
PARSING WITHOUT PARSER

HASIDA, Koiti TSUDA. Hiroshi*
Institute for New Generation Computer Technology (ICOT)

Mita Kokusai Bldg. 2 1F, 1-4-28 Mita, Minato-ku , Tok:vo 108 . JAPA�
Tel: +81 -3-3456-3069

E-mail: basida@icot. or.jp

ABSTRACT

In the domain of artificial intelligence, the pattern of information flow varies drastically from one context to another . To capture this divers ity of information flow . a natural-language processing (NLP) system should consist of modules of constraints and one general con­straint solver to process all of them; there should be no specialized procedure module such as a parser and a generator . This paper presents how to implement such a constraint-based approach to NLP. Dependency Prop­
agation (DP) is a constraint solver which transforms the program (=constraint) represented in terms of logic programs. Constraint Unification (Cui is a unification method incorporating DP. c u-Prolog is an extended Prolog which employs CU insteaq of the standard uni­fication. cu-Prolog can treat some lexical and grammatical knowledge as constraints on the structure of gram­matical categories � enabling a very straightforward im­plementation of a parser using constraint -based gram­mars. By extending DP, one can deal efficiently with phrase structures in terms of constraints . Computa­tion on category structures and phrase structures are naturally integrated in an extended DP. The computa­tion strategies to do all this are total ly attributed to a very abstract , task-independent principle: prefer com­putation using denser information. Efficient parsing is hence possible without any parser.
1 Introduction
The informat ion-processing capacity of a cogmt1ve agent is severely limited, whereas the world in which it finds itself contains a vast amount of information which might be relevant to its survival . A cogni tive agent is thus dest ined to face partiality of information. That is, information processing by a cognitive agent is limited to a very small part of the potentially relevant information. In the domain of artificial intelligence in general and natural language process ing in particular, therefore, the pattern of information flow varies very

*The order is not significant.
1

tsudafYicot . or.jp

drast ically from one context to another. This is nec­essary in order for a cognit ive agent to have chance of access to the ent ire domain of potentially relevant information across various different contexts . Due to this diversity of information flow, it is prac­tically impossible to stipulate which pieces of informa­tion to process in which order . Consider the case of comprehension of natural language sentences . for in­stance. Parts of phonological i nformation might be missing due to noise . and it may well be impossible t o predict which part would b e missing. Similarly. parts of syntactic information could be insufficient . gi,·i ng rise to syntactic ambig 1 1 i ty. Semantic informat ion a lso would be part ially abu 1 1 dant or missing due to familiar­i ty or ignorance to the topic . and so on. It is therefore utterly implaus ible to :- u ppose that all phonological in­formation is processed prior to syntact ic informat ion . or that syntact ic informat ion is processed before se­mantic information. Accordingly. i t is not at all a promising approach to AI or NLP to stipulate information flow totallv. as procedural programs do. In particular. a hierarcl1ical architecture consisting of modules of procedures fails to capture very complex. multi-direct ional . informat ion flow in the domains su'ch as :>i LP. because procedures st ipulate what is input and what is output . se,·erely restricting the global information flow across the ent i w system. This i s what happens i n the prevalent arch i t Pc­ture of NLP systems consisting of a sequence of proce­dure modules such as , say. syntactic analyzer . semant i c analyzer , pragmatic analyzer. generation planner . and surface generator. The design of AI systems should abstract awa\· i n­formation flow in accordance with its divers i tv. 1 ·T his is where constraint paradigm [1-l] comes in. Si�ce co n­straint , or declarative program, does not stipulate pro-
1 Of course , there are some aspects of cognitive process where information flow is rather restric ted . Typical examples are found i n low-level aspects of perception and motor control . Informa­tion flow may be stipulated to some adequate extent in the design of those subsystems. Nevertheless . diversity of information flow must be captured across different dimensions even in these cases . as is indicated by R. Brooks [1] ; In his robot. although informa­tion flow in each module may be regarded as uni-direc tional and there is only a little interac tion between different modules . i nput information is not restricted to flow all the way through t>vPry module before output information is tailored.

cessing order , it · does not restrict information flow· so severely as procedures do . and thus can capture the diversity of information flow.2 In the constraint paradigm. a NLP system involves modules of linguis t ic (syntactic . semantic , pragmatic , and so on .) and extralinguistic constraints . Whether there are different constraint solvers for different mod­ules of constraints is not a light question. but we strongly suspect the answer is no . If yes . the communi­cation between different modules would be too cumber­some to allow the massive interaction required in NLP. For instance. it would not be a very good idea to have a constraint solver specialized for processing syntactic in­formation. Thus we employ a radical constraint�based viewpoint : j ust one very general constraint solver deals with all the different constraints. giving rise to diverse communication across them.3 The task of NLP is hence divided into modules of constraints rather than mod­ules of procedures as has been tradi tionally done. As a matter of course, a NLP system should include no parser. In the rest of the paper. we will concentrate on pars­ing . Efficient parsing will be shown to emerge from our const raint solver. which is a general constraint trans­formation metho d employing se\·eral heuris tics derived from the following very abstract . task- independent principle:
(1) P refer computation using denser information.

That is . efficient parsing is attributed to this princi­ple. This is regarded as an impressive demonstration of the feasibility of our constraint-based approach, be­cause pars ing is almost the only subproblem of NLP where there are endorsed efficient algorithms , mainly for dealing with phrase structures. Our constraint solver. called Dependency Propaga­
tion [8 , 7] , deals with constraints in a combinatorial domain . unlike the constraint solvers embedded in most constraint logic programming (C LP) languages [2 , :J , 9] . Section 2 describes how to parse ambiguous sentences with a C LP language, caUed c u-Prolog, which embe_ds an early version of D P. Although the ambiguity treated in Section :2 concerns only the struct ures of grammat­ical categories. Section :3 applies DP itself to pars­ing phrase-structure . typically formulated in terms of context-free grammars . It will be shown that efficient pars ing procedures such as Earley 's algorithm simply emerge from general process ing strategies employed in a revised version of DP. Section -1 demonstrates that

2Constraint is not the only approach to diversity of informa­
tion flow . For instance , blac kboard arc hitecture is also regarded
as aiming at the same thing . Coroutine implemented in lan­
guages such as CON NIVER [13] is another example . The reason
why we employ constraint paradigm is twofold . F irst . it comes
with intuitive declarative semantics. Secqnd. it implements the
diversity of information flow at fint:>r-grained levels than migh t
be captured in the other approaches .

. 3Thus we consider that General Problem Solver was basically
on the r ight trac k . Its alleged failure was simply due to the
immaturity of programming tec hnologies.

both types of information. about category s t ructures and phrase structures . are processed efficiently in a naturally integrated manner by very general heuristics. Finally. Sect ion .j concludes the paper .
2 Processing Category Struc­

ture

In [18] , we introduced a symbolic CLP language cu­Prolog and showed how it applies to parsing based on JPSG (Japanese Phrase Structure Grammar) [.j] . By treating grammatical principles and ambiguity con­cerning polysemy or homonymy straightforwardly in terms of constraints . syntactic, semantic and other types of ambiguity are processed in an integrated man­ner by Constraint Un ification (CU) . CU is the unifier employed in cu-Prolog , and is roughly regarded as the standard unification plus DP. cu-Prolog deals with var­ious constraints on the structures of grammatical cat­egories . without any special programming besides the encoding of the relevant constraints .
2 . 1 Dependency Propagation For the sake of expository simplification. in this paper we restrict ourselves to Horn clauses . although DP is not actually so limited . Dependen cy triggers constraint transformation in DP. Two occurrences of the same variable in a clause constitutes a dependency when both occurrences do not occupy any vacuo·us argument place. An argument place of an atomic formula is said to be vacuous when a variable filling that argument place is never instant i ­ated by evaluating that atomic formula. For instance. the first argument place of predica te
member defined below is vacuous .

(:2) a. member (E , [E I -]) .
b. member (E , [_ I S]) : - member (E , S) .

In the following clauses . (:3) has no dependency. and (-1) has a dependency because i t is equivalent to (-S) .
(:3) : -member (a , X) .
(4) : -member (X , [a , b , c]) .
(5) : -member (X , Y) , Y= [a , b , c] .
In DP. computat ion proceeds so as to eliminate de­pendency. Note that this is a more general control schema than Earley <;!eduction (10] , which executes the body of each clause in the fixed left- to-right order. Basically, fusion replaces one or more literals \V ith another : so as to eliminate dependency. Fusion is a sort of unfold/fold transformation for logic programs (1 -5] . For example , member (X , [a , b]) is replaced by cO (X) . where cO is a new predicate defined as follows .

2

(6) cO (a) . cO (b) .

That is , two atomic formulas, member (X , Y) and Y= [a , b] 4 have been fused to one atomic formula cO (X) . The principle (1) provides us some heuristics for con­trolling fusion. For example, the elimination of de­pendency involving a variable binding, as in p (a , X) , should have higher priority than the elimination of de­pendency between two ordinary atomic formulas , as in p (X) , q (X) . We will discuss heuristics further along this line later.
2 .2 cu-Prolog A program of cu- Prolog is a set of Constraint -Added Horn Clauses (CAHCs) , A CAHC is a Horn Clause followed by constraints :

Head Body Constraint
,,..,,..__H ,_..__ __..__ : - B1 , B2 , · · · , Bn ; C1 , C2 , · · · , Cm .

The prolog part (the head plus the body) of a C AHC is processed procedurally j ust as in Prolog, whereas the const raint part is dynamically transformed with a sort of unfold/fold transformation during the execution of the former part . The following is the inference rule of cu-Prolog :
A, K;C. ,- A' : -L :D. ,

0 = mgu(A, A') , C' = dp(C0 1 D0) L0, K0; C'
A and A' are atomic formulas. K , L, C . D , and C' are s_equences o f atomic formu­las . mgu (A, A') is the most general unifier between A and A'.

dp(C) is a modular constraint that is equivalent to C . I f C i s inconsistent 1 the application of the above infer­ence rule fails because dp(C) does not exist . The following holds i f Ci and Cj share n o variable:
(7) dp(C) = dp(C i) , · . . , dp(Cn) -

For example ,
(8) dp (member (X , [a , b , c]) , member (X , [b , c , d]) , app (U , V))

returns a new constraint cO (X) , app (U , V) , where the definition of cO is
(9) cO (b) .

cO (c) .

but
(10) dp (member (X , [a , b ; c]) ,member (X , [k , l , m]))

is not defined .
4Y= [a , b] may be further regarded as a bundle of five atomic

formulas : Y= [A I Z] , A=a. Z= [B I W] , B=b and W= [] .

