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Abstract This paper describes a procedure for lexical selection of open-class lexical items in
a natural language generation system. An optimum lexical selection module must be able to
make realization decisions under varying contextual circumstances. First, it must be able to
operate without the influence of context, based on meaning correspondences between elements
of conceptual input and the lexical inventory of the target language. Second, it must be able to
use contextual constraints, as supported by collocational information in the generation lexicon.
Third, there must be an option of realizing input representations pronominally or through
definite descriptions. Finally, there must also be an option of using elliptical constructions.
The nature of background knowledge and the algorithm we suggest for this task are described.
The lexical selection procedure is a part of a comprehensive generation system, DIOGENES.



1 Our place on the generation research map.

Natural language generation is traditionally divided into two stages: the utterance planning (‘what to say’)
stage and the lexical and syntactic realization ('how to say it') stage. The latter stage consists, essentially,
of a large set of realization choices for the various meanings of the input, using the morphological, syntactic
and lexical means of expression in the target language (TL). Research reported here deals with the process
of lexical selection during this second stage of generation. Many of the existing generation systems have
been conceived as components of natural language interfaces to database systems. In such generators
the lexical inventory can be strongly constrained without jeopardizing the quality of the interaction (cf,
e.g., McKeown, 1985). Such systems necessarily concentrate on choosing appropriate TL syntax - indeed,
generators are expected to produce adequate syntactic structures. Lexical selection becomes more important
when it is difficult to constrain the types of output in generation, and, consequently, when the lexicon
becomes large. Machine translation and automatic text summarization are among applications that by
nature require a wide range of outputs and have to use a sizable lexicon. Note that of these two, the former
does not involve utterance planning and concentrates on lexical and syntactic realization.

In the natural language generation community, attention to the task of lexical selection attention has
recently grown. Of course, it has always been recognized as an important problem (cf. Danlos, 1984;
Jacobs, 1985; Bienkowski, 1986; and the survey Cumming, 1986) and was addressed in a well-known early
generation project (Goldman, 1975). However, most major NLG efforts of the early 1980s (e.g., Mann
and Matthiessen, 1985; McDonald, 1983; McKeown, 1985, Appelt, 1985) concentrated more on syntactic
and stylistic realization as well as to text planning than to lexical selection. Among those who dealt with
lexical selection was the SEMSYN project (Rosner, 1986). Currently, work on lexical selection is going on
at the University of Pennsylvania (e.g., Marcus, 1987) and at University of California at Berkeley (Ward,
1988). Still, the set of problems facing this field is significant. One motivation for our research was that
we agree with Marcus (1987, p. 211) that at present 'most generation systems don't use words at all,’
and we believe that the quality of generation output will improve significantly once an adequate lexical
selection component becomes a standard part of a NLG system.

2 The Task

Research reported in this paper was performed within the DIOGENES project (Nirenburg, 1987), whose
objective is to provide a high-quality generator for a knowledge-based interlingual machine translation
system. The input to this generator is a set of a) world concept instances that represent the propositional
content of the original text, and b) sets of text parameter values that represent its pragmatic content (see
Section 4 for more details). In this paper we deal with a subset of the generation task, namely, the selection
of open-class lexical items to realize the meanings of object, event and property tokens in the input. Thus,
the output of the generation module described here is a lexical unit or a pronoun in the target language.
Our approach (and especially the expected input) to text generation is similar to that of the SEMSYN
project (e.g., Rosner, 1986). Lexical selection is not, however, an immediate concern of and is not
discussed at any length in SEMSYN descriptions (see Laubsch et al., 1984, p. 492), and a published analysis
of practical difficulties encountered by the project (Hanakata et al., 1986) does not address this issue at all.
Furthermore, since until very recently that project had to generate sentence-length texts (article titles), the
problem of definite descriptions, pronominalization and ellipsis did not become acutely important.

3 Why is it a difficult task?

Lexical choice is not a straightforward task. Suppose we have to express in English the meaning 'a person
whose sex is male and whose age is between 13 and 15 years.' What knowledge do people use in order
to come up with an appropriate choice out of such candidate realizations as those listed in (1).



