time simultaneous in- 
terpretation system. Also, the millisecond order performance 
enables the system to parse hundreds of sentences in a sec- 
ond, or over 3 million sentences per hour. This in turn makes 
possible bulk processing of text such as full-text retrieval, 
summarization, classification, translation, indexing and tag- 
ging. 

In order to accomplish the high-performance natural lan- 
guage processing, we have designed a highly parallel ma- 
chine called Semantic Network Array Processor (SNAP) 
[Moldovan and Lee, 1990] [Lee and Moldovan, 1990], and 
implemented an experimental machine translation system 
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called DMSNAP using a parallel marker-passing scheme. DM-
SNAP is a SNAP implementation of the ΦDMDIALOG speech- 
to-speech dialogue translation system [Kitano, 1990a] [Ki- 
tano, 1991a], but with some modifications to meet hardware 
constraints. Despite its high performance, our system carries 
out sound syntactic and semantic analysis including lexical 
ambiguity, structural ambiguity, pronoun reference, control, 
unbounded dependency, and others. 

In the next section, we describe briefly the SNAP architec- 
ture, then, describe design philosophy behind the DMSNAP 
followed by descriptions on implementation and linguistic 
processing. Finally, performance are presented. 

2   SNAP Architecture 
The Semantic Network Array Processor (SNAP) is a highly 
parallel array processor fully optimized for semantic network 
processing with marker-passing mechanism. In order to facil- 
itate efficient propagation of markers and to ease development 
of applications, a set of marker propagation instructions has 
been microcoded. SNAP supports propagation of markers 
containing (1) bit-vectors. (2) address, and (3) numeric value. 
By limiting content of markers, significant reduction in cost 
and resource has been attained without undermining perfor- 
mance requirements for knowledge processing. Several AI 
applications such as natural language processing system, clas- 
sification system [Kim and Moldovan, 1990], and rule-based 
system has been developed on SNAP. 

2.1 The Architecture 
SNAP consists of a processor array and an array controller 
(figure 1), The processor array has processing cells which 
contain the nodes and links of a semantic network. The SNAP 
array consists of 160 processing elements each of which con- 
sists of TMS320C30 DSP chip, local SRAM. etc. Each pro- 
cessing elements stores 1024 nodes which act as virtual pro- 
cessors. They are interconnected via a modified hypercube 
network. The SNAP controller interfaces the SNAP array 
with a SUN 3/280 host and broadcasts instructions to control 
the operation of the array. The instructions for the array are 
distributed through a global bus by the controller. Propaga- 
tion of markers and the execution of other instructions can be 
processed simultaneously. 

2.2 Instruction Sets 
A set of 30 high-level instructions specific to semantic net- 
work processing are implemented directly in hardware. These
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include associative search, marker setting and propagation, 
logical/arithmetic operations involving markers, create and 
delete nodes and relations, and collect a list of nodes with 
a certain marker set. Currently, the instruction set can be 
called from C language so that users can develop applications 
with an extended version of C language. From the program- 
ming level, SNAP provides data-parallel programming envi- 
ronment similar to C* of the Connection Machine [Thinking 
Machine Corp., 1989], but specialized for semantic network 
processing with marker passing. 

2.3    Propagation Rules 
Several marker propagation rules are provided to govern the 
movement of markers. Marker propagation rules enables us 
to implement guided, or constraint, marker passing as well as 
unguided marker passing. This is done by specifying type of 
links that markers can propagate. All markers in DMSNAP 
are guided markers, thus they are controlled by propagation 
rules. The following are some of the propagation rules of 
SNAP: 

• Seq(r1,r2): The Seq (sequence) propagation rule allows 
the marker to propagate through r1 once then to r2. 

• Spread(rl,r2) : The Spread propagation rule allows the 
marker to travel through a chain of r1 links and then r2 
links. 

• Comb(r1 ,r2) : The Comb (combine) propagation rule 
allows the marker to propagate to all r1 and r2 links 
without limitation. 