3

2 .3 JPSG parser in cu-Prolog In cu- Prolog . unificat ion- based grammar such as HPSG or JPSG can be implemented naturally by t reat ing t he constraints formulated in those theories almost as they are. Figure l shows an example session of the .J PSG parser when i t processes an ambiguous sentence.:; Be­low we discuss two examples of C AHC in the .JPSG parser in cu-Prolog [1 8] . The first example concerns how to pack lexical am­b iguity. The following is the lexical entry of a Japanese polysemic noun ··hasi" that means bridge . chopsticks. or edge depending on contexts .
(1 1) lexicon (hasi , [. . . sem (TYPE , OBJ)]) ;

has i_sem (TYPE , OBJ) .

and predicate has Lsem is defined as follows .
(1 2) hasi _sem (structure , bridge) .

has i _sem (tool , chopst icks) .
has i_sem (place , edge) .

Constraint has Lsem(TYPE , □BJ) represents various meanings of 1'hasi" and the ambiguity may be resolved during the parsing pro cess when other constraints are imposed . Be_cause such ambiguity is considered at one time, instead of divided into separate lexical ent ries . parsing p rocess can be efficient . In the second example, various feature principles of unification- based grammar are embedded in a phrase structure rule as constraints . The following clause shO\vs t he foot feature principle of JPSG: the foot fea­ture value of the mother unifies \Vi t h t he union of t hose of her daughters .
(1 :3) psr ([ff (MS)] , [ff (LDS)] , [ff (RD-S)]) ; union (LDS , RDS , MS) .
psr (Mother , Left J)aughter , Head) is a phrase structure rule followed by the const ra in t union{LDS , RDS , MS) which represents the foot fea t ure principle. MS .LOS, and RDS are foot features of mot her . left daughter, and right daughter respecti vely. The constraint is flexibly processed 1,vith t he const ra int transformation mechanism wit h a heurist ic . In tradit ional Prolog, t hese princip les are supposed to be implemented in t he following procedural way :

(1 4) psr ([ff (MS)] , [ff (LDS)] , [ff (RDS)]) union (LDS , RDS , MS) .
By applying t his rule. union(LDS , RDS , MS) is executed immediately and parsing process may be inefficient when variables are not well instantiated . :'-iote t hat it is pract ically impossible to s t ipulate the order to p ro cess linguistic const raints in advance .

5 cu- Prolog is implemented in C language on l: �IX 4 . 2 /38S0
This example i s on SYM �lETRY machine [19] .

_ : -p ([ken , ga , ai , suru]) .

v [Form_675 , AJN{Adj _677} , SC{SubCat_679}] : SEM_68 1--- [suff_p]
I
l --v [vs2 , SC{p [wo] }J : [love , ken , 0bj 0_415] --- [subcat_p]
I I
I 1 --p [ga] : ken--- [adj acent _p]
I I I
I I 1 --n [n] : ken--- [ken]
I I I
I I l _ _ p [ga , AJA{n [n] }] : ken--- [ga]
I I
I l __ v [vs2 , SC{p [ga] , p [wo] }J : [love , ken , 0bj 0_415] --- [ai]
I
l __ v [Form_675 , AJA{v [vs2 , SC{p [wo] }] } , AJN{Adj _677} , SC{SubCat _679}] : SEM_68 1--- [suru]

cat cat (v , Form_675 , [] , Adj _677 , SubCat_679 , SEM_68 1)
cond c7 (Form_675 , SubCat_679 , 0bj 0_415 , Adj _677 , SEM_68 1)
True .
CPU t ime = 0 . 050 sec

_ : -c7 (F , SC , _ , A , SEM) .
F = syusi SC = [cat (p , wo , [] , [] , [] , 0bj 00_30)] A = [] SEM = [love , ken , 0bj 00_30] ;
F = rentai SC = [] A = [cat (n , n , [] , [] , [] , inst (0bj 00_38 , Type3_36))]
SEM = inst (0bj 00_38 , [and , Type3_36 , [love , ken , 0bj 00_38]]) no .

CPU time = 0 . 0 1 7 sec

This is an example ru n of J PSG parser in cu- Prolog. The fi rst l i ne is a user's input . " Ken ga a i su ru" has two read ings : "Ken
loves (someone)" and "(someone) whom Ken loves . " The parser d raws a parse tree and returns i nformation (constra int) on
the st_ructu re of the top node. In th is example, the ambiguity of the sentence is captu red as the two solutions of the piece · of
constraint c7 (F , SC , _ , A , SEM) . The fi rst solut ion corresponds to " Ken loves (someone) ." and the second solution "(someone)
whom Ken loves . "

Figure 1 : Parsing an ambiguous sentence.