(1) boy, kid, teenager, youth, child, young man, schoolboy, adolescent, man

Without a sentential context the choice, based on closeness of the meaning match and generality of
meaning, should be boy. For a computer program to be capable of making choices like this, it has to
possess a preference-assigning capability on the matches between the meanings of the candidate lexical
realization on the one hand and the input meaning unit (see the discussion of the matching metric below)
on the other.

3.1 Collocations

Lexical choices are, however, typically made in context. Contextual relations among lexical units reflect
meaning-induced constraints on cooccurrence (selectional restrictions: admire takes a human subject).
Sometimes, however, it is difficult to formulate a cooccurrence constraint in terms of selectional restrictions
alone. Thus, for example, the causative construction with the English influence requires exert; its Russian
equivalent viijanie requires okazyvat', and the latter is not a Russian correlate of exert other than in the
above and very few similar syntagmatic constructions. Why do we use, in English, shed with fears or
leaves but don't usually say shed water out of a bucket or they drop tears every time when <..>? Such
properties of the lexical stock of a natural language are called collocational. We will now illustrate the
concept of collocation through several examples of 'semantic' or syntagmatic collocations.

Consider the conceptual operator of a large quantity of, a (relative) value for measuring quantities
(of materials, forces, qualities, properties, etc.). It is realized in English in accordance with collocational
properties of the lexical units that are used as its operands. Not every quantity goes with every realization
of the above operator. Members of the set <big, enormous, great, high, large, strong, wide> of potential
realizations of a large quantity of can cooccur with every one of the members of the set <amount,
difficulty, expanse, selection, voltage> of quantities. We say high voltage but a large amount. 1t would be
inappropriate for a generation system to produce something like high selection or large difficulty. (Note
that in parsing the problem of assigning a similar semantic marker to all the various expressions from the
example can, in principle, be tackled through a mechanism of metaphor processing, whereby a general
heuristic rule is developed for processing metaphorical input belonging a single class, such as, for instance,
a large quantity of... - see Lakoff and Johnson, 1980, for an extensive listing of potential metaphor
classes; in generation, however, the task is the opposite - to produce fluent metaphorical language. Since
this depends not on regularities of meaning, but rather on the idiosyncrasies of meaning realization in the
various natural languages, the general rules will be more difficult to come by and formulate.)

An additional class of collocations are the paradigmatic collocations. These are best exemplified by the
'set-complement' collocations such as the English left and right or parents and children. The knowledge of
these collocations, for instance, is necessary for the process of lexical selection of conjoined constructions,
such as ladies and gentlemen.

Collocational relations are defined on lexical units, not meaning representations. The study of colloca-
tions ascends to Firth (1951); it is a central part of the Meaning - Text school of linguistics — cf. Mel'Cuk,
1974; 1981. The importance of collocational properties in generations has been recognized (cf. Cumming,
1986), but relatively few systems actually include collocational information in their decision processes.

3.2 Ellipsis and Anaphora

Certain contexts completely alleviate the problem of open-class lexical selection. Consider the following
(gloss of an) input segment

(2) Clause;: Buy(John; booky), time;, focus: book;
Clause;: Bring(John; book; office;), belong-to(office; Johns),
time,: time, > time;, focus: office;
Clauses;: Read(John; booky), aspect: inchoative, times: after(time;)



One of the adequate ways of realizing it is:
(3) John bought a book. He brought this book to his office and started to read it.

There are seven instances of the three object-type concepts in the case-role slots of the input propositions
above. Each of the three concepts is realized lexically only once. In two cases these meanings were realized
through pronominalization and in one each through definite description and an elliptical construction. This
example shows that non-lexical realization is an integral part of the process of lexical selection in generation.

In what follows we briefly describe the system architecture, the knowledge structures and the algorithm
we use for selecting open-class lexical items in generation.