2.4    Knowledge Representation 
SNAP provides four knowledge representation elements: 
node, link, node color and link value. These elements of- 
fers wide range of knowledge representation schemes to be 
mapped on SNAP. On SNAP, a concept is represented by 
a node. A relation can be represented by either a node 
called relation node or a link between two nodes. The node 
color indicates the type of node. For example, when rep- 
resenting USC is in Los Angeles and CMU is in 
Pittsburgh, we may assign a relation node for in. The 
IN node is shared by the two facts. In order to prevent the 
wrong interpretations such as USC in Pittsburgh and 
CMU in Los Angeles, we assign IN#1 and IN#2 to two 
distinct IN relations,  and  group  the  two  relation  nodes  by a 

node color IN. Each link has assigned to it a link value which 
indicates the strength of interconcepts relations. This link 
value supports probabilistic reasoning and connectionist-like 
processing. These four basic elements allow SNAP to sup- 
port virtually any kinds of graph-based knowledge representa- 
tion formalisms such as KL-ONE [Brachman and Schmolze, 
1985], Conceptual Graphs [Sowa, 1984], KODIAK [Wilen- 
sky, 1987], etc. 

3   Philosophy Behind DMSNAP 
DMSNAP is a SNAP implementation of the ΦDMDIALOG 
speech-to-speech dialogue translation system. Naturally, it in- 
herits basic ideas and mechanisms of the ΦDMDIALOG system 
such as memory-based approach to natural language process- 
ing and parallel marker-passing. Syntactic constraint network 
is introduced in DMSNAP whereas ΦDMDIALOG has been as- 
suming unification operation to handle linguistic processing. 

3.1    Memory-Based Machine Translation 
Memory-based MT is an idea of viewing MT as a memory ac- 
tivity. For example, parsing is considered as a memory-search 
process which identifies similar cases in the past from the 
memory, and to provide interpretation based on the identified 
case. It can be considered as an application of Memory-Based 
Reasoning (MBR) [Stanfill and Waltz, 1986] and Case-Based 
Reasoning (CBR) [Riesbeck and Schank, 1989] to NLP. This 
view, however, counters to traditional idea to view NLP as an 
extensive rule application process to build up meaning repre- 
sentation. Some models has been proposed in this direction, 
such as Direct Memory Access Parsing (DMAP) [Riesbeck 
and Martin, 1985] and ΦDMDIALOG [Kitano, 1990a]. 

Independently, the idea of using examples for translation 
has been proposed by [Nagao, 1984], and some experimental 
results has been reported recently [Sato and Nagao, 1990] 
[Sumita and Iida, 1991] and [Furuse et al., 1990]. Recently, 
such an approach is gaining increasing attention due to the 
problems in the traditional machine translation approach: 

Performance: Performance of most existing machine trans- 
lation system not good. It took about a few seconds to 
a few minutes to translate one sentence. This perfor- 
mance is totally insufficient to carry out real-time spoken 
language translation or bulk text translation. 

Scalability: Current machine translation system is difficult 
to scale up because its complexity of processing makes 
system's behavior almost intractable. 

Grammar Writing: By the same token, grammar writing is 
very difficult since complex sentence has to be described 
by the piecewise rules which is hard to trace its behavior 
when they are added in the whole system. 

The memory-based approach is expected to offer solutions 
to these problems by allowing large numbers of cases to be 
stored in the memory, and make translation by using these 
cases. The memory-based translation essentially convert 
lime-complexity of rule application into space-complexity by 
preparing large examples of translation pairs. Since each 
case can be represented in a fairly context-sensitive man- 
ner with full semantic restrictions incorporated, the memory- 
based translation avoids expensive computations generally 
takes place  in  the  rule-based  translation  system.  In addition, 
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the memory-based approach is expected to produce high qual- 
ity translation due to its capability to reuse stylistic translation 
in the past. Since, detailed mechanisms and rationale for the 
memory-based translation approach has been discussed by 
relevant literatures (see [Nagao, 1984], [Riesbeck and Martin, 
1985], [Kitano, 1990a], [Sumita and Iida, 1991], [Kitano and 
Higuchi, 199la], and [Kitano and Higuchi, 199lb]), we will 
simply focus on its massively parallel implementation and its 
performance. 