4

3 Processing Phrase Structure

The JPSG parser discussed in Section 2, however, can­not handle ambiguity on phrase structures because the parsing algorithm is written only in the Prolog part of CAHC. This section shows that chart parsing is natu­rally derived from a very general control strategy of an extended version of DP.
3 . 1 Context-Free Parsing by Fusion
Let us consider the following extremely simple context­free grammar.

(1 :3) p ---t a
p - pp

The parsing of string aa · · · a under th is grammar may be formulated in terms of the fol lowing constraint .6

(1 4) : - p (A0 , B) , A0= [a l A1] , · · · , An- l = [a] .
p ([a l X] , X) .
p (X , Z) : - p (X , Y) , p (Y , Z) .

Note that the double occurrence of Y in the last clause does not count as a dependency, because the sec­ond argument place of p is vacuous . Thus the only de­pendency to eliminate now is that concerning AO
• Here. we replace p (A0 , B) with p0 (A0) , creating a new predi­cate p0 •

(1 5) Po (B) , AO= [a I A 1] , • • · , An- 1 = [a I An] . Po (A 1) . po (Z) : - p (A0 , Y) , p (Y , Z) .
p (AO , Y) in the last clause is folded and we get
(1 6) po (Z) : - p0 (Y) , p (Y , Z) .

This clause has a dependency concerning Y. Then, the parsing process continues . This t ransformation process is exempt from the infi­nite loop due to left recursion. unlike DCG of the stan­dard type, because fusion includes some sort of tabu­lation technique [1 6] . If we had A0 = [b I A 1 J instead of A0 = [a l A 1] , for instance, we would have the following instead of (1 6) .

(1 7) : - po (B) , A0= [b l A1] , • · · po (Z) : - po (Y) , p (Y , Z) .
P redicate p0 lacks a finite proof, and hence is unsa.tisfi­able under the minimal interpretation. This is detected by checking each predicate once when it is first given or created. Infini te loop is avoided in j ust the same manner also in a more complex case where every input

6 Ai represents the constant l ist of length (n-i) whose ele­
ments are ''a" s .

5

symbol is a well-formed word but they are l ined up in a wrong way. In the current formulat ion . t he computational com­plexity for processing context-free languages is expo­nential as to the sentence length . vVith respect to t he above example. suppose that predicate r 1 i s s�ch that for any assignment to variable X i , there is a set of assignments to variables x0 through x i - t under which ri (X i) is equivalent to the following :

Po may be regarded as r0 . As i t t urns out . i f a definit ion clause of ri is (1 9) with j = i . then ri+l will be created by £usion of ri (Y) and p (Y , Z) . whichever literal might be unfolded. and a definition c lause of ri+l will be (1 9) with j = i + 1 .
(1 9) rJ (Z) : - rJ (Y) , p (Y , Z) .

Note that fusion of rJ (Y) or p (Y , Z) with any other lit­eral never takes place, because Y is constrained now here else and the second argument place of p is vacuous . Since (29) is (1 9) with j = 0 , it follows from foduct ion on i that ri is created during the current parsing for 0 < i < n . A similar reasoning will prove that ex­ponentially many corresponding predicates are created when the basic version of D P as described so far is ap­plied to the following context-free grammar. because there are plural predicate symbols. _
(20) P - a

p - pp
p - PQ

Q ---t a
Q - pp
Q - PQ

3 .2 Penetration
To remedy the inefficiency mention·ed above. \i.-· e rp\· ise DP by employing a different method of operat ion for constraint transformation . The new t ransforrriat ion· op­eration we introduce here is penet ration . w hich coil \·eys information across clause boundaries . For instance. consider clause (2 1) . where pwclicate p is defined by (22) .

(2 1) : - p (X , Y) , p (X , Z) , X=f (Y) , Y=g (Z) .
(22) p (f (A) , A) s (A) . p (C , a) .

The information of X=f (Y) makes X penetrate through p (X , Y) . creat ing new predicate q. as follows:
(23) : - q (X , Y) , p (X , Z) , X=f (Y) , Y=g (Z) . q (X , A) : - X =f (A) , q (A) . q (X , a) .

As indicated here, the first argument of q must always unify with X in the first clause. whereas its second ar­gument has no such restriction.

In the following discussion, a penetrated variable is written with a superscript like X1 • and called a
transclausal variable. which roughly corresponds to the global variable of programming languages such as Pas­cal and C. A t ransclausal variable may be treated as if it were a constant. Accordingly, a penetrated ar­gument place are omitted for the sake of expository simplification. For instance, (23) may be rephrased as follO\vs :
(24) q(Y) , p (X 1 , Z) , X 1 =f (Y) , Y=g (Z) .

q (A) : - X 1 =f (A) , q (A) .

q (a) .