4 The System and the Knowledge

DIOGENES is a distributed natural language generation system featuring a blackboard-type control structure.
The processing in it is concentrated in the knowledge sources which are triggered by the state of the
various blackboards. The latter contain the input to generation as well as all intermediate and final results
of DIOGENES operation, represented uniformly in the frame-oriented knowledge representation language
FrameKit (Carbonell and Joseph, 1985 and Nyberg, 1988). The implementation vehicle for DIOGENES is
CMU CommonLisp running on an IBM PC RT. (Description of the DIOGENES control structure and data
handling is beyond the scope of this paper.) Background knowledge in DIOGENES includes the following
components relevant to the task of lexical selection:

* aconcept lexicon, a set of knowledge structures that describe object and event-types in the (sub)world
of the texts to be generated (the first application of DIOGENES is, for example, in the domain of
computer hardware manuals)

* a generation lexicon that links (sub)world concepts (or, more accurately, their instances) with par-
ticular lexical units of the target language.

The above description is necessarily incomplete. See Nirenburg, 1987 for an extensive specification of
all the facets of DIOGENES.

The input to DIOGENES, known as interlingua text (ILT), is a set of FrameKit frames representing the
propositional and non-propositional meanings of the source language text input into the translation system
(see Nirenburg et al., 1986, 1987b; Nirenburg and Carbonell, 1987 for a detailed description). The ILT is
produced during the analysis stage of the MT process by the parser, the semantic interpreter and, if needed,
with human help. This latter stage is needed because our requirements for the input to generation are such
that no current analysis system can produce them in a completely automatic fashion.

The following is a sample InterLingua Text.

(make-frame clausel
(clauseid (value clausel))
(propositionid (value propositionl))
(speechactid (value speech-actl)))

(make-frame propositionl
(propositionid (value propositionl))

clauseid (value clausel))

process-type (value action))

is-token-of (value *throw))

aspectid (value aspectl))

space (value propositionl.space))

time (value (at propositionl.time)))

subworld (value everyday-world))

(
(
(
(
(
(
(
(modality (value real))



(manner (value quickly))
(agent (value rolel))
(object (value role2))
(instrument (value role3)
(source (value rolel)
(destination (value roled)))

(make-frame aspectl
(phase (value end))
(iteration (value 1) ) ;in seconds
(duration (value 1)))

(make-frame speech-actl
(speech-act (value assertion))
(direct? (value no))

(speaker (value author))
(hearer (value reader))
(time (value speech-actl.time)))

(make-frame rolel

(roleid (value rolel)
(clauseid (value clausel)
(comment (value "a young boy")
(referent (value personl)
(description (value rolel))
(is-token-of (value *person))

(age (value (10 11)))

(sex (value male)))

(make-frame role?2
(roleid (value role2))
(clauseid (value clausel)
(comment (value "a green rubber ball")
(referent (value balll))
(description (value role2))
(is-token-of (value *ball))
(color (value green))
(made-of (value *rubber)))

(make-frame role3
(roleid (value role3))
(clauseid (value clausel)
(comment (value *arm*))
(referent (value arml))
(description (value role3))
(is-token-of (value *arm))
(part-of (value rolel)))

(make-frame roled
(roleid (value roled))
(clauseid (value clausel))
(comment (value "a big fast car")
(referent (value vehiclel))
(description (value roled))
(is-token-of (value *vehicle))
(medium (value road))
(propulsion (value fuel))
(wheels (value 3 4 ) )
(size (value big))
(velocity (value (50 180) ) ))

Given the above ILT, DIOGENES produces the text

The young boy quickly threw a green rubber ball at a big fast car.



GL-entry ::= ( <meaning-pattern> <TL-pattern>* )

<meaning-pattern> ::= ((is-token-of (value <CL-concept>))
[(<relation> (value <value>*)
(importance <importance-value>))]* )

<CL-concept> ::= {any concept in the Concept Lexicon}
<relation> == {any relation from the Concept Lexicon}
<value> ::= {any concept or attribute (scale) value

in the Concept Lexicon}
<importance-value> :=1]2]...|10
<TL-pattern> == (<TL-lexeme> <lex-info> <collocation> )
<TL-lexeme> == (<language>

TL-lexical-unit | (synonym TL-lexical-unit*))
<language> :’=english | spanish | russian | japanese | ...
<lex-info> = ((<syntactic-info>) (morph <inflection-type>))
<syntactic-info> ::= {the contents of a syntactic dictionary