3.2   Parallel Marker-Passing 
One other feature inherited from the ΦDMDIALOG is use of 
parallel marker-passing. In DMSNAP, however, a different 
approach has been taken with regard to the content of mark- 
ers propagate through the network. Since ΦDMDIALOG has 
been designed and implemented on idealized simulation of 
massively parallel machines, markers carry feature structure 
(or graph) along with other information such as probabilistic 
measures, and unification or a similar heavy symbolic oper- 
ations has been assumed at each processor element (PE). In 
the DMSNAP, content of the marker is restricted to (1) bit 
markers, (2) address markers, and (3) values 1. Propaga- 
tion of feature structures and heavy symbolic operations at 
each PE, as seen in the original version of the ΦDMDIALOG, 
are not practical assumptions to make, at least, on current 
massively parallel machines due to processor power, mem- 
ory capacity on each PE, and the communication bottleneck. 
Propagation of feature structures would impose serious hard- 
ware design problems since size of the message is unbounded 
(unbounded message passing). Also, PEs capable of perform- 
ing unification would be large in physical size which causes 
assembly problems when thousands of processors are to be 
assembled into one machine. Even with machines which over- 
come these problems, applications with a restricted message 
passing model would run much faster than applications with 
an unbounded message passing model. Thus, in DMSNAP, 
information propagated is restricted to bit markers, address 
markers, and values. These are readily supported by SNAP 
from hardware level. 

3.3   Syntactic Constraint Network 
Syntactic constraint network (SCN) is a new feature which has 
not been used in the previous works in memory-based NLP 
SCN is used to handle syntactic phenomena without under- 
mining benefits of memory-based approach. Although, uni- 
fication has been the central operation in the recent syntactic 
theories such as LFG [Kaplan and Bresnan, 1982] and HPSG 
[Pollard and Sag, 1987], we prefer SCN over unification- 
based approach because unification is computationally expen- 
sive and it is not suitable for massively parallel implementa- 
tion. Although there is a report on an unification algorithm on 
massively parallel machines [Kitano. 1991b], still it is com- 
putationally expensive, and takes up major part of computing 
lime even on SNAP. In addition. there is a report that unifi- 
cation is not necessary the correct mechanism of enforcing 

1 We call a type of marker-passing which propagates feature struc- 
tures (or graphs) an Unbounded Message Passing. A type of marker- 
passing which passes fix-length packets as seem in DMSNAP is a 
Finite Message Passing. This classification is derived from [Blel- 
loch. 1986]. With the classification in [Blelloch, 1986], our model 
is close to the Activity Flow Network. 

 
Figure 2: Concept Sequence on SNAP 

agreement [Ingria, 1990]. Also, the classification-based ap- 
proach [Kasper, 1989], which pre-compiles a hierarchy of fea- 
ture structures in the form of a semantic network, can carry out 
similar task with less computational cost [Kim and Moldovan, 
1990]. Finally, current unification hard-rejects failure which 
is not desirable from our point. We want the system to be ro- 
bust enough that while recognizing minor syntactic violation, 
it keep processing to get meaning of the sentence. 

In the syntactic constraint network model, all syntactic con- 
straints are represented in the finite-state network consists of 
(1) nodes representing specific syntactic constraints (such as 
3SGPRES), (2) nodes representing grammatical functions (such 
as SUBJ, OBJ, and OBJ2 for functional controller), and (3) 
syntactic constraint links which control state-transitions and 
the passing of information among them. Although, unification 
has been used to (1) enforce formal agreement, (2) percolate 
features, and (3) building up feature structure, we argue that 
these functions are attained by independent mechanism in 
our model. Formal agreement is enforced by activation and 
inhibition of nodes through active syntactic constraints. Per- 
colation of feature is attained by passing of address through 
memory and syntactic constraint networks. It should be noted 
that not all features now being carried by unification grammar 
need to be carried around in order to make an interpretation of 
sentences. Our model only propagates necessary information 
to relevant nodes. Finally, instead of building up features, 
we distributively represent meaning of the sentence. When 
parsing is complete, we have a set of new nodes where each 
represents an instance of concept and links defines relation 
among them. 

We are currently investigating whether our model is con- 
sistent with human language processing which has limited 
memory capacity [Gibson, 1990]. 

