
Using inheritance in Object-Oriented Programming to combine
syntactic rules and lexical idiosyncrasies

Benoit HABERT
Ecole Nortnale Superieure de Fontehay Saint Cloud

31 avenue Lomba.rt
F-92260 FONTENAY-AUX-ROSES FRANCE

internet: bh@litp.ibp.fr
bitnet: bh@frunip61 .bitnet

Phone: (33) 1-47-02-60-50 Ext 415
Fax: (33) 1-47-02-34-32

ABSTRACT

In parsing idioms and frozen expressions in
French, ohe needs to ·combine general syntactic
rules and idiosyncratic -constraints. The
inheritance structure ·provided by Object­
Oriented Programming languages, and more
spedf.ically the combination of methods
present in ct:bs, Common Lisp Gbjed System,
·appears -as an elegant ;and -efficient ,approach
to 'deal with such a complex interaction-.

in parsiIYg hHom's -antl frozen
-expre'sst'on:s 1n Fren�i\" one n:e'ei:l's to ·comb1ne
g'enelal :syntacH:c rules a·na idlosyncra.Ht
'constrai1nls. As :a mat'fet ·of 'iat:l; representing
such an interacHon vla an inheritance laHke
·appears ,a:s •an elegaht and :�flkient -approach.
For t!1e sake of explanation; EngHsh -Mtoms
wi-11 he used as exampM,-. However this
t�mbh1ift-i-on ·o f synlacHc rule-s and
idi-osyn:cr-atk 'behaviour via manipulations bf
the tnherH:ance struftu:re and lhe methods
artad1ed to u> has been -designed for French
cbmpound adverbials. More lhan 6,boo
compou.ntl •adverbial's have be'eii Hsred and
's°fudietl il't t!i\fit 1 f(Gross, 19'9'0). A lexicon­
gtammat··ot �,525 °compoun<1 advetb1als coming
from the tAbt files has been used 1n ;parsing a
test ccotpus of 72;000 words.

toiOMS: A -PECULIAR COMBINATION OF
REctutARitiES AND lDIOSYNCRASIES

The semantics of idioms will hot he
-accounted fbt here, since it is a cohftovetsial

1 Laboratoire d'Automatique Documentaire et
Linguistique: Universite Paris 7 and CNRS.

79

problem. LFG, GPSG and TAGs made quite
different claims on this topic 2 . Within a
syntactic category, it has been shown for
French, at LADL, that frozen expressions are
generaily mote numerous than 'free' ones: 20,
000 frozen verbs (12,000 free), 6,000 adverbials
(1,500 free). More than ·25, UOO compound nouns
have been studied so far, but their number is
far greater, as they -consHtute the fna,jor part
of new terms -in subia�gttages (Grishman '&
l<ittred.ge, 1986). A small propotHon ot frozen
expressions have constitnen'fs ,exi-snng only in
such ·conlex'ts (snch as "umbrage'· ,n ··�te tak�
um'orage at NP-.�'i -or :�rte . 'ta�n , from re>reign
:ianguag�s (''a pri0rfi•t ·or t-oUbw letS-citl:en .
rules·. Apa.ft from these matgina:t 'case$; l�loms
consis't 'of the same words as fwe it.re� phrases,
and tlrey Ifiriow tl\'e same syntactit :rni@s� ··�m
·contrast\ ...-,,Y the way'\ for ln.-slance, are Jtist
ordinarf PP; FutHl'ermbte) a·s shoWh _ tot
Engitsh by Wa·sc>'w et ;at 1982- and -fb'r -Frenih
by· · Gto·ss- ., 1"88, Woo. 'the §vnt:atlic behaviour ,o·- f ., I ·t I ·fl -•

Idioms 1s .fh:uch :fnore s_y-stemaHt than · is
us11aRy thought: 'lra-nsfotmaHo't,'s·· •apply fo
them. &>me tdn:tl 'of ··m�taihll-�s' mu.·st he th'en
teseci :to atcoun:t for these -t�iated ·struchi-tes.

While foflow.ttrg ro a tatge �xtent the
:gen�tal ·syntatHc "ful�:s, .ftijzen 'expre'ssi'ons
present :itiiosyrforas1es. At a :syn'tat:tlt "l'evel, -an
id.ibm can acce.pt ·a moaHie-r _ ("in (-loving)

2 For Bresnan, 1982b, constifua'titH>f ah idiom very
otten have ·a regular s;ynta.cHc behavlou-r withtiut
contr-lhuting at :a)) h> the nteaning -o'f the w"i,ole
expression. According to Gazclar et :a1.,, tifss, p :236,.
24-2, the seri\'antk behav1our o"f 'i'dioms is more
often com·posttforta.1 ·than has gerrera1iy been
assumed,. The approach of (Abeille -& Schabes,
1989) characterizes ·idioms by ·the combiftatiort of
syntactic regularity and semantic non
corn positionali ty.

memory of'), or not (#'by the new way") 3 . It
can require certain syntactic. features for some
of its constituents. For instance, it may need a
certain type of determiner: "for the sake of"
versus "#for a sake of". Lastly, an idiom is
associated with · fixed lexical items. Usually
it is not possible to replace them by synonyms:
#"by the road" versus "by the way". Since
most of frozen expressions follow general
syntactic rules, and since 'transformations'
apply to them, it is not reasonable to try and
process them in a first lexical step .
Recognizing idioms belongs therefore to the
whole syntactic analysis. Nevertheless their
idiosyncratic features must be taken into
account in rules.

STATING THE GENERAL BEHAVIOUR OF
A FAMILY OF IDIOMS

OLMES 4 is a general parser written in
CLOS 5 (Keene, 1989; Steele, 1990, p 770-864),
and ·tested with the Victoria Day
implementation of .PCL 6 (provided by Xerox
Labor_atories), using Lucid Common Lisp 3.0.1,
oil. a Sun 3 workstation, at LITP 7 . OLMES
belongs to the active chart parser family. The
inpunext can be parsed from left to right, or
the other way round, or even both ways at the
same time (around pivots). Top-down, bottom­
up or bottom-up then top-down strategies are
available. The rules used by OLMES: follow
the formalism created for P ATR-II (Shieber,
1986), because it is a kind of "lingua franca"
for unification-based grammars. Additional
constraints can be associated with ordinary
context-free rules so as to analyse mildly
context-sensitive languages (Gazdar, 1988).
Each symbol in the rule is the root of a
Directed Acyclic Graph (DAG) . · In such
category structures, each edge is labelled, and
leads either to an atom or to another .complex
category structure - (Gazdar et al., 1988).

3 We use the same convention as (Gazdar et al.,
1985)_: '#' indicates that a structure is acceptable,
but with a literal meaning.
4 Objects, Language, Means for Exploring and
Structuring (Texts).
5 Common Lisp Object System.
6 Portable Common Loops
7 Laboratoire d'lnformatique TJ\eorique et de
Programmation: Universite Paris 6, Universite Paris
7 and CNRS.

80

For instance, a lot of adverbials in English use
the following rule, in PATR-11 form:

LHS -> RHS l RHS2 RHS 3
<LHS cat> = adv
<RHSl cat> prep
<RHS2 cat> = det .
<RHS3 cat> = noun
<RH S 2 ag reeme nt >

agreement>
< RH S 3

The sequence of a first right-hand side symbol
dominating a DAG with an edge "cat(egory)"
having "prep(osition)" as its value, a second
symbol with "cat" "det(erminer)", and a third
symbol with "noun" as "cat" makes an
"adv(erbial)". Additionally the second and
the third symbol must share the same value
for the feature "agreement".

A graphical equivalent could be:

lhs rhs 1 rhs2 rhs 3

c a I c:t I cat

adv . . prep d et .noun

Figure 1: sequence of DAGs defining an
adverbial

In the lexicon, one can find entries 8 .
such as:

a

at

by

in

cat det
cat -precisions

determiner-type article
article-type indefinite

cat prep

cat prep

cat prep
end

cat noun
agreement

number singular

8 The features not relevant for the rule are not
mentioned.

moment

my

the

cat noun
agreement

number singular

cat det
cat -precisions
determiner-type possessive

cat det
cat -preci sions

determiner-type article
article-type definite

this
cat det
cat preci sions

determiner-type demonst rative
those

cat det
cat -precisions

determiner-type demonst rative
agreement

number plural
way

cat noun
agreement

number singular

The rule above would recognize as idioms "at
the moment", "in a way", "in the end", using
this toy lexicon. Note that the completed rule
is more restrictive than the context-free part
of it. The latter would accept "*by those
way", the former would not, because "those"
and "way" do not agree.

THE GRAI\,iMAR: A NETWORK OF ACTIVE
A G E N T S E N C A P S U L A T I N G
CONSTRAINTS

The context-free rules of the grammar
are represented by a network of classes. Each
class in the network corresponds to an
occurrence of a symbol, whether terminal or
not, appearing in the grammar. The topology
of the network mirrors exactly the strategy
(top-down versus bottom-up) and the direction
of exploration (left-right, right-left or bi­
directional) chosen by the user when
compiling the grammar. This approach
extends the work done within the actor
paradigm by Yonesawa & Ohsawa, 1990.

There are two main classes: active and
inactive. An inactive agent corresponds to a
(possibly partial) constituent which has been

81

found. For instance, for each left-hand side
symbol in the grammar, a class is created
inheriting from the inactive agent class. The
active agents correspond to the right-hand
side symbols of the grammar . . Each of them is
searching for a constituent meeting certain
constraints, as defined in the corresponding
DAG in the rule. If it finds such a constituent,
it then creates an instance of the class
corresponding to the following symbol in the
right-hand side part of the rule. When the
last active agent of the rule "succeeds", it
creates an instance of the class corresponding
to the left-hand side of the rule. The pivot of
the rule is the symbol starting the whole
analysis. It need not be the left-most one.

For the -rule above, in bottom-up
parsing, four classes are defined: LH S - 1 ,
RH S l - 2 , R H S 2 - 3 , RH S 3 - 4 , respectively
(figure 2). RHS l -2 , RHS 2 - 3 and RHS 3 - 4 are
subclasses of LHS - 1 , their instances will be
active agents examining the text from right to
left. The pivot of the rule is the class RH s 3 - 4
(in bold font), corresponding to a noun.

prep det noun

Figure 2: classes resulting from the
compilation

To indicate that a word can belong to the type
of idiom described in the rule, the lexicon
associates the class-name RHS 3 - 4 with this
word. It could be the case for the word
"moment". In a bottom-up analysis, for each
occurrence of "moment" in the input text,

OLMES creates an instance of RHS 3 -4 . This
instance searches for a noun, and finds it:
"moment". It creates an instance of RH s 2 - 3
which examines the word on the left of
"moment", and which stores a partial parse
tree. If this word is a determiner, and has a
feature "agreement" matching with the
corresponding feature of "moment", the new
partial parse tree is transmitted to the
instance of �HS l -2 which is then created and
whose constraints are matched against the
word on the left of the determiner found by the
instance of RH s 2 - 3 . In the case that · the
instance of RHSl -2 finds a preposition, it then
creates an instance of L H s - 1 storing the
complete parse tree and the additional
information gathered from the unification on
the rest of the DAGs.

Changing the grammar rules from
sequences of 'passive' labels to a network of
active classes makes it possible to increase as
necessary the knowledge the instances of these
classes can utilise, and to use inheritance not
only in the lexicon (Shieber, 1986), but in the
grammar rules as well.

USING THE .· iNHERITANCE STRUCTURE . .

T O TAKE IDIO SYNCRASIE S INTO
ACCOUNT

The rule stated above is not restrictive
enough. For instance, it would parse as an
idiom "by a way" in the sentence: "he arrived
by a way new to me". It would be rather an
unsatisfactory approach to· create as many
rules as combinations found between the .
preposition and the type of determiner used· in
such idioms. What we need .instead is a means
to adjoin new constraints to the set of
conditions · defined . in the rule, in a modular
way, that is, using inheritance. In the CLOS
philosophy, if means that some 'mixin' classes
are created. Such classes are not intended to
have instances on their own. On the contrary,
they are only used as constituents (super­
classes) in defining more specialized classes.

For instance, one can define the following
'mixin' classes (see figure 3). Each 'mixin' class
used to specialize the rule has a method
c o n s t r a i n t s which states particular
constraints on the determiner. The content of

82

this method (in PA TR form) follows the class
name, below.

det-article
<RHS3 detl cat-precisions

determiner-type> = article

det-definite-article (subclass of
det-article)

<RHS3 detl cat-precisions
article-type> = definite

det-indefinite-article (subclass of
det-article)

<RHS3 det l cat-precisions
article-type> indefinite

det-possessive
<RHS3 detl cat-precisions

determiner-type> = possessive

det-demonstrative
<RHS3 detl cat-precisions

determiner-type> = demonstrative

r o o t (c o n s t r a i n ts
--..---- < i nstance of

root>) => []

(co nstrai n ts
< i n stance of Det-
article>) = >

rh s 3
d e t 1

c a t ­
p rec i s i o n s

d e t e r m i n e r ­
ty p e

i n d e f i n i t e ­
a r t i c l e

d e f i n i t e ­
a r t i c l e

(c o n s t r a i n ts (c o n s t r a i n ts
<instance of <instance of

O a t - i n d e f i n i t e - D e t - d e f i n i t e -
article>) = > article>) =>

rhs 3
d et 1

c a t ­
p rec i s i o n s

a r t i c l e ­
t y p e

i n d e f i n i t e d e f i n i t e
Figure 3 : Some classes for the constraifits on
determiners

The rule given above (figure 1) is slightly
redefined : from now on, the pivot transmits to

the RHSl the form of preposition, and to the
RHS2 precisions on the type of determiner
which is needed (the dark nodes indicate this
sharing of values in figure 4).

lhs rhs 1 rh s2 rhs3

adv prep de t

Figure 4 : Redefined. rule for adverbials

noun

It is now possible to create final classes for the
pivots of the idioms:

- adv=prep_det -de finite­
art icle_noun, subclass of RHS3-4 and det­
def ini te-art icle. E.g.: by the way.

d e t ­

d e f i n i t e ­

a r t i c l e

ad v =p rep_ d ef i n i te-a rti c I e _no u n

Figure 5: An example of final class

- adv=prep_det -indefinite­
article_noun, subclass of RHS3 -4 and det­
indefini te-a rticle. E.g. : in a way.

- adv=prep_det -demonst rative-noun,
subclass of RHS3-4 and det -demonst rati ve.
E.g.: in this respect.

- adv=prep det -possessive noun,
subclass of RHS3-4 and det -pos;essi ve.
E.g.: in my opinion.

Of course, it could have been possible to
define mixin classes to deal with constraints
on the preposition. Such classes would have
looked like:

prep-in

83

<RHSl prepl form>
prep-by

<RHS l prepl form>
and so on.

in

by

It should be noted that the constraints on the
preposition and the conditions on the
determiner are not on the same level. The
latter are in a way more syntactic: some
syntactic properties of the idiom as a whole
depend on the nature of the determiner. The
form of the initial preposition is purely
idiosyncratic. It does not even always
contribute to the meaning of the expression.
For that reason, the way to specify the initial
preposition does not use inheritance. A list of
associations { <parameter> <value>} is being used
at the initialization of the instance of a given
pivot class to deal with such litteral
constraints. For instance, the list "RHSl by"
will trigger the adjunction of:

<RHSl prepl form> = by

to the conditions specified for the idiomatic
rule.

Usually, in an Object-Oriented
programming language, when a method is
called for an instance of a class, and there are
different methods of the same name linked
with the ancestors of this class, the most
specific method is actually used, overriding
the other ones. For instance, calling
(const raint s det-definite-article-
1) , det -de f ini te -a r t i c le - 1 being an
instance of det -de finit e - a rt ic le, would
yield 9:

<RHS3 det l cat -precisions
article-type> = definite

As shown in figure 6, three methods are
applicable (inside the grey frame) :
const raint s of Det -def inite-a rt i cle
(det -def ini te-art icle-1 is an instance of
this class), c o n s t r a int s of D e t - a rt i c l e
(an instance of Det -de fini te -a rticle i s
a Det -article) and const raint s of root
(for the same reason). The last one (in bold
font) shadows the others.

9 We do not use the actual Lisp syntax for the
result, as it is not relevant.

Method combination

most -s

root

d e t ­
ind efin j t e ­

a r tic l e

:(qop�t�atnis:
•<tnstance of·
:raof>l

: (�onsfr�nts:
: sir1staoc� :ot
· D et -= · ·

ariide>): : :

: {cons trai n t
: : <J'1staMe : Qf .
· D e t--d e-f tn-ite ..

ariicle>.)

(constraints
<instance of

D et -indefinite ­
article>)

Figure 6: Standard method combination

One of the salient characteristics of
CLOS, inherited from its ancestors, COMMON
LOOPS (Bobrow et al., 1 986) and NEW
FLAVORS, is the control given over the
combination of methods having the same name
and present in the super-classes of a given
class (Keene, 1989) 1 O . In this case, it is .
possible to specify that all the methods
cons t raint s accessible from a given class
should be called in turn, and the final result
should be the addition of all the returned
values. With this combination of methods,
the result of the function call (const raint s
det - de f i n i t e - a r t i c l e - 1) would be
(figure 7):

<RHS3 detl cat-preci sions
determiner-type> = article

1 0 When the most specific method represents nothing but an ··addition to the action of one super­method, it is generally possible in an Object­Oriented Programming Language to combine it with this super-method, so as to share common behaviours.

84

<RHS3 det l cat -precisions
article-type> = definite

Method combination

addition

.
root {oonstra ints-

d e t -

d e t ­
ind efinit e ­

ar tic l e

:<inatMc:e : ot:
!�0�>:) :

d efinit e ­
artic l e

: (cQ'1sJr�i)1ts :
. <instance oJ
: O e t:- : : : : :
· �r!i�I�>:) : : : :

: (C�".'� t ra:i � t� .
• • <instance • of ·
: O e t: d e:t {nj t:e �

article>") · - · . .

(constraints
<instance of

D et .:inde finite ­
article>)

Figure 7: Special method combination

This method combination provides a means to
add constraints present in the inheritance
lattice, and only the relevant ones.
In the lexicon, the entries for pivots of
ad verbials could mention (among other
information):

moment
adv=prep_definite-article_noun

RHS l at

opini on
adv=prep_possessive_noun RHSl in

way
adv=prep_definite-article_noun

RSHl by
adv=prep_indefinite-article_noun

RHSl in

When coming across "way" in the
input text, OLMES would therefore create one
instance of each class. For example, in the case
of the instance of a dv =p re p_de f i n i t e -

a r t i c 1 e_n o u n , because this class is a
subclass of <let -de fi ni t e - a rt i c le, and
because the method combination for
cons t r a i n t s is redefined, the constraints
inherited via det -defini te-art icle and
<let - a r t i c l e are added to the general
constraints defined in the rule and inherited
through RHS3-4 . The arguments following the
name of the class are used as well. In the end,
the parser will actually try the following rule
(figure 8):

LHS -> RHS l RHS2 RHS3
<LHS cat> = adv·
<RHSl cat> = prep
<RHSl form> = <RHS3 prepl form>
<RHS2 cat> = det
<RHS3 . cat> = noun
<RHS3 prepl form> = by
<RHS2 . agre��ent> = <RHS3

agreement>
· <RHS2 cat -precisions> =

<RHS 3 detl cat -preci s ions>
<RHS3 detl cat -precisions

determiner-type> = artic1e
<RHS3 . detl cat-precisions

article-type> = definite

(The basic constraints are in normal font, the
inherited ones in bold font, and the
parametrized ones are underlined.)

This rule will accept "by the way", but will
reject ''by a way", "in the way" ... The rule and
the parameters for "moment" would allow the
parsing of "at the moment", and those f<;>r
"opinion" the acceptance of "in my opinion" . . .

85

lhs rhs 1 rhs2 rhs3

adv

a r t i c l e d e f i n i te

Figure 8 : Sequence of DAGs for the- final rule

This very simple example does not do
justice to the complexity of syntactic and
lexical properties of adverbial idioms.
However it stresses the hierarchy of these
features, and the way in which the
inheritance graph can, at the same time, _
mirror this structure and take advantage of it.
Note that the 'mixin' classes defined above
are useful as such. They constitute the
primitives to complete the basic syntac;tic
rules. They correspond to organized constraints
which are interesting on their own, . as they
can be reused in different contexts. · For
instance, another rule for ad verbials is:

LHS -> RHSl RHS2 .RHS3 RHS4 .
<LHS cat> = adv
<RHSl cat> = prep
<RHSl form> = <RHS 3 prepl form>
<RHS2 cat> = det
<RHS3 cat> = noun
<RHS2 agreement> = <RHS3

agreement>
<RHS2 cat-precisions> = <RHS2

detl cat-precisions>
<RHS4 cat> = prep
<RHS4 form> = <RHS3 prep2 form>

A class would be created for each symbol of
the rule. For example, the class corresponding
to the pivot (the noun) is RHS4-9. New
specialized classes are then defined:

- adv=prep_definite­
article_noun_prep (super-classes: RHS4 -9,
det-definite-article)' • -

- adv=prep_indefinite­
article_noun_prep (super-classes: RHS4-9,
det -indef ini te-article) . . .

And the lexicon now has entries like:

eye
adv=prep_indefinite­

article_noun_prep RHSl with RHS4 to

form
adv=prep_definite­

article_noun_prep RHSl in RHS4 of

which could recognize "with an eye to" and
"in the form of'', respectively. It is possible in
OLMES to express that a certain word can
enter different linked syntactic structures at
the same time, thus providing 'meta-rules' .
One of theses families of rules is the class:
[adv = prep definite-article noun
prep + adv prep po s se s s ive ­
determiner noun] gathering the following
rules

adv=prep_definite­
article_noun_prep

adv=prep_det-possessive_noun

And, in the lexicon, the entry time mentions:

[adv = prep definite-article
noun prep + adv = prep possessive­
determiner noun] RHSl for RHS4 of

Therefore, the parser, when finding t ime in
the input text, creates an instance of the class
[adv = prep definite-article noun
prep + adv prep po s se s s ive ­
determiner noun] , which in turn creates
an instance of a d v = p r e p_ de f i n i t e -
a r t i c l e_n o u n_p rep and an instance of
adv=prep_de t -po s s e s s ive_noun. This
instance of [adv prep de finite­
article noun prep + adv = prep
pos s e s s ive -det e rmi ner noun] also
transmits to them the correct values for the
parameters RH S l and RHS 4, possibly leading
to the parsing of for the sake of or for
its sake.

RELATED WORK: PARSING IDIOMS IN
TREE ADJOINING GRAMMARS (TAGS)

86

Recent work, within the TAG
formalism (Abeille, 1990; Abeille & Schabes,
1989), claimed that idioms should be parsed
during the whole syntactic analysis, using the
same formal devices as for parsing non
idiomatic expressions. This approach uses a
slightly modified version of T AGs, namely
lexicalized T AGs, in which each 'rule', i.e.
each tree, is anchored with a lexical item. In
fact, there are no separate phrase structure
rules any more: they are collapsed into the
lexicon. Only the relevant rules are used
while parsing, as they are triggered by lexical
items. Meta-rules are provided by means of
families of trees. The trees corresponding to
idioms include several lexical items: t a ke
and bu c ke t in the case of t o take the
b u c k e t . As an additional filtering, the
search of an idiom is triggered only if all the
lexical heads are actually present in the
sentence, in the right order�

As a matter of fact, giving the rules a
pivot and associating the words in the lexicon
with these pivots� as shown above, is a first
step in lexicalizing a grammar. On the other
hand, Lexicalized T AGs do not use phrase
structure rules any more, but trees directly
stating to any depth the constituents needed,
their structure, and possibly their lexical
heads. For this very reason, the TAG
formalism deals with idioms in a more natural
and powerful way. For the sake of
explanation, the rules given in this paper are
flattening the structure of the phrases. In
order to give to the relevant idioms the same
structure as the corresponding free phrases, one
would need some complex transmission of
features among related rules (Habert, 1991).

S TRUCTURING GRAMMARS VIA
INHERITANCE

Relying to such an extent on the
inheritance structure partly breaks the
decentralization rule which is central to object
oriented programming 1 1 . When slightly
modifying a class, here is a risk of triggering a

11 (Meyer, 1988, p 251) In most cases, clients of a
class should not need to know the inheritance
structure that led to its implementation.

chain reaction of changes. As Sakkinen, 1989, states: Features aiming at "exploratory programming" need not necessarily make the programmer into a Vasco de Gama or an Amundsen; (s)he may well become Alice in Wonderland, never knowing what metamorphoses some seemingly innocent act may cause. The danger is a real one. Nevertheless, so far, it has been most beneficial to take advantage of the inheritance structure to portray the linguistic knowledge we are dealing with. In doing so, we stress the classification tools present in Objet-Oriented Programming Languages: the inheritance lattice is used to progressively constrain the class of the solution (Wegner, 1987). This approach uses a unification-based formalism with a clear-cut distinction between phrase structure rules and subcategorization frames. In spite of this, it combines properly the generalizations stated by the syntactic rules and additionnal constraints necessary to account for the idiosyncrasies that the idioms show. This solution is by no means limited to frozen expressions. It contributes to a clear expression of the complex interactions found in the grammar between syntactic and lexical rules (Abeille 90). It is thus worth investigating the ways in which inheritance can help in structuring not only the lexicon but also the grammar.
AKNOWLEDGMENTS

I greatly benefited from discussions with F.-X. Testard-Vaillant (LITP), Pierre Fiala (ENS de Fontenay Saint Cloud), and Anne Abeille (LADL) on Object-Oriented Programming, Idioms and TAGs respectively.
REFERENCES

Abeille Anne 1990 "Lexical and syntactic rules in a tree adjoining grammar", ACL'90
Abeille Anne, Yves Schabes 1989 "Parsing Idioms in Lexicalized TAGs", EACL'89.
Bresnan Joan 1982a (editor) The mental representation of grammatical representation, The MIT Press.

87

1982b "The passive in Lexical Theory", (Bresnan, 1982a, p 2-86).
Bobrow Daniel G ., Kenneth Kahn, Gregor Kickzales, Larry Masinter, Mark Stefik and Frank Zdybel 1986 "CommonLoops: merging Lisp and Object-Oriented Programming, OOPSLA'86.
Gazdar Gerald 1988 "Applicability of Indexed Grammars to natural languages", in Natural language parsing and linguistic theories. Reyle and Rohrer editors, D. Reidel Publishing Company.
Gazdar Gerald, Ewan Klein, Geoffrey Pullum, Ivan Sag 1985 Generalized Phrase Structure Grammar. Harvard University Press.
Gazdar Gerald, Mellish Chris 1989 Natural Language Processing in Lisp. Addison-Wesley.
Gazdar Gerald, Geoffrey K. Pullum, Robert Carpenter, Ewan Klein, Thomas E. Hukari, Robert D. Levine 1988 "Category structures", Computational Linguistics. Vol. 14, #1.
Grishman Ralph, Richard Kittredge (editors) 1986 Analyzing language in restricted domains: sublanguage description and processing. Lawrence Erlbaum Associates.
Gross Maurice 1988 "Sur les phrases figees complexes du fran�ais", Langue Francaise 77. 1990 Grammaire transformationnelle du francais: 3 - syntaxe de l'adverbe. ASTRIL.
Habert Benoit 1990 "Controlling the generic dispatch to represent domain knowledge", Proceedings of the third CLOS users and implementors workshop. OOPSLA'90. 1991 Lan gages a objets et a n a 1 y s e linguistigue. Doctoral thesis.
Keene Sonya E. 1989 Object-Oriented Programming i n Common Lisp. Addison Wesley.
Kay Martin 1985 "Parsing in Functional Unification Grammar", in Natural language parsing, D. Dowty, L. Karttunen and A. Zwicky editors, Cambridge University Press.

Kickzales Gregor, Luis Rodriguez
_ 1990 "Efficient method dispatch in PCL",

Proceedings of the 1990 conference on Lisp
and Functional Programming.

Meyer Bertrand
1 988 Object -Oriented S o f t w a r e
Construction. Prentice Hall.

Pollard Carl, Ivan A. Sag
1987 Information-based syntax and
semantics. Vol 1: Fundamentals, CSLI.

Sakkinen Markku
1989 "Disciplined Inheritance", ECOOP'89

Shieber Stuart
1986 An introduction to unification-based
approaches to grammar. CSLI.

Steele Guy L.
1990 Common Lisp: The Language. 2nd
edition, Digital Press.

Wegner Peter
1987 "The Object-Oriented Classification
Paradigm", in Research Directions in
Object-Oriented Programming. The MIT
Press.

Wasow Thomas, Ivan A. Sag, Geoffrey Nunberg
1 982 " Idioms : an interim report",
Proceedings of the 13th International
Congress of Linguists,

Yonesawa Akinori, lchiro Ohsawa
1990 "Object-Oriented Parallel Parsing for
Context-Free Grammars", in ABCL: a n
Object-Oriented Concurrent Sys tem.
Akinori Yonezawa editor, The MIT Press.

88