(cf. e.g. Ingria, 1987)}

<inflection-type> :: = {an indication of irregularities in forming word

forms, e.g., goose - pl. geese}
<collocation> == ( {<dimension> <dimension-value>*} * )
<dimension> == {the name of a lexical collocation relation

based on the Concept Lexicon slot names
for the concept in question}

<dimension-value> ::= {a TL lexical unit (word or expression) that can
ordinarily collocate with the TL lexical unit in
<TL-lexeme> above and connected to the TL unit
on a specified dimension; can be recursive}

Figure 1: The Structure of the Generation Lexicon

4.1 The Generation Lexicon

The main static knowledge source for the generating of open-class items is a specialized generation
lexicon (GL). The structure of an entry in the generation lexicon in DIOGENES is shown in Figure 1 (the
BNF is incomplete wherever obvious).

The importance value serves to distinguish the saliency of the various relations for the identity of the
entry head. Thus, for instance, generating youth instead of hoy seems to be less a deviation than generating
girl. This is why the importance of the sex slot in the example below is greater than that of the age slot.

(The sample GL entries below do not contain a full complement of collocation relations.)

(make-frame boy
(is-token-of (value *person))
(sex (value male)
(importance 10))
(age (value (2 15))
(importance 4))
(lexeme (value "boy"))
(syntactic-info (lexical-class noun)
(noun-type class)
(morphological-info (plural regular))
(para-collocation (synonym lad kid child)
(antonym girl adult)
(hypernym person))
(syn-collocations-in (value boy.syn)))



(make-frame boy.syn
(agent-of (value play throw run jump)
(strength 0.5))
(place (value school playground ball field)
(strength 0.5)))

(make-frame toss
(is-token-of (value *throw))
(direction (value up)
(importance 3))

(altitude (value (70 150))) ;in feet
(importance 3))
(velocity (value (0 30))) ;in miles/hour

(importance 9))
(lexeme (value "toss"))
(syntactic-info (lexical-class verb)
(verb-type transitive))

(morphological-info (past-tense regular)

(past-participle regular))
(para-collocation (antonym catch)

(synonym cast propel toss fling hurl pitch))
(syn-collocations-in (value toss.syn)))

(make-frame toss.syn
(agent (value gambler)
(strength 0.7) )

(object (value coin)
(strength 0.7)))

(make-frame fast

(is-token-of (value *velocity))
velocity (percent-of-range (51 80) ) )
lexeme (value "fast"))
syntactic-info (lexical-class adjective))
morphological-info (comparative regular)

(superlative regular))
(para-collocation (antonym slow)
(synonym quick)))

(
(
(
(

(make-frame car

(is-token-of (value *vehicle))
(medium (value road)

(importance 8))
(propulsion (value fuel)

(importance 10))

(wheels (value 3 4)

(importance 9))
(lexeme (value "car"))
(syntactic-info (lexical-class noun)

(noun-type class))

(morphological-info (plural regular))
(para-collocation (synonym automobile auto))
(syn-collocations-in (value car.syn)))

(make-frame car.syn
(object-of (value dent)
(strength 0.8)
(size (value big)
(strength 0.8))
(velocity (value fast)
(strength 0.8)))



4.2. The Matching Metric

The ILT frames and the meaning patterns of GL entries against which they are matched are collections of
slots whose fillers are members of domains (or value sets) predefined for each slot.

The slot fillers can be .symbols, e.g., (temperature (value tepid)) or numbers, e.g., (weight
(value 141.5)).

The domains (or value sets) from which slot filler values are taken can be unordered, ordered discretely
(hereafter, ordered) or ordered continuously (hereafter, continuous). An example of an unordered set would
be occupations, an ordered set months-of-the-year and a continuous set height. Note that
only the slot fillers of a continuous set can contain numeric values.

The cardinality of slot fillers in meaning patterns can be single as in (sex (value female)),
enumerated as in (subjects (value physics math history)) or ranges as in (age (value
0 100)).