4    Implementation of DMSNAP 
DMSNAP consists of the memory network, syntactic con- 
straint network, and markers to carry out inference. The 
memory network and the syntactic constraint network are 
compiled from a set of grammar rules written for DMSNAP. 
This section describes these components and a basic pars- 
ing algorithm to provide brief implementation aspects of the 
DMSNAP. 
4.1    Memory Network on SNAP 
The major types of knowledge required for language trans- 
lation in DMSNAP are; a lexicon, a concept type hierarchy, 
concept sequences, and syntactic constraints. Among them, 
the syntactic  constraints  are  represented  in  the syntactic con- 
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straint network, and the rest of the knowledge is represented 
in the memory network. The memory network consists of 
various types of nodes such as concept sequence class (CSC), 
lexical item nodes (LEX), concept nodes (CC) and others. 
Nodes are connected by a number of different links such 
as concept abstraction links (ISA), expression links for both 
source language and target language (ENG and JPN), Role 
links (ROLE), constraint links (CONSTRAINT), contextual 
links (CONTEXT) and others. 

A CSC captures ordering constraints of natural language, 
and it roughly corresponds to phrase structure rules. CSCs 
can be used to represent syntax and semantics of sentences 
at different levels of abstraction from instances of surface 
sequence to linguistically motivated grammar such as Lexical- 
Functional Grammar (LFG) [Kaplan and Bresnan, 1982]. As 
shown in figure 2, a CSC consists of a root node (CSR), 
element nodes (CSE), a FIRST link, a LAST link, NEXT 
link(s) and ROLE links. A CSR is a representative node for 
the meaning of the entire CSC structure, CSRs are connected 
to their designated interlingual concepts by ENG or JPN. 
Each CSC has one or more CSEs linked to a CSR by ROLE 
links. The ordering constraints between two concept sequence 
element nodes are represented by NEXT link. FIRST and 
LAST links in each CSC points to the first and last elements, 
respectively. Also, each CSE represents the relevant case 
role, and the case role has a selectional restriction. Since 
we want to avoid heavy symbolic operations during parsing, 
ROLE links and associated constraint links are used instead of 
performing type and value consistency check by unification. 
Therefore each CSE is used for both enforcing the ordering 
constraint and capturing semantic information. 

Besides, concept instance nodes (CI) and concept sequence 
instance structures (CSI) are dynamically created during pars- 
ing. Each CI or CSI is connected to the associated CC or 
CSC by INST link. CIs correspond to discourse entities pro- 
posed in [Webber, 1983). Three additional links are used to 
facilitate pragmatic inferences. They are CONTEXT links. 
CONSTRAINT links and EQROLE links. A CONTEXT link 
is a path of contextual priming which is crucial in word sense 
disambiguation. When a word is activated during processing, 
the activation spreads through CONTEXT links and impose 
contextual priming to relevant concepts. A CONSTRAINT 
link denotes an antecedent/consequence relationship between 
two events or states, which is created between two CSRs. 
An EQROLE link denotes the necessary argument matching 
condition for testing an antecedent/consequence relationship, 
which is created between two CSEs in different CSCs. 

4.2   Syntactic Constraint Network 
DMSNAP has a syntactic constraint network (SCN) which 
captures various syntactic constraints such as agreement, con- 
trol, etc. Syntactic constraint network consists of syntactic 
constraint nodes (SC nodes), syntactic function nodes (SF 
nodes), and syntactic constraint links (SC-links). SC nodes 
represents syntactic constraints such as 3rd Singular Present 
(3SgPres) and Reflexive Pronoun (Ref). These nodes simply 
get bit markers to indicate whether these syntactic constraints 
are active or not, and send bit markers to show which lexical 
items are legal candidate for the next word. SF nodes repre- 
sents grammatical functions such as functional controllers. SF 
nodes generally gel an address marker and a bit marker.      The 

address marker carries point to the CI nodes which should be 
bound to a case-frame in dislocated place in the network, and 
a bit marker shows whether the specific grammatical function 
node should be activated. When both a bit marker and an 
address marker exist at a certain SF node, the address marker 
is further propagated through SC-links to send information 
which is necessary to carry out interpretation of sentences 
involving control and unbounded dependency. 

4.3   Markers 
The processing of natural language on a marker-propagation 
architecture requires the creation and movement of markers 
on the memory network. The following types of markers are 
used: 
A-MARKERs indicate activation of nodes. They propagate 

through ISA links upward, carry a pointer to the source 
of activation and a cost measure. 