Just as fosion. penetration has two cases : unfolding and folding. An unfolding, such as this case, introduces a new predicate, whereas a folding does not . Binding
X 1 =f (B) in the second clause unifies with X1 =f (Y) . and the resulting binding, X 1 =f (Y 1) . is shared by the first and the second clause:

(2.S) : - q (Y) , p (x1 , z) , X1 =f (Y 1) , Y1 =g (Z) . q (1 y) X 1 =f (y 1) , q (y 1) .

q (a) .

X 1 may penetrate through p (X1 , Z) as well :
(26) : - q (Y) , q (Z) , X 1 =f (Y 1) , Y1 =g (Z) . q (Y1) X 1 =f (Y1) , q(Y 1) .

q (a) .

This is a folding case of penetration. A typical pattern of penetrat ion is shown in Figure 2 . p (• , •) s in the left-hand side of the figure all ·have the same sign, and those in the right-hand side all have the opposite sign. That is , either p (• , e) s in the left are all body literals and those in the right are all head literals , or vice versa. o represents a penetrating variable. We say that this penetration is downward in the former case, and upward in the latter . The penetration to get (23) and (26)' is downward. For � :=:; i :=:; n , W� is a duplication of W i except that p (• , •) has been replaced by q (• , •) . When <I> i and \JI j are the same clause for some i and j , the situation will be more complicated in the sense that the duplication increases not only the right-hand half of the figure but also the left-hand half. The example shown in the next subsection includes some such cases. As shown in the lower part of the figure, second or later penetration of o through the first argument of p is a folding , reusing q without introducing a new pred­icate. Corresponding unfolding and folding must be in the same direction: upward or downward. Otherwise the original combinat ions of clauses are not preserved. Suppose for ins_tance ,that a is to penetrate through p (• , •) in '11 1 at the bottom stage in Figure 2. If we applied folding here. s imply r�placing this p (• , •) with a q (• , •) , the resulting configurat ion would lose the combination of <P3 and W 1 -

6

�-.. _ ,...EY
': : P (

�,..- ·-�

unfolding il
-�

, , '

- - - - - - q <... :
·.. a

··g (r: .)

�- EY
':: p (

�...- ·-�
folding il

EG< __ .. EY
· :: p (

�...- ·-�
Figure 2: Penetrat ion.

Like fusion, penetration is also triggered by depen­dency. In penetration , however 1 dependency may be transclausal . In (26) , for instance, the dependency between Y=g (Z) and q (Y) could trigger penetration . This dependency is transclausal and involves a binding
Y=g (Z) . In the case of upward penetration, the depen­dency in question involves a head literal. To control computation. we must decide which de­pendency to trigger a penetration into which direction. The general principle (1) suggests the following heuris­tic in this respect .

(27) a. A dependency encompassing argument places with greater information quantity should more readily trigger a penetration. b . The argument position with greater infor-mation quantity should be penetrated here .
(276) guarantees that the resulting structure should have more homogeneous information distribution. in­creasing the entropy of the entire system. For example, a binding in the top clause is consid­ered to have much more information than bindings in the other clauses , in the sense that the atomic formulas in the top clause should primarily hold; if they do not , then we do not care whether the atomic formulas in the other clauses hold or not . The downward penetra­tion occurring twice in the above example is motivated accordingly, because it is based on the information of X=f (Y) in the top clause .
3.3 Emergence of Chart Parsing Now we demonstrate that Earley's algorithm natu­rally emerges from penetration controlled by the above heuristic. We consider the simple C FG example (1 3) again.
(1 3) , _ _ p (A0 , ·B) , A0= [a l A 1] , · · · ; An-,l = [a l An] . p ([a I X] , X) .

p (X , Z) : - p (X , Y) � p (Y � Z) .

The following is obtained· by downwa:rd penetration of A0 through p (A0 , B) , which is u·nfolded .
(28) : - Po (B) , A0= [a l A1] , · : · , An- l = [a l An] . Po (A1) . Po (Z) : - p (AO , Y) , p (Y , Z) .

The only relevant dependency here is the one concern­ing the first argument of p (A0 , Y) in the bottom c lause. This literal is hence folded and replaced with p0 (Y) , the entire clause being transformed as follows .
(29) po (Z) : - po (Y) , p (Y , Z) .
Now we have a non-vacuous dependency concerning Y. because p0 says something substant ial about t he in­stantiation of its argument . The head p0 (A0) of the first definition c lause of p0 has transclausal variable A 0

7

as the argument . Since A0 has been introduced in the top clause. upward penet ration is applied here , so that the first definition clause of p0 is replaced by Po. 1 . . and a new definition clause is int roduced . as follovvs .
(30) Po.1 . Po (Z) po (Z) Po. 1 , p (A 1 , z) . po (Y) , p (Y , Z) .

The last clause of (28) has been replicated vvhile p0 (Y) therein has been replaced by p0 , 1 plus Y = A 1 . giving rise to the second clause in (:30) above.);°ote that p (Y) no longer imposes any res t riction on the ins tant iation of Y . The dependency concerning Y in the t hird clause here is vacuous and left untouched for the time being. A problem here. inc identally. is that another top clause as below is created .
(:3 1) : - Po.1 , 8=A 1 , A0= [a l A 1] , An- l = [a l An] .

To avoid two top clauses . we could introduce a new predicate q by which to mediate between the top clause and the locus of upward penetration:
(3 2) : - q, A0= [a l A 1] , · · · , An- l = [a l An] . q Po.1 , B0=A 1 . q : - Po (B0) .

Next . p (A 1 , Z) in the second clause of (:30) is un­folded and a new predicate p 1 is creat�d. A 1 penet rat ing downwards :
(;3;3) Po (Z) Po .1 , P1 (Z) . P 1 (A2

) . P1 (Z) : - P1 (Y) , p (Y , Z) .
Operation prnceeds similarly. yielding the clauses f�t-
�w.

. . -

(34) P 1 .2 • Pt (Z) : - P1 .2 , p2 (Z) . Po.2 : - Po. 1 , P 1 .2 · Po (Z) Po.2 , P2 (Z) . P2 (Z) : - P2 (Y) , p (Y , Z) .
Shown below is what is finally obtained .

(:3,5) : - q , A0= [a l A 1] , · · · , An- l = [a l An] . q : - po (B0) . q : - Po.i , B0=Ai . (0 < i ::; n) Pi (Z) : - Pi.J , p/Z) . (0 ::; i < j < n) Pz (Z) : - Pi (Y) , p (Y , Z) . (0 ::; i < n) Pi . i+1 . (0 ::; i < n) Pi .k : - Pi.J , PJ.k · (0 ::; i < j < k < n)

p

A
p p

AA
l J k

Figure :J : The meaning of Pi.k : - Pi.j , Pi.k .
3 .4 Computational Complexity

Part of (:3,j) amounts to a well- formed substring ta­ble. as in CYK algorithm. Earley' s algorithm [4] , chart parser. and so on. For inst ance. the existence of clause Pi.k : - Pi .; , P; .k . means that . as i llustrated in Fig. :J . the part of the given string from position i to posi­tion k has been parsed as having category P and is subdivided at position j into two parts . each having category P. Note that the computational complexity of the above process is 0(n3) in terms of both space and time. Moreover, the space complexity is reduced to 0 (n2) i f we delete the literals irrelevant to instantiation of vari­ables . which preserves the semantics of the constraints in the case of Horn programs . That is i the resulting structure would be:
(:36) : - q , A0= [a l A1] , . · · · , An- l = [a l An] . q : - Po (Bo) . q : - B0=A i • (0 < i � n) Pi (Z) Pi (Z} . (0 � i < j < n) P-i (Z) : - P_i (Y) , p (Y , Z) . (0 � i < n)

Some sort of clauses listed here might be generated more than once in general cases where the grammar is less t rivial than (1 :3) . For example . clause (37) may be derived from both (:38) and (: 39) .

(38) s (X , Z)
(39) s (X , Z)

np (X , Y) , vp (Y , Z) .

np (X , Y) , adv (Y , U) , vp (Y , Z) .

If (37) is generated twice. then of course we are able to collapse the two instances to one, so that the space complexity should be 0(n 2) . Needless to say, this col­lapsing operation is totally domain-independent in its nature. The process illustrated above corresponds best to Earley·s algorithm. Our procedure may be general­ized to employ more bottom- up control . so that the result ing process should be regarded as chart pars ing in general . including left -corner pars ing. and so on.
8

4 Integrated Processing

Section 2 treats l inguistic constraints on category struc­tures as constraint t ransformation . and Section :3 pro­cessed linguistic constraints on phrase structures . This section discusses how to handle various types of con­straints mentioned in the previous two sections . Some heuristics will be needed to determine which constraint to process earlier than the others .
4 .1 Heuristics In the following discussion , we consider two types of linguistic constraints : constraints on category struc­t ure and those on phrase structure. For simplicity. the former constraints are represented only by pred­icate c. and the latter p . Accordingly. we intro­duce two types of dependency: inter-dependency and
intra-dependency. Inter-dependency is a double oc­currence of a variable in both types of constraints , such as X in p (X) , c (X , Y) . Intra-dependency arises with non-variable arguments or a variable that occurs only in one type of constraints such as c (a , X) or Y in c (a , Y) , c (Y , b) . By applying the general heuristic (27) to this do­main . we get the following heuristic:

• E liminate intra-dependencies earlier than inter­dependencies .
• Eliminate intra-dependencies in category struc­ture earlier than those in phrase structure .
• In eliminating inter-dependencies . the literal that has the fewer OR-alternatives should be un­folded (penetrated downward) .

That i s . constraints o n category s tructures generally has more information quantity than those on phrase� structure. because the former are called by the lat ter. In the case of a dependency between two argument places of ordinary atomic formulas , moreover. pene­tration operation should take place at the one that has fewer alternatives of unfolding. because it is supposed to have more information quantity:
4 .2 Example

The following is an ambiguous context free grammar that parses ''I see a man with a telescope."
(40) VP --+ V NP

VP --+ VP PP
NP --+ NP NP
V --+ see
NP --+ a man
PP --+ with a telescope

(4 1) is a parsing program in terms of this grammar .

(4 1) p (X , Z , C) : - p (X , Y , LC) , p (Y , Z , RC) , . c (LC , RC , C) .
c (v , np , vp) .
c (np , pp , np) .
c (vp , pp , vp) .
p ([see l W] , W , v) .
p ([a , man l W] , W , np) .
p ([with , a , telescope l W] , W , pp) .

Predicate p represents phrase structure constraint and predicate c: represents constraint on category structure.7

(42) : -p (A0 , B , C) , A0= [see l A1] , A1 = [a , man l A2] ,

A2 = [with , a , telescope l A3] , A3= [] .

(42) is a question clause. This example shows that two meanings of ·'I see a man with a telescope·' are derived from this program by the constraint transfor­mation with the heuristic mentioned previously. The dependency to be processed is in terms of A 0 in (42) because LC and RC in (40) do not have depen­dencies on ,ac�ount qf vacuous argument places . Then. . apply dow�ward penetration in terms of AO to (42) . p0 (B , C) i s equivalent to p (A0 , B , C) .
(43) : -po (B , C) , (4-l) p0 (A 1 ; v) . (45) p0 (B , C) : - p (A0 , Y , LC) , p (Y , B , RC) , , c (LC , RC , C) .

The first body literal of (4,5) can be folded and we get
(46) p0 (B , Cat) : - p0 (Y , LC) , p (Y , B , RC) , c (LC , RC , Cat) .

Apply upward penetrc1:t ion to (44) . Here p0,1 is equiv­alent to p0 (A 1 , v) .
(4 7) : -po,1 . (48) Po,1 . (49) p0 (B , Cat) : -po,1 , p (A 1 , B , RC) , c (v , RC , Cat) .

Unfold the category constraint of (49) .8 7From unification-based point of view, suppose each category has the form [pQs/X] and c () represents the pos feature prin­ciple: The combination of the values of pos feature of mother , left daughter , and right daughter cate­gory is (vp , n , np) , (np , np , pp) , or (vp , vp , pp) .
8Let c0 (Cat) be c (v , RC , Cat) and you apply downward pen­etration to (49) , obtaining

po (B , Cat) : - Po, 1 , p (A 1 , B , RC 1) , co (Cat) .

However, c0 has only one definition clause :
c0 (vp) : -RC 1 =np . So c0 is reduced and you get (50) .

9

(.j0) Po (B , vp) : -po,1 , p (A 1 , B , np) . Now the remaining clauses are (43) , (47) . (48) . (46) and (.jQ) . Apply downward penetration i n terms of A 1 to (.SO) . p 1 (B) is equivalent to p (A 1 , B , np) . (-S l) p0 (B , vp) : -po, 1 , p 1 (B) . (-52) P1 (A2) . (53) p 1 (Z) : -p (A 1 , Y , np) , p (Y , Z , RC) , c (np , RC , np) . Cnfold the category structure constraint of (.j:J) . (54) p1 (Z) : -p (A 1 , Y , np) , p (Y , Z , pp) . The first body of (.j4) can be folded and we get (55) p1 (Z) : -p1 (Y) , p (Y , Z , pp) . Upward penetration in (.52) . p1 ,2=p1 (A 2) (-S6) Po (A 2 , vp) : -po, 1 , P1 .2 . (.5 7) P1 (Z) : -PI .2 , p 1 (A2 , Z , pp) . (.58) Pu • l:pward penetration m (-S6) . p0,2 is equivalent to po (A2 , vp) . (-59) Po (B , Cat) : -po,2 , p (A2 , B , RC) , c (vp , RC , Cat) _ · (60) Po.2 : -po.1 , P1 .2 · Cnfold the category rnl lstraint of (.S9) . (6 1) po (B , vp) : -p0_2 , p (A2 , B , pp) . Here. the remaining clauses are (43) . (-17) . (-! 8) . (-SS) . (60) . (-!6) . (.S l) . (.S.3) . (.S i) and (6 1) . Apply down­ward penetration of A2 in (6 1) . p2 (B) is equivalent to p (A2 , B , pp) . (6 2) po (B , vp) : -po.2 , p2 (B) . (6 :3) p2 (A3) . (64) p2 (B) : -p (A2 , Y , LC) , p (Y , B , RC) , c (LC , RC , pp) . Unfolding of the category constraint of (64:) fai ls . Fo ld (.5 7) . (6.5) p1 (Z) : -p 1 .2 , p2 (Z) . lTpward penetration in (63) . p2 ,3 1s equivalent to P2 (A3) . (66) po (A3 , vp) : -po� , P2� ­(67) P2 .3 . (68) P1 (A3) : -PI ,2 , P2.3 · Upward penetration in (66) . Po.3 = po (A3 , vp) . (69) p0 (B , Cat) : -p0,3 , p (A3 , B , RC) , c (vp , RC , Cat) . (70) Po,3 . Unfolding of the category constraint in (69) fai ls . l' p­w ard penetration in (70) . p1 ,3 = Pi (A3) . (7 1) po (A3 , vp) : -po,1 , p1 ,3 • (72) Pi (Z) : -pl ,3 , p (A3 , z , pp) . (73) p1 ,3 : -pu ,-P2.3 · (6 6) and (7 1) represent the two readings of ··see a man with a telescope. ··

5 Concluding Remarks

In this paper, we have shown that various parsing tech­niques are subsumed in a general procedure of con­straint transformation, whose control heurist ic is at­tributed to an abstract , task-independent principle (1) . Thus our conclusion is that no parser a t all is needed in natural language processing, It is both desirable. as is discussed first in the paper, and possible , as we have so far demonstrated , for an NLP system to have no particular module for parsing sentences , j ust as a car has no particular part for driving towards the east or turning to the left . Our approach will capture sentence generation as well, if we employ a more adequate control heuristic. which could also be derived from (1) . In this connec­tion, Shieber [1 2] , among others , has also proposed a computational architecture by which to unify sentence parsing and generation, but his method is primarily specific to phrase-structure synthesis . A significant merit of our approach is that , as shown above, it is not in any way restricted to parsing or generation of context-free languages. Also , no addit ional mechanism is required to extend the underlying grammatical for­malism so that grammatical categories may be com­plex feature bundles , as is the case with GPSG. LFG. HPSG, and so on. .At any rate, heuristics play the most important role in our approach. As this paper only gave a.n intuitive ration�le on some heuristics in terms of information quantity, more formal . account of them is yet to be worked out . A promising direct ion seems to be to define some sort of potential energy over constraints , which should capture information density, providing not only processing control but also preference of conclusion. In­troducing hierarchies in the constraint is regarded as along the same line.
References

[l] Brooks , R. (1 988) Intelligence witho ut Represen­tation, technical report , AI Laboratory, MIT.
[2] Colme.rauer, A . (1 98 7) A n Introduction to Prolog

III, unpublished manuscript .
[3] D incbas , M. , Simonis , H . and Van Hentenryck, P. (1 988) 'Solving a Cutting-Stock Problem in Con­straint Logic P rogramming, · Proceedings of the -5th Int ernational Conference of Logic Programming. pp. 42-58.
[4] Earley, J . (1970) ' An Efficient Context- Free Pars­ing Algorithm: Communications of A CM. Vol . 1 3 , pp . 94-1 02 .
[5] Gunj i , T . (1 986) ' Japanese Phrase Structure Grammar' , Reidel, Dordrecht , 1 986 . 10

[6] Hasida. K . (1 986) 'Conditioned Unification for Natural Language Processing, · Proceedings of th c 1 1 th COLING.

[7] Hasida, K. and Ishizaki . S . (1 987) · Dependency Propagation : A Unified Theory of Sentence Com­prehension and Generation. ' Proceedings of the 1 0th I.JC AI. pp. 664-670 .
[8] Hasida. K. (1 990) · Sentence Processing as Con­straint Transformation: Proceedings of ECA J'.90.
[9] Jaffar, J . and Lassez , J. (1 988) 'From Unification to Constraints . ' Logic Programming 087, Lecture Notes in Computer Science, No. :3 1 .5 , pp. 1-18 .

[10] Pereira, F . C . N . and Warren, D . H . D . (198 :3) 'Parsing as Deduction, · Proceedings of A CL '88, pp. 1 37-144 .
[1 1] Pollard, C . and Sag, I . A . (1 987) Information­Based Syntax and Semantics. Volume 1 , CSLI Lec­ture Notes No. 1 3 .
[1 2] Shieber, S .M. (1 988) ·A Uniform Architecture for Parsing and Generation. ' Proceedings of the 12th

COLING. pp . 6 1 -t-6 1 9 .
[1 3] Sussman. G . and McDermott. D . V . (1 972) COS­SIVER Referen N .\-fanual. �lemo 2.59 .- A I Labo­ratory. MIT.
[14] Sussman . G. and Steele. G . , .Jr. (1 980) ·Con­straints - A Language for Expressing Almost­Hierarchical Descriptions , · A rtificial Intellige n cf: . Vol. 14 .
[1 -5] Tamaki . H . and Sato . T . (1 98:3) T nfold/ Folcl Transformation of Logic Programs . ' Pmcudings of the Seco nd lntun atio nal Confert na on Logic Progra mming. pp. 1 27- 1 :38 .
[1 6] Tamaki . H. and Sato . T . (1 984) ·OLD Resolu­tion with Tabulation . ' Proceeding.s of th E Th ird Internatio nal Conff l'rnct on Log-ic Progra m m ing. pp. 84-98 .
[1 7] Tsuda. H . and Hasida. K . (1 990) · Parsi ng as Constraint Transformation - an extension of cu-Prolog' Proceedings of the Seo·ul ln f f rn a­tional Conf ere nee on Natural Languagt Proct.s.s­ing, pp. 325-331 .
(18] Tsuda, H . , Hasida, K . . and Sirai, H . (1 989) · JPSG Parser on Constraint Logic Programming. ' Proceedings of the European Chapter of A CL ·89. PP· 9.s-102.
[1 9] Tsuda. H . , Hasida, K. � Yasukawa,H . and Sirai . H . · (1 990) · cu-Prolog V2 system' , !COT TAI-9-52.