The matching metric (see Nirenburg ef al., 1987a) is designed on the basis of the following heuristics:

* If the types of slot fillers or the domains of the filler values in the ILT and GL meaning pattern
differ, then the match is declared inadequate and a maximum distance is assigned.

* The quality of the match is proportional to the size of the intersection of the actual slot fillers in the
ILT and GL frames, which is then modified by the size of the domain itself.

» Each slot in a GL meaning pattern is rated with respect to its importance for the meaning expressed
by the frame. A mismatch on a less important slot will have a smaller influence on the overall score
of the match.

* The quality of a match between two frames is a weighted sum of the quality of the matches of the
individual frame slots.

For the matching program, it is assumed that the ILT frame contains all the slots found in the GL
meaning pattern. If this is not the case, it is assumed that a special module in the generator (called the
augmentor, see Nirenburg, 1987) will infer the necessary slots and fill them with default values that are
stored in the IL ontological hierarchy, i.e., the Concept Lexicon. Conversely, the ILT frame can (and
regularly will) contain more slots than the GL frame. This is due to the fact that an ILT frame corresponds
not to a single lexical unit, but rather to an entire phrase (such as a noun phrase, complete with the various
modifiers). Thus, lexical selection proceeds in two phases: first, the heads of the phrases (typically, nouns
and verbs) are generated and then the modifiers (typically, adjectives and adverbs, but frequently such
recursive elements as prepositional phrases and relative clauses) are selected.

4.3 The Matcher

The matching program is the actual computer implementation of the heuristics listed in the previous section.
It matches an ILT frame's meaning pattern against the meaning patterns of GL entries to determine the
appropriate lexical item for the frame. The components of the GL entry that the matching program uses
are the meaning pattern section (which is a frame in the ILT format) and the TL string. A modified GL
entry can be seen in Figure 2.

The meaning pattern portion of a GL entry is an instance of a frame, containing the specific slot fillers
that should be present for the lexical item to be appropriate.

Since the matching program performs flexible matching, it must decide (unless there is a perfect match)
exactly how far the input ILT frame is from a perfect match with the GL pattern. After all GL entries for
a given concept (or token) such as person have been examined in this fashion, the one with the best score
is selected. All other mismatches are assigned penalties proportional to their "imperfectness".



((is-token-of (value *person))
(sex (value female)
(importance 10))
(age (value (0 12))
(importance 6))
(lexeme girl)

)
Figure 2: The GL Meaning Pattern for gir/

In this section, the actual empirically derived scoring function is described, along with the algorithm
that uses the scoring function to create an aggregate score for all the slots in the ILT input frame and the
particular GL entry.

For each slot which is present in BOTH the ILT and the GL entry, the fillers are compared. If the fillers
are equal, then the slots match perfectly, and no penalty is assigned. If the fillers do not match perfectly,
a penalty is computed for that slot. The function used to calculate the penalty depends on the type of slot
filler (e.g., SINGLE, ENUMERATED, or RANGE). Once the penalty is computed, it is weighted according
to the importance of that slot to a successful match, and the weighted number is added to the cumulative
penalty for the match thus far.

The scoring for the various combinations of domain sets (there are 3 sets) and the cardinality of slot
filler types (there are 3 types) are discussed in the next five sections. Note, however, that out of a maximum
of 9, there are only 7 meaningful combinations:

» Unordered, Single

* Unordered, Enumerated
* Ordered, Single

* Ordered, Enumerated

* Ordered, Range
 Continuous, Single

» Continuous, Range

4.3.1 Ordered Domains, Single Element Fillers

An ordered domain with single element fillers can be exemplified by a set of single temperature’
values in Figure 3.

Suppose we are trying to match TEMPERATURE slots in an ILT frame and a GL entry:

ILT: (temperature (value cool) )
GL: (temperature (value lukewarm))

The penalty assigned to a mismatch depends on two variables:

* D: the distance between the fillers in the ordered set of values

! Temperature is one of the physical object attributes within the ontological is-a hierarchy from which ILTs are produced
(Nirenburg et al., 1987b).



(make-frame TEMPERATURE
(instance-of (value slot))
(element-type (value symbol))
(domain-type (value ordered))
(cardinality (value single))
(elements (value (cold cool tepid lukewarm warm hot scalding))))

Figure 3: The FrameKit Attribute Entry for TEMPERATURE

 C: the size of the domain of values

The quality of the match depends, of course, on the distance between the two fillers; however, it is
important to consider the size of the filler domain as well. The larger a domain, the higher the chance that
the two fillers will diverge. Consequently, the penalty is lessened for larger domains, the distance between
the fillers being equal. (If there are only two elements in the domain, there is a 50% chance of the correct
filler appearing in the input, so a larger penalty is assigned if it does not.)

A simple equation relates these two variables:

Wx D
FO

where W is a numerical weight on the distance between the fillers and F is a damping function on the
size of the domain. These parameters are added to the equation for calibration purposes (calibration is
discussed in Section 4.3.7).

P=

(1)

4.3.2 Unordered Domains, Single Element Fillers

The matching of single element fillers from unordered domains is quite similar to matching single filllers
in ordered domains. The difference lies in the fact that the distance between the fillers is no longer
meaningful, since they are not ordered in any way with respect to one another. The penalty assigned to
the match becomes a function merely of the size of the domain (and hence the probability of the correct
filler appearing):

w
P35 @

4.3.3 Continuous Domains, Single Element Fillers

As stated before, only numbers can be represented in a continuous domain. The elements of the domain
are defined by giving the endpoints of the domain (or closed interval) and the unit size of representation to
be used in computing the distance between fillers. When defined in this manner, equation 1 can be used to
compute the penalty for continuous domain sets as well. As an example, consider an alternate definition
of the attribute TEMPERATURE in Figure 4.

As before, suppose we are trying to match temperature slots between an ILT and a GL frame:

ILT: (temperature (value 93.7))
GL: (temperature (value 98.6))

Before evaluating equation 1, both the distance between the two fillers and the distance between the
endpoints of the closed domain interval are computed using the defined unit-size value. Then the
evaluation of equation 1 proceeds as before.



(make-frame TEMPERATURE

(instance-of (value slot))
(element-type (value number))
(domain-type (value continuous))
(cardinality (value single))
(unit-size (value 1))

(elements (value (0 100))))

Figure 4: A Continuous Attribute Entry for TEMPERATURE

4.3.4 Ordered Domains, Range/Enumerated Fillers

Regardless of the domain, the function used to calculate the penalty for mismatched range fillers is
identical to that for enumerated fillers. In the following discussion, it is assumed that the set operations
of "size of filler" and "size of filler intersection" are executed directly on the enumerated fillers; the sizes
and intersections of range fillers are calculated using the unit-size slot value. The abbreviation "r/e" is
used to refer to the combination of both filler types, with the assumption that the appropriate preprocessing
of ranges takes place prior to evaluation.

When two r/e fillers do not match exactly, several factors are taken into account when calculating the
size of the penalty: the size of each filler, the size of the intersection between the fillers, and the size of
the domain.

The calculation of the filler size is straightforward. However, the size of the intersection between the
fillers is much more relevant, and a little bit more difficult to obtain. The intersection is conceptually
equivalent to D (the distance between the fillers in equation 1). However, the intersection can occur in one
of four ways:

1. The ILT filler and the GL filler overlap, and the resulting intersection is smaller than either filler.
2. The fillers overlap, and the ILT filler is contained within the GL filler.
3. The fillers overlap, and the GL filler is contained within the ILT filler.

4. The fillers do not overlap.

Although the actual integer that represents the number of shared elements can be calculated by the
same function for 1, 2, and 3 above, it is important for the matcher to distinguish between 2 and 3. In
general, a match where the GL filler is contained within the ILT filler is better than a match where the ILT
filler is contained within the GL filler. (On a certain abstract level, this is equivalent to a match where
some slots are present in the GL but not in the ILT.)

When the fillers do not overlap, the intersection is indicated by a negative number that represents the
distance between the nearest endpoints of the two fillers.

The function used to calculate the penalties for ordered domains with r/e fillers employs the following
variables:

e §;: the size of the ILT filler
* S, the size of the GL filler

* [ the size of the intersection between the two fillers where negative values indicate the distance
between disjoint fillers

e (: the size of the domain



» W, a weighting function dependent upon the ILT filler size
* W,: a weighting function dependent upon the GL filler size

* W a weighting function dependent upon the size of the intersection

F(C): a damping function dependent upon the domain size

The overall mismatch penalty (at the slot level) is computed by the following function:

- W:‘(Ss’ - I) + Wg(Sg — D — WilD
F(CO)

The first two terms in the numerator are designed to account for the two types of intersection in 2 and
3, above. If some of the ILT filler falls outside the intersection, then S; - I > 0, and the first term will
add to the penalty. If some of the GL filler lies outside of the intersection, the second term will add to
the penalty. The determination of just how much is added in each case is dependent upon the weighting
functions W; and W,. The penalty is also decreased by the size of the third term, which is the weighted
intersection. (This counteracts the additive factor of 7 in the first two terms when 7 < 0.) Finally, the
whole penalty is divided by the weighted size of the domain, which accounts for the varying probability
of matching in larger domains.

P ©)

4.3.5 Other Domain/Filler Types

The matching of an unordered domain with enumerated filler types and of a continuous domain with a
range filler type are also scored using equation 3.

4.3.6 The Frame Level

Once all of the slots have been compared using the appropriate equation, the overall score for the match
between the ILT frame and the GL entry is produced, according to the following formula:

S= E:-l I x P;
- n

E;‘-l L
where the P/'s are the mismatch penalties between each slot of the ILT frame and the GL entry and the

1I}'s are the importance values for the corresponding slots of the GL entry meaning pattern. (The slots in
an ILT frame do not contain importance values.)

4

4.3.7 Calibration

The functions in equation 3 can be calibrated to yield results with an intuitive interpretation. For example,
for most applications, the W, function should be quite low, since a subrange of a given range should reveal
a valid instance of the concept. Conversely, the function ; should be quite high, signifying an entry which
does not fit into the specified range. However, the values which are suitable for any particular application
must be produced empirically.

5 The Lexical Selection Algorithm

In the DIOGENES generator, an instantiation of a head-selecting knowledge source is triggered simultane-
ously for every proposition and role instance in the input The results of their operation are posted to a
blackboard (the Lexical Selection BlackBoard, LSBB), so that all knowledge source instances can draw on
this knowledge in their own decision processes. The knowledge sources responsible for selecting modifiers
are triggered when the heads of their phrases have already been selected.



function lexical-selection (current-frame);

If anaphoric-realization-indicated (current-frame) = true
then do-anaphoric (current-frame)
else
begin
candidate-set := GL-search (current—-frame GL) ;
if cardinality (candidate-set) =0
then candidate-set := interactively-augment-GL (current-frame) ;
tryagain
candidate-set := collocationally-constrain (candidate-set) ;
case cardinality (candidate-set)
0: candidate-set := interactively-augment-GL (current-frame) ;
goto tryagain;
1l: lexical—-selection := candidate-set;

= select-best (candidate—set

otherwise: lexical—-selection :
current—frame)

end;

(current—frame lexical-selection) = true

: = select-modifier (current
-frame lexical-selection);

if modifier-realization-indicated
then modified-lexical-selection

Figure 5: The Lexical Selection Algorithm

function GL-search (current—-frame GL) ;

slot-value : = get-is-token-of (current-frame) ;

candidate-set := first-pass-search (slot-value GL) ;
how-many := cardinality (candidate-set) ;
if how-many = 0

: =interactively-augment-GL (current-frame GL)

then candidate-set
(candidate-set how-many) ;

else candidate-set := union

post-intermediate-candidate-set (candidate-set)

Figure 6: The GL-search Algorithm



function collocationally-constrain (candidate-set) ;

if nhumber-of-potential-collocations (current-frame IBB) <> 0
then collocationally-constrain := intersection
(candidate-set neighbor.collocation.!frame)

else
begin
If toss-a-coin (current-frame) = heads
then try-later
else collocationally-constrain := candidate-set;
end;

post-intermediate-candidate-set (candidate-set) ;

Figure 7: The collocationally-constrain Algorithm

Figure 5 shows a simplified version of the top-level lexical selection algorithm. Extensions exist a) for
the case when a change must be made in the lexical choice due to late evidence of collocational incom-
patibility, b) for selecting modifiers and c). for selecting definite descriptions in the anaphoric realization
mode.

The predicate anaphoric-realization-indicated returns ¢t if an input frame is co-referential with a previ-
ously instantiated IBB unit and when relevant heuristic rules determine that it should be realized pronom-
inally, elliptically or through a definite description.

The function do-anaphoric determines the appropriate realization as above and posts it on the LSBB.

The function GL-search in Figure 6 searches the generation lexicon and produces a set of candidate
lexical realizations by obtaining all entries that have the same is-foken-of value that is found within the
ILT frame.

It is clear that the acquisition of the generation lexicon is a major and extremely labor-intensive task.
The acquisition of this dictionary, especially of the collocational information cannot at present be done
automatically. But the efficiency of a team of lexicographers can be increased dramatically through the use
of a specialized intelligent interactive aid, which will be both called through the interactively-augment-GL
procedure during a generation session as well as being used for acquiring GL 'off-line.' We have developed
one such Knowledge Acquisition Maintenance System (cf. Nirenburg et al., 1988), called ONTOS, for the
acquisition of domain knowledge and are at present extending it for acquiring generation lexicons as well.
In the first months of running the generator in every new domain, we expect to use the on-line augmentation
facility extensively, until all the relevant entries in GL are covered.

The function collocationally-constrain in Figure 7 first uses the function nunber-of-potential-collocations
to find out whether a lexical choice has already been made in the current proposition that can render some
of the members of the current candidate set inappropriate collocationally. Collocational constraints are
checked between a) the proposition head and all the role heads, b) heads and modifiers and c) all conjoined
concept instances in the input. If no potential collocations are found, the current process can either wait
and check again later or exit collocationally-constrain without any filtering actually achieved. (If there is
no such provision there is a danger of a deadlock when all the processes will be in the waiting mode.) This
eventuality is taken care of by rigging the probabilities of the two outcomes in toss-a-coin’. Heuristically,
the choice of the main verb (proposition head) is the most independent, followed by the choice of noun
phrase heads. Collocationally-constrain uses the collocation information in the lexicon entries to match

2 This mechanism is similar to the one used in the Friendly-Neighbors algorithm of the PARPAR parallel parser (Lozinskii and
Nirenburg, 1986).



and filter the candidate sets.

If the residual set has cardinality one, the result is posted on the LSBB. If there exist more than
one candidate, the function select-best (i.e., the Matcher) is called to perform context-independent lexical
selection based on the quality of the match between the meaning pattern of the ILT frame on the one hand
and the weighted meaning patterns of the GL entries in the candidate set on the other.

The predicate modifier-realization-indicated returns ¢ if there exist properties in the ILT frame that were
not accounted for in the head realization of the lexical item, i.e., realized as either a noun or a verb, roughly
speaking (see Figure 5).

The function select-modifier selects the appropriate modifier realization for the above phrase head, i.e.,
selecting an adjective for a noun and an adverb for a verb. This function uses essentially the same set of
algorithms, i.e., GL-search, collocationally-constrain and select-best, for choosing phrase modifiers as was
employed for selecting phrase heads. The primary difference between these sets of algorithms lies in the
fact that the modifiers are constrained to collocate with only their respective phrase heads.

6 Status and Future Work

The blackboard architecture, the process handler and the inexact meaning matching module have been
implemented; the collocation treatment module has also been implemented, but extensive testing has
not been performed due to the lack of a large-scale lexicon. The anaphora treatment module has been
implemented for pronominalization only. Our current tasks in the lexical selection module of DIOGENES
thus include the acquisition of a sizable lexicon, complete with collocation information, extensions to the
treatment of reference to incorporate definite descriptions, and the development of the module facilitating
interaction between lexical and syntactic means of realization.
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