P-MARKERs indicate the next possible nodes to be activated. 
They are initially placed on the first element nodes of the 
CSCs, and move through NEXT link where they collide 
with A-MARKERs at the element nodes. 

G-MARKERs indicate activation of nodes in the target lan- 
guage. They carry pointers to the lexical node to be 
lexicalized, and propagate through ISA links upward. 

V-MARKERs indicate current state of the verbalization. When 
a V-MARKER collides with the G-MARKER, the sur- 
face string (which is specified by the pointer in the G- 
MARKER) is verbalized. 

C-MARKERs indicate contextual priming. Nodes with C- 
MARKERs are contextually primed. A C-MARKER moves 
from the designated contextual root node to other con- 
textually relevant nodes through contextual links, 

SC-MARKERs indicate active syntax constraints, and primed 
and/or inhibited nodes by currently active syntactic con- 
straints. It also carries pointer to specific nodes. There 
are several sub-types of SC-Markers to handle various 
linguistic phenomena. 

There are some other markers used for control process and 
timing, they are not described here. These five markers are 
sufficient to understand the central part of the algorithm in 
this paper. 

4.4   DMSNAP Parsing Algorithm 
Overall (low of the algorithm implemented on SNAP consists 
of the following steps: 

1. Activate a lexical node 
2. Pass an A-Marker through ISA link; Pass SC-Markers through 

SC-link. 
3. When the A-Marker collide with a P-Marker on CSE, the P- 

Markcr is passed through NEXT link once.  However, if the 
CSE was the last element of the CSC, then the CSC is accepted 
and an A-Marker is passed up through ISA link from CSR of 
the accepted CSC. 

4. When the P-Marker passed through the NEXT link in step 3, 
then a copy of the P-Marker is passed down through inverse 
ISA link to make top-down prediction. 

5. Pass SC-Markers from active nodes to activate and/or inhibit 
syntactic constraints, and to percolate pointers to the specific 
CI. 
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6. Repeat 1 through 5 until all words are read. 
7. Compute total cost for each hypothesis. 

8. Select Lowest Cost Hypothesis. 

9. Remove other hypotheses. 

This parsing algorithm is similar to the shift-reduce parser 
except that our algorithms handles ambiguities, parallel pro- 
cessing of each hypothesis, and top-down predictions of possi- 
ble next input symbol. The generation algorithm implemented 
on SNAP is a version of the lexically guided bottom-up algo- 
rithm which is described in [Kitano, 1990b]. 

5    Linguistic Processing in DMSNAP 
We will explain how DMSNAP carries out linguistic analysis 
using two sets of examples: 

 
The examples contain various linguistic phenomena such 

as: lexical ambiguity, structural ambiguity, referencing (pro- 
noun reference, definite noun reference, etc), control, and 
unbounded dependencies. It should be noted that each exam- 
ple consists of a set of sentences (not a single sentence isolated 
from the context) in order to demonstrate contextual process- 
ing capability of the DMSNAP. These sentences are not all 
the sentences which DMSNAP can handle. Currently, DM-
SNAP handles substantial portion of the ATR’s conference 
registration domain (vocabulary 450 words, 329 sentences) 
and sentences from other corpora. 

5.1    Basic Parsing and Generation - Translation 
The essence of DMSNAP parsing and generation algorithm 
is described using sentence s1. A part of memory network 
involved in this explanation is shown in figure 3. C- denotes 
concepts; and "..." denotes surface string in the lexical node. 
Notice that only a part of the memory network is shown and 
no part of the syntactic constraint network is shown here. 
Also, the following explanation does not describe activity of 
the syntactic constraint network part This will be described 
in a relevant part later. 

Initially, the first CSE in every CSC on the memory network 
gets a P-MARKER. This P-MARKER is passed down ISA links. 
The CCs receiving a P-MARKER are C-PERSON and C-ATTEND. 
Also the closed class lexical items (CCI) in the target language 
propagate G-MARKER upward ISA links. 

Upon processing the first word 'John' in the sentence s1, 
C-JOHN is activated so that C-JOHN gets an A-MARKER and 
a CI JOHN#l is created under C-JOHN. At this point, the 
corresponding Japanese lexical item is searched for, and JON 
is found. A G-MARKER is created on JON. The A-MARKER 
and G-MARKER propagate up through ISA links (activating 
C-MALE-PERSON and C-PERSON in sequence) and, then, ROLE 
links. When an A-MARKER collides with a P-MARKER at 
a CSE, the associated case role is bound with the source of 
the A-MARKER and the prediction is updated by passing P- 
MARKER to the next CSE. This P-MARKER is passed down ISA 
links. In this memory network, the ACTOR roles of concept 
sequences WANT-CIRCUM-E is bound to JOHN# 1 pointed by the 
A-MARKER. This is made possible in the SNAP architecture 
which allows markers to carry address as well as bit-vectors 
and values, where many other marker-passing machines such 
as NETL [Fahlman, 1979] and IXM2 [Higuchi et al., 1991] 
only allow bit-vectors to be passed around, Also, G-MARKERs 
are placed on the ACTOR role CSE of WANT-CIRCUM-J. The G- 
MARKER points to the Japanese lexical item ‘jon’. 

After processing ‘wanted’ and ‘to’, a P-MARKER is passed 
to CIRCUM and, then, to ATTEND-CONF. At this point, a source 
language (English) expression for the concept ATTEND-CONF 
is searched for and ATTEND-CONF-E is found. The first CSE of 
ATTEND-CONF-E gets a P-MARKER. After processing ‘attend’ 
and ‘IJCAI-91’, ATTEND-CONF-E becomes fully recognized2 

so that a CS1 having CIs is created under ATTEND-CONF-E. 
Then the associated concept ATTEND-CONF is activated. An A- 
MARKER is passed up from ATTEND-CONF to the last element 
of the CSR WANT-CIRCUM-E. As the result, the CSR WANT- 
CIRCUM-E and its CC WANT-CIRCUM are activated in sequence. 
Therefore the parsing result is represented by the activated CC 
WANT-CRCUM and the associated CSI. Also, upon processing 
‘IJCAI-91’, the concept C-CONFERENCE is activated and then 
C-MARKERS are passed to nodes connected to C-CONFERENCE 
by CONTEXT links. This is an operation for contextual 
priming. 

When the parsing is done, a V-MARKER is passed to the 
target language (Japanese) expression WANT-CIRCUM-J from 
WANT-CIRCUM, and, then, to the first CSE of WANT-CIRCUM-J. 
Since the first CSE has a G-MARKER pointing to JON, ‘jon’ 
becomes the first word in the translated Japanese sentence and 
then the V-MARKER is passed  to  the  next  CSE.   See [Kitano, 

2 fully recognized means that the CSC can be reduced, in the 
shift-reduce parser's expression. 
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1990b] for the details of generation process. This operation 
is repealed for all CSEs in the CSC. Finally, the Japanese 
sentence tl is constructed for the English sentence s1. 

With this algorithm, the first set of sentences (s1, s2 and 
s3) is translated into Japanese: 

t1     Jon ha ichikai-91 ni sanka shitakatta. 
t2     Kare ha kaigi ni iru. 
t3      Kare ha ronbun no shitsu ga subarashii to iita. 

5.2   Anaphora 
Anaphoric reference is resolved by searching for discourse 
entity as represented by CIs under a specific type of con- 
cept node. Sentence s2 contains anaphora problems due to 
‘He’ and ‘the conference’. When processing ‘He’, DMSNAP 
searches for any CIs under the concept C-MALE-PERSON and 
its subclass concepts such as C-JOHN. In the current discourse, 
JOHN#1 is found under C-JOHN. JOHN#1 and IJCAI-91#2 are 
created when the s1 is parsed. An A-MARKER pointing to 
JOHN#1 propagates up through ISA links. Likewise, IJCAI- 
91#2 is found for C-CONFERENCE. In this sentence, there is 
only one discourse entity (CI in our model) as a candidate for 
each anaphoric reference, thus a simple instance search over 
the typed hierarchy network suffices. However, when there 
are multiple candidates, we use the centering theory by intro- 
ducing forward-looking center (Cf), backward-looking center 
(Cb), etc [Brennan et. al., 1986]. Also, incorporating the 
notion of the focus is straightforward [Sidner, 1979]. 

5.3    Lexical Ambiguity 
DMSNAP is capable of resolving this lexical ambiguity 
through use of contextual priming using the contextual marker 
(C-Marker) [Tomabechi, 1987] and the cost-based disam- 
biguation [Kitano et al., 1989]. Sentence s3 contains a 
word sense ambiguity in the interpretation of the word ‘pa- 
per’' as either a technical document or a sheet of paper. Upon 
reading ‘paper’, C-THESIS and C-PAPER are activated. At this 
time, C-THESIS has a C-MARKER. The C-MARKER comes 
from activation of C-IJCAI-91 and C-CONFERENCE, in previous 
sentences, which has contextual links connecting concepts rel- 
evant to academic conference such as C-THESIS. The meaning 
hypothesis containing C-THESIS costs less than the one with 
C-PAPER so that it is selected as the best hypothesis. 

5.4   Control 
Control is handled using the syntactic constraint network. 

Sentence s7 is an example of sentence involving functional 
control [Bresnan, 1982]. In s7, both subject control and 
object control exist - the subject of ‘persuade’ should be the 
subject of ‘tried’ (subject control), and the subject of ‘help’ 
should be the object of ‘persuade’ (object control). In this 
case, CSCS for infinitival complement has CSE without NEXT 
link. Such an CSE represents missing subject. There are SUBJ, 
OBJ, and OBJ2 nodes (these are functional controller) in 
the syntactic constraints network each of which store pointer 
to the CI node for possible controllee. Syntactic constraint 
links from each lexical items of the verb determine which 
functional controller is active. Activated functional controller 
propagate a pointer to the CI node to unbound subject nodes of 
CSCs for infinitival complements. Basically, one set of nodes 
for functional controller handles deeply nested cases due to 
functional locality. 

Take an example from s7, when processing ‘Dan’, a pointer 
to an instance of ‘Dan’ which is C-DAN#1 is passed to SUBJ 
node of functional controller. Then, when processing ‘tried’, 
a SC-Marker propagates from the lexical node of ‘tried’ to 
SUBJ through SC-link, and the SUBJ node is being activated. 
Then, the pointer to C-DAN# 1 in the SUBJ node propagate to 
SUBJ role node (or ACTOR node) of the CSC for infinitival 
complement. After processing ‘to’, the CSC for infinitival 
complement is predicted. Temporal bindings take place in 
each predicted CSC. When processing ‘persuade’, however, 
OBJ gets activated since ‘persuade’ enforces object control. 
not subject control. Thus, after ‘Eric’ is processed, a pointer 
to an instance of ‘Eric’ propagate in to the already active OBJ 
node, and then propagate to SUBJ role node (or ACTOR role 
node) of each CSC for infinitival complement. This way. 
DMSNAP performs control, 

5.5   Structural Ambiguity 
Structural ambiguity is resolved by the cost-based ambiguity 
resolution method [Kitano et al., 1989]. The cost-based am- 
biguity resolution takes into account various psycholinguistic 
studies such as [Crain and Steedman, 1985] and [Ford et al., 
1981].   Sentence s8 contains a structural ambiguity in me 
PP-attachment. It can be interpreted either: 
[s juntae [VP solved [NP the problem ] [PP with [NP the simulator ]]], 
or 
[s juntae [VP solved [NP the problem [PP with [NP the simulator ]]]]].  

In this case, two hypotheses are activated at the end of the 
parse. Then, DMSNAP computes the cost of each hypoth- 
esis. Factors involved are contextual priming, lexical pref- 
erence, existence of discourse entity, and consistency with 
world knowledge. In this example, the consistency with the 
world knowledge plays central role. The world knowledge 
is a set of knowledge of common sense and knowledge ob- 
tained from understanding previous sentences. To resolve 
ambiguity in this example, the DMSNAP checks if there is a 
problem in the simulator. Constraint checks are performed 
by bit-marker propagation through CONSTRAINT links and 
EQROLE links. Since there is a CI which packages instances 
of ERROR and SNAP-SIMULATOR then the constraint is satisfied 
and the second interpretation incurs no cost from constraint 
check. However, there is no CI which packages instances of 
JUNTAE and SNAP-SIMULATOR. Therefore the first interpre- 
tation incurs a cost of constraint violation (15 in our current 
implementation). Thus DMSNAP is able to interpret the struc- 
tural ambiguity in favor of the second interpretation. 

5.6    Unbounded Dependency 
There are two ways to handle sentences with unbounded de- 
pendency. The first approach is straightforward memory- 
based approach which simply store a set of CSCs involves 
unbounded dependency. A large set of CSCs would have to 
be prepared for this, but its simplicity minimized computa- 
tional requirements. Alternatively, we can employ somewhat 
linguistic treatment of this phenomena within our framework. 
The syntactic constraint network has a node representing 
TOPIC and FOCUS which usually bound to the displaced 
phrase. An address of CI for the displaced phrase (such as 
‘the bug’ in the example s9) is propagated to the TOPIC or 
FOCUS nodes in the syntactic constraint network. Further 
propagation  of  the  address  of  the  CI  is  controlled  by acti- 

98 



 

vation of nodes along the syntactic constraint network. The 
network virtually encodes a finite-state transition equivalent 
to {COMP|XCOMP}*GF-COMP [Kaplan and Zaenen, 1989] 
where GF-COMP denotes grammatical functions other than 
COMP. The address of the CI bound to TOPIC or FOCUS can 
propagate through the path based on the activation patterns of 
the syntactic constraint network, and the activation patterns 
are essentially controlled by markers flow from the memory 
network. When the CSC is accepted and there is a case-role 
not bound to any CI (OBJECT in the example), the CSE for 
the case-role bound with the CI propagated from the syntactic 
constraint network. 

6    Performance 
DMSNAP complete parsing in the order of milliseconds. 
While actual SNAP hardware is now being assembled and 
to be fully operational by May 1991, this section provides 
performance estimation with precise simulation of the SNAP 
machine. Simulations of the DMSNAP algorithm have been 
performed on a SUN 3/280 using the SNAP simulator which 
has been developed at USC [Lin and Moldovan, 1990]. The 
simulator is implemented in both SUN Common LISP and 
C, and simulates the SNAP machine at the processor level. 
The LISP version of the simulators also provides information 
about the number of SNAP clock cycles required to perform 
the simulation. 

There are two versions of DMSNAP, one written in LISP 
and one in C. The high-level languages only lake care of the 
process flow control, and the actual processing is done with 
SNAP instructions. The performance data summarized in 
Table 2 was obtained with the first version of DMSNAP written 
in LISP. Furthermore, with a clock speed of 10 MHz, these 
execution times are in the order of 1 millisecond. These and 
other simulation results verify the operation of the algorithm 
and indicate that typical runtime is on the order of milliseconds 
per sentence. 

The size of the memory network for example II is far larger 
than that of example I, yet we see no notable increase in the 
processing time. This is due to the use of a guided marker- 
passing which constraints propagation paths of markers. Our 
analysis of the algorithm shows that parsing time grow only 
to sublinear to the size of the network. 

7    Conclusion 
In this paper, we have demonstrated that high-performance 
natural language processing with parsing speeds in the order 
of milliseconds is achievable without making substantial com- 
promise in linguistic analysis. To the contrary, our model is 
superior to other traditional natural language processing mod- 
els in several aspects, particularly, in contextual processing. 
The DMSNAP  is  based  on  the  idea  of memory-based model 

 

of natural language processing. The DMSNAP is a variation 
of the ΦDMDIALOG speech-to-speech dialog translation sys- 
tem. We use the parallel marker-passing scheme to perform 
parsing, generation, and inferencing. The syntactic constraint 
network was introduced to handle linguistically complex phe- 
nomena without undermining benefits of the memory-based 
approach. 

Not only the DMSNAP exhibits high-performance natu- 
ral language processing, but also demonstrates capabilities 
to carry out linguistically sound parsing particularly on con- 
textual processing. The use of the memory network to dis- 
tributively represent knowledge and modify it to reflect new 
states of the mental model is an effective way to handle such 
phenomena as pronoun reference and control. 

In summary, we demonstrated that the model presented in 
this paper is a promising approach to high-performance nat- 
ural language processing with highly contextual and linguis- 
Ucly sound processing. We hope to extend this work to the 
real-world domains in the near-future. We are convinced that 
millisecond performance opens new possibilities for natural 
language processing. 
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