
[From: Internat.conf. Methodology & Techniques of Machine Translation, British Computer
Society, Cranfield, 13-15 February 1984]

THE DIFFICULTY OF DEVELOPING LOGICAL ALGORITHMS
FOR THE MACHINE TRANSLