Using inheritance in Object-Oriented Programming to combine
syntactic rules and lexical idiosyncrasies

Benoit HABERT
Ecole Normale Supérieure de Fontenay Saint Cloud
31 avenue Lombart
F-92260 FONTENAY-AUX-ROSES FRANCE
internet: bh@litp.ibp.fr
bitnet: bh@frunipé61.bitnet
Phone: (33) 1-47-02-60-50 Ext 415
Fax: (33) 1-47-02-34-32

ABSTRACT

In parsing idioms and frozen expressions in
French, one needs to combine general syntactic
rules and idiosyncratic constraints. The
inheritance structure provided by Object-
Oriented Programming languages, and more
specifically the combination of methods
present in CLOS, Common Lisp Object System,
appears as an elegant and efficient approach
to deal with such a complex interaction.

In parsing idioms and frozen
expressions in French, one needs to combine
general syntactic rules and idiosynératic
constraints. As a tatter of fact, representing
such an interaction via an inheritance lattice
appears as an elegant and efficient approach.
For the sake of explanation, English idioms
will be used as examples. However this
combination of syntactic rules and
idiosyncratic behaviour via manipulations of
the inheritance structure and the methods
attached to it, has been designed for French
compound adverbials. More than 6,000
compound adverbials have been listed and
studied at LADL 1 (Gross, 1990). A lexicon-
grammar of 2,525 compound adverbials coming
from the LADL files has been used in parsing a
test corpus of 72,000 words.

IDIOMS: A PECULIAR COMBINATION OF
REGULARITIES AND IDIOSYNCRASIES

The semantics of idioms will not be
accounted for here, since it is a controversial

1 Laboratoire d'Automatique Documentaire et
Linguistique: Université Paris 7 and CNRS.

79

problem. LFG, GPSG and TAGs made quite
different claims on this topic 2. Within a
syntactic category, it has been shown for
French, at LADL, that frozen expressions are
generally more numerous than 'free’ ones: 20,
000 frozen verbs (12,000 free), 6,000 adverbials
(1,500 free). More than 25, 000 compound nouns
have been studied so far, but their number is
far greater, as they constitute the major part
of new terms in sublanguages (Grishman &
Kittredge, 1986). A small proportion of frozen
expressions have constituents existing only in
such contexts (such as "umbrage” in "to take
umbrage at NP"), or are taken from foreign
languages ("a priori”), or follow forgotten
rules. Apaftt from these marginal cases, idioms
consist of the same words as the free phrases,
and they follow the sarhe syntacti¢ rulés: “in
contrast”, "by the way", for instance, are just
ordinary PP. Furthermore, as shown for
English by Wasow et al., 1982, and for French
by Gross, 1988, 1990, the syntactic behaviour of
idioms is much more systématic than is
usually thought: 'transformations' apply to
them. Some kind of 'meta-rules’ must be then
used to account for these related structures.

While following to a large extent the
general syntactic rules, frozen expressions
present idiosyricrasies. At a syntactic level, an
idiom can accept a modifier ("in (loving)

2 For Bresnan, 1982b, constituants of an idiom very
often have a regular syntactic behaviour without
contributing at all to the meaning of the whole
expression. According to Gazdar et al.,, 1985, p 236-
242, the semantic behaviour of idioms is more
often compositional than has generally been
assumed,. The approach of (Abeillé & Schabes,
1989) characterizes idioms by the combination of
syntactic regularity and semantic non
compositionality.

memory of"), or not (#'by the new way") 3. It
can require certain syntactic features for some
of its constituents. For instance, it may need a
certain type of determiner: "for the sake of"
versus "#for a sake of". Lastly, an idiom is
associated with fixed lexical items. Usually
it is not possible to replace them by synonyms:
#'by the road" versus "by the way". Since
most of frozen expressions follow general
syntactic rules, and since 'transformations'
apply to them, it is not reasonable to try and
process them in a first lexical step.
Recognizing idioms belongs therefore to the
whole syntactic analysis. Nevertheless their
idiosyncratic features must be taken into
account in rules.

STATING THE GENERAL BEHAVIOUR OF
A FAMILY OF IDIOMS

OLMES 4 is a general parser written in
CLOS ° (Keene, 1989; Steele, 1990, p 770-864),
and tested with the Victoria Day
implementation of PCL 6 (provided by Xerox
Laboratories), using Lucid Common Lisp 3.0.1,
on a Sun 3 workstation, at LITP 7. OLMES
belongs to the active chart parser family. The
input text can be parsed from left to right, or
the other way round, or even both ways at the
same time (around pivots). Top-down, bottom-
up or bottom-up then top-down strategies are
available. The rules used by OLMES follow
the formalism created for PATR-II (Shieber,
1986), because it is a kind of "lingua franca"
for unification-based grammars. Additional
constraints can be associated with ordinary
context-free rules so as to analyse mildly
context-sensitive languages (Gazdar, 1988).
Each symbol in the rule is the root of a
Directed Acyclic Graph (DAG). In such
category structures, each edge is labelled, and
leads either to an atom or to another complex
category structure (Gazdar et al., 1988).

3 We use the same convention as (Gazdar et al.,
1985): ‘# indicates that a structure is acceptable,
but with a literal meaning.

4 Objects, Language, Means for Exploring and
Structuring (Texts).

5 Common Lisp Object System.

6 Portable Common Loops

7 Laboratoire d'Informatique Théorique et de
Programmation: Université Paris 6, Université Paris
7 and CNRS.

80

For instance, a lot of adverbials in English use
the following rule, in PATR-II form:

LHS -> RHS1 RHS2 RHS3

<LHS cat> = adv

<RHS1 cat> = prep

<RHS2 cat> = det

<RHS3 cat> = noun

<RHS2 agreement> = <RHS3
agreement>

The sequence of a first right-hand side symbol
dominating a DAG with an edge "cat(egory)"
having "prep(osition)" as its value, a second
symbol with "cat" "det(erminer)”, and a third
symbol with "noun" as "cat" makes an
"adv(erbial)". Additionally the second and
the third symbol must share the same value
for the feature "agreement".

A graphical equivalent could be:

Ihs rhs1 rhs2 rhs3
— 1
cat cat cat cat
adv prep det noun

Figure 1: sequence of DAGs defining an
adverbial

In the lexicon, one can find entries 8
such as:

a
cat det
cat-precisions
determiner-type article
article-type indefinite
at
cat prep
by
cat prep
in
cat prep
end
cat noun
agreement

number singular

8 The features not relevant for the rule are not
mentioned.

moment
cat noun
agreement
number singular
my
cat det
cat-precisions
determiner-type possessive
the
cat det
cat-precisions
determiner-type article
article-type definite
this
cat det
cat precisions
determiner-type demonstrative
those
cat det
cat-precisions
determiner-type demonstrative
agreement
number plural
way
cat noun
agreement
number singular

The rule above would recognize as idioms "at
the moment", "in a way", "in the end", using
this toy lexicon. Note that the completed rule
is more restrictive than the context-free part
of it. The latter would accept "by those
way", the former would not, because "those"

and "way" do not agree.

THE GRAMMAR: A NETWORK OF ACTIVE

AGENTS ENCAPSULATING
CONSTRAINTS

The context-free rules of the grammar
are represented by a network of classes. Each
class in the network corresponds to an
occurrence of a symbol, whether terminal or
not, appearing in the grammar. The topology
of the network mirrors exactly the strategy
(top-down versus bottom-up) and the direction
of exploration (left-right, right-left or bi-
directional) chosen by the user when
compiling the grammar. This approach
extends the work done within the actor
paradigm by Yonesawa & Ohsawa, 1990.

There are two main classes: active and
inactive. An inactive agent corresponds to a
(possibly partial) constituent which has been

81

found. For instance, for each left-hand side
symbol in the grammar, a class is created
inheriting from the inactive agent class. The
active agents correspond to the right-hand
side symbols of the grammar. Each of them is
searching for a constituent meeting certain
constraints, as defined in the corresponding
DAG in the rule. If it finds such a constituent,
it then creates an instance of the class
corresponding to the following symbol in the
right-hand side part of the rule. When the
last active agent of the rule "succeeds", it
creates an instance of the class corresponding
to the left-hand side of the rule. The pivot of
the rule is the symbol starting the whole
analysis. It need not be the left-most one.

For the rule above, in bottom-up
parsing, four classes are defined: LHS-1,
RHS1-2,RHS2-3,RHS3-4, respectively
(figure 2). RHS1-2, RHS2-3 and RHS3-4 are
subclasses of LHS-1, their instances will be
active agents examining the text from right to
left. The pivot of the rule is the class RHS3-4
(in bold font), corresponding to a noun.

LHS-1
adv
RHS1-2 RHS2-3 RHS3-4

(@D

'

@ @
4 4

[] RHS1-2 agree- RHS2-3
cat Cat me nt
cat
prep det noun
Figure 2: classes resulting from the

compilation

To indicate that a word can belong to the type
of idiom described in the rule, the lexicon
associates the class-name RHS3-4 with this
word. It could be the case for the word
"moment". In a bottom-up analysis, for each
occurrence of "moment” in the input text,

OLMES creates an instance of RHS3-4. This
instance searches for a noun, and finds it:
"moment”. It creates an instance of RHS2-3
which examines the word on the left of
"moment”, and which stores a partial parse
tree. If this word is a determiner, and has a
feature "agreement” matching with the
corresponding feature of "moment”, the new
partial parse tree is transmitted to the
instance of RHS1-2 which is then created and
whose constraints are matched against the
word on the left of the determiner found by the
instance of RHS2-3. In the case that the
instance of RHS1-2 finds a preposition, it then
creates an instance of LHS-1 storing the
complete parse tree and the additional
information gathered from the unification on
the rest of the DAGs.

Changing the grammar rules from
sequences of 'passive’ labels to a network of
active classes makes it possible to increase as
necessary the knowledge the instances of these
classes can utilise, and to use inheritance not
only in the lexicon (Shieber, 1986), but in the
grammar rules as well.

USING THE INHERITANCE STRUCTURE
TO TAKE IDIOSYNCRASIES INTO
ACCOUNT

The rule stated above is not restrictive
enough. For instance, it would parse as an
idiom "by a way" in the sentence: "he arrived
by a way new to me". It would be rather an
unsatisfactory approach to create as many
rules as combinations found between the
preposition and the type of determiner used in
such idioms. What we need instead is a means
to adjoin new constraints to the set of
conditions defined in the rule, in a modular
way, that is, using inheritance. In the CLOS
philosophy, it means that some 'mixin’ classes
are created. Such classes are not intended to
have instances on their own. On the contrary,
they are only used as constituents (super-
classes) in defining more specialized classes.

For instance, one can define the following
'mixin’ classes (see figure 3). Each 'mixin’ class
used to specialize the rule has a method
constraints which states particular
constraints on the determiner. The content of

82

this method (in PATR form) follows the class
name, below.

det-article
<RHS3 detl cat-precisions
determiner-type> = article

det-definite-article (subclass of
det-article)

<RHS3 detl cat-precisions
article-type> = definite

det-indefinite-article (subclass of
det-article)

<RHS3 detl cat-precisions
article-type> = indefinite

det-possessive
<RHS3 detl cat-precisions
determiner-type> = possessive

det-demonstrative
<RHS3 detl cat-precisions
determiner-type> = demonstrative

(constraints
<instance of
J roots) => []

det-
article

(constraints
<instance of Det-
article>) =>
rhs3

det1

cat-
precisions

determiner-

type
article
det- det-
indefinite- definite-
article article

(constraints
<instance of
Det-indefinite-

article>) =>

(constraints
<instance of
Det-definite-

article>) =>

rhs3
det1
cat-
precisions
article-
type
indefinite definite)
Figure 3: Some classes for the constraints on
determiners

The rule given above (figure 1) is slightly
redefined : from now on, the pivot transmits to

the RHS1 the form of preposition, and to the
RHS2 precisions on the type of determiner
which is needed (the dark nodes indicate this
sharing of values in figure 4).

Ihs rhst rhs2

cat

8

adv

8

prep

det

Figure 4: Redefined rule for adverbials

It is now possible to create final classes for the
pivots of the idioms:

-adv=prep_det-definite-
article_noun, subclass of RHS3-4 and det -
definite-article. E.g.: by the way.

RHS3-4 det-
definite-
article

A
[adv=prep_definite-article_noun |

Figure 5: An example of final class

-adv=prep_ det-indefinite-
article_noun, subclassof RHS3-4 and det -
indefinite-article. E.g.:ina way.

- adv=prep_det-demonstrative-noun,
subclass of RHS3-4 and det -demonstrative.
E.g.: in this respect.

-adv=prep_ det-possessive_noun,
subclass of RHS3-4 and det-possessive.
E.g.:inmy opinion.

Of course, it could have been possible to
define mixin classes to deal with constraints
on the preposition. Such classes would have
looked like:

prep-in

83

<RHS1 prepl form> = in
prep-by

<RHS1 prepl form> = by
and so on.

It should be noted that the constraints on the
preposition and the conditions on the
determiner are not on the same level. The
latter are in a way more syntactic: some
syntactic properties of the idiom as a whole
depend on the nature of the determiner. The
form of the initial preposition is purely
idiosyncratic. It does not even always
contribute to the meaning of the expression.
For that reason, the way to specify the initial
preposition does not use inheritance. A list of
associations { <parameter><value>} is being used
at the initialization of the instance of a given
pivot class to deal with such litteral
constraints. For instance, the list "RHS1 by"
will trigger the adjunction of:
<RHS1 prepl form> = by
to the conditions specified for the idiomatic
rule.

Usually, in an Object-Oriented
programming language, when a method is
called for an instance of a class, and there are
different methods of the same name linked
with the ancestors of this class, the most
specific method is actually used, overriding
the other ones. For instance, calling
(constraints det-definite-article-
1),det-definite-article-1 being an
instance of det-definite-article, would
yield 9:

<RHS3 detl cat-precisions
article-type> = definite

As shown in figure 6, three methods are
applicable (inside the grey frame):
constraints of Det-definite-article
(det-definite-article-1 isaninstance of
this class), constraints of Det-article
(an instance of Det-definite-article is
a Det-article)and constraintsof root
(for the same reason). The last one (in bold
font) shadows the others.

9 We do not use the actual Lisp syntax for the
result, as it is not relevant.

Method combination

most-siaciﬁc

det-
definite-
article

!

det- (constraints
indefinite- <instance of
article Det-indefinite-
article>)

Figure 6: Standard method combination

One of the salient characteristics of
CLOS, inherited from its ancestors, COMMON
LOOPS (Bobrow et al., 1986) and NEW
FLAVORS, is the control given over the
combination of methods having the same name
and present in the super-classes of a given
class (Keene, 1989) 10 . In this case, it is.
possible to specify that all the methods
constraints accessible from a given class
should be called in turn, and the final result
should be the addition of all the returned
values. With this combination of methods,
the result of the function call (constraints
det-definite-article-1) would be
(figure 7):

<RHS3 detl cat-precisions
determiner-type> = article

10 When the most specific method represents
nothing but an addition to the action of one super-
method, it is generally possible in an Object-
Oriented Programming Language to combine it
with this super-method, so as to share common
behaviours.

<RHS3 detl cat-precisions
article-type> = definite

Method combination

addition

det-
definite- - -<instance- of -
article - Dét-definite: .
\L article»)- - - - - -
det- (constraints
indefinite- <instance of
article Det-indefinite-

articles)
Figure 7: Special method combination

This method combination provides a means to
add constraints present in the inheritance
lattice, and only the relevant ones.

In the lexicon, the entries for pivots of
adverbials could mention (among other
information):

moment
adv=prep_definite-article_ noun
RHS1 at

opinion
adv=prep_possessive noun RHS1 in

way
adv=prep_definite-article_ noun
RSH1 by
adv=prep_indefinite-article_ noun
RHS1 in

When coming across "way" in the
input text, OLMES would therefore create one
instance of each class. For example, in the case
of the instance of adv=prep_definite-

article_noun, because this class is a
subclass of det-definite-article, and
because the method combination for
constraints is redefined, the constraints
inherited via det-definite-article and
det-article are added to the general
constraints defined in the rule and inherited
through RHS3-4. The arguments following the
name of the class are used as well. In the end,
the parser will actually try the following rule
(figure 8):

LHS -> RHS1 RHS2 RHS3

<LHS cat> = adv

<RHS1 cat> = prep

<RHS1 form> = <RHS3 prepl form>

<RHS2 cat> = det

<RHS3 cat> = noun

<RHS3 prepl form> = by

<RHS2. agreement> = <RHS3
agreement>

<RHS2 cat-precisions> =

<RHS3 detl cat-precisions>
<RHS3 detl cat-precisions

determiner-type> = article
<RHS3 detl cat-precisions

article-type> = definite

(The basic constraints are in normal font, the
inherited ones in bold font, and the
parametrized ones are underlined.)

This rule will accept "by the way", but will
reject "by a way", "in the way" ... The rule and
the parameters for "moment"” would allow the
parsing of "at the moment”, and those for

"opinion" the acceptance of "in my opinion"...

85

Ilhs rhsi rhs2 rhs3
0===>
cat cat
cat form
adv prep by det noun
arti-
determiner cle-
type type

article definite

Figure 8: Sequence of DAGs for the final rule

This very simple example does not do
justice to the complexity of syntactic and
lexical properties of adverbial idioms.
However it stresses the hierarchy of these
features, and the way in which the
inheritance graph can, at the same time,
mirror this structure and take advantage of it.
Note that the 'mixin' classes defined above
are useful as such. They constitute the
primitives to complete the basic syntactic
rules. They correspond to organized constraints
which are interesting on their own, as they
can be reused in different contexts. For
instance, another rule for adverbials is:

LHS -> RHS1 RHS2 RHS3 RHS4

<LHS cat> = adv

<RHS1 cat> = prep

<RHS1 form> = <RHS3 prepl form>

<RHS2 cat> = det

<RHS3 cat> = noun

<RHS2 agreement> = <RHS3
agreement>

<RHS2 cat-precisions> = <RHS2
detl cat-precisions>
<RHS4 cat> = prep

<RHS4 form> = <RHS3 prep2 form>

A class would be created for each symbol of
the rule. For example, the class corresponding
to the pivot (the noun) is RHS4-9. New
specialized classes are then defined:

-adv=prep_definite-
article_noun_prep (super-classes: RHS4-9,
det-definite-article)

-adv=prep_indefinite-
article_noun_prep (super-classes: RHS4-9,
det-indefinite-article)..

And the lexicon now has entries like:

eye
adv=prep indefinite-
article_noun_prep RHS1 with RHS4 to

form
adv=prep_definite-
article _noun_prep RHS1 in RHS4 of

which could recognize "with an eye to" and
"in the form of", respectively. It is possible in
OLMES to express that a certain word can
enter different linked syntactic structures at
the same time, thus providing 'meta-rules'.
One of theses families of rules is the class:
[adv = prep definite-article noun
prep + adv = prep possessive-
determiner noun] gathering the following
rules

adv=prep_definite-
article_noun_prep
adv=prep_det-possessive_noun

And, in the lexicon, the entry time mentions:

(adv = prep definite-article
noun prep + adv = prep possessive-
determiner noun]) RHS1 for RHS4 of

Therefore, the parser, when finding time in
the input text, creates an instance of the class
[adv = prep definite-article noun
prep + adv = prep possessive-
determiner noun] , which in turn creates
an instance of adv=prep_definite-
article_noun_prep and an instance of
adv=prep_det-possessive_noun. This
instance of [adv = prep definite-
article noun prep + adv = prep
possessive-determiner noun] also
transmits to them the correct values for the
parameters RHS1 and RHS 4, possibly leading
to the parsing of for the sake of or for
its sake.

RELATED WORK: PARSING IDIOMS IN
TREE ADJOINING GRAMMARS (TAGS)

86

Recent work, within the TAG
formalism (Abeillé, 1990; Abeillé & Schabes,
1989), claimed that idioms should be parsed
during the whole syntactic analysis, using the
same formal devices as for parsing non
idiomatic expressions. This approach uses a
slightly modified version of TAGs, namely
lexicalized TAGs, in which each 'rule’, i.e.
each tree, is anchored with a lexical item. In
fact, there are no separate phrase structure
rules any more: they are collapsed into the
lexicon. Only the relevant rules are used
while parsing, as they are triggered by lexical
items. Meta-rules are provided by means of
families of trees. The trees corresponding to
idioms include several lexical items: take
and bucket in the case of to take the
bucket . As an additional filtering, the
search of an idiom is triggered only if all the
lexical heads are actually present in the
sentence, in the right order.

As a matter of fact, giving the rules a
pivot and associating the words in the lexicon
with these pivots, as shown above, is a first
step in lexicalizing a grammar. On the other
hand, Lexicalized TAGs do not use phrase
structure rules any more, but trees directly
stating to any depth the constituents needed,
their structure, and possibly their lexical
heads. For this very reason, the TAG
formalism deals with idioms in a more natural
and powerful way. For the sake of
explanation, the rules given in this paper are
flattening the structure of the phrases. In
order to give to the relevant idioms the same
structure as the corresponding free phrases, one
would need some complex transmission of
features among related rules (Habert, 1991).

STRUCTURING GRAMMARS VIA
INHERITANCE

Relying to such an extent on the
inheritance structure partly breaks the
decentralization rule which is central to object
oriented programming 11. When slightly
modifying a class, here is a risk of triggering a

11 (Meyer, 1988, p 251) In most cases, clients of a
class should not need to know the inheritance
structure that led to its implementation.

chain reaction of changes. As Sakkinen, 1989,
states:
Features aiming at "exploratory
programming” need not necessarily
make the programmer into a Vasco de
Gama or an Amundsen; (s)he may well
become Alice in Wonderland, never
knowing what metamorphoses some
seemingly innocent act may cause.
The danger is a real one. Nevertheless, so far,
it has been most beneficial to take advantage
of the inheritance structure to portray the
linguistic knowledge we are dealing with. In
doing so, we stress the classification tools
present in Objet-Oriented Programming
Languages: the inheritance lattice is used to
progressively constrain the class of the
solution (Wegner, 1987). This approach uses a
unification-based formalism with a clear-cut
distinction between phrase structure rules and
subcategorization frames. In spite of this, it
combines properly the generalizations stated
by the syntactic rules and additionnal
constraints necessary to account for the
idiosyncrasies that the idioms show. This
solution is by no means limited to frozen
expressions. It contributes to a clear expression
of the complex interactions found in the
grammar between syntactic and lexical rules
(Abeillé 90). It is thus worth investigating the
ways in which inheritance can help in
structuring not only the lexicon but also the
grammar.

AKNOWLEDGMENTS

I greatly benefited from discussions with F.-X.
Testard-Vaillant (LITP), Pierre Fiala (ENS
de Fontenay Saint Cloud), and Anne Abeillé
(LADL) on Object-Oriented Programming,
Idioms and TAGs respectively.

REFERENCES

Abeillé Anne
1990 "Lexical and syntactic rules in a tree
adjoining grammar"”, ACL'90

Abeillé Anne, Yves Schabes
1989 "Parsing Idioms in Lexicalized TAGs",
EACL'89.

Bresnan Joan
1982a (editor) The mental representation of

grammatical representation, The MIT Press.

87

1982b "The passive in Lexical Theory"”,
(Bresnan, 1982a, p 2-86).

Bobrow Daniel G., Kenneth Kahn, Gregor
Kickzales, Larry Masinter, Mark Stefik and Frank
Zdybel
1986 "CommonLoops: merging Lisp and
Object-Oriented Programming, OOPSLA'86.

Gazdar Gerald
1988 "Applicability of Indexed Grammars to
natural languages”, in Natural language
parsing and linguistic theories, Reyle and
Rohrer editors, D. Reidel Publishing
Company.

Gazdar Gerald, Ewan Klein, Geoffrey Pullum, Ivan
Sag
1985 Generalized Phrase Structure
Grammar, Harvard University Press.

Gazdar Gerald, Mellish Chris
1989 Natural Language Processing in Lisp,
Addison-Wesley.

Gazdar Gerald, Geoffrey K. Pullum, Robert
Carpenter, Ewan Klein, Thomas E. Hukari, Robert
D. Levine
1988 "Category structures”, Computational
Linguistics, Vol. 14, #1.

Grishman Ralph, Richard Kittredge (editors)
1986 Analyzing language in restricted
domains: sublanguage description and
processing, Lawrence Erlbaum Associates.

Gross Maurice
1988 "Sur les phrases figées complexes du
frangais", Langue Francaise 77.
1990 Grammaire transformationnelle du
francais: 3 - syntaxe de l'adverbe, ASTRIL.

Habert Benoit
1990 "Controlling the generic dispatch to
represent domain knowledge”, Proceedings
of the third CLOS users and implementors
workshop, OOPSLA'90.
1991 Langages a objets et analyse
linguistique, Doctoral thesis.

Keene Sonya E.
1989 Object-Oriented Programming in
Common Lisp, Addison Wesley.

Kay Martin
1985 "Parsing in Functional Unification
Grammar”, in Natural language parsing, D.
Dowty, L. Karttunen and A. Zwicky editors,
Cambridge University Press.

Kickzales Gregor, Luis Rodriguez
1990 "Efficient method dispatch in PCL",
Proceedings of the 1990 conference on Lisp

and Functional Programming.

Meyer Bertrand
1988 Object-Oriented Software
Construction, Prentice Hall.

Pollard Carl, Ivan A. Sag
1987 Information-based syntax and
semantics, Vol 1: Fundamentals, CSLI.

Sakkinen Markku
1989 "Disciplined Inheritance”, ECOOP'89

Shieber Stuart
1986 An _introduction to unification-based

approaches to grammar, CSLL

Steele Guy L.
1990 Common Lisp: The Language, 2nd
edition, Digital Press.

Wegner Peter
1987 "The Object-Oriented Classification
Paradigm”, in Research Directions in
Object-Oriented Programming, The MIT
Press.

Wasow Thomas, Ivan A. Sag, Geoffrey Nunberg
1982 "Idioms: an interim report”,
Proceedings of the 13th International
Congress of Linguists,

Yonesawa Akinori, Ichiro Ohsawa
1990 "Object-Oriented Parallel Parsing for
Context-Free Grammars", in ABCL: an
Object-Oriented Concurrent System,
Akinori Yonezawa editor, The MIT Press.

88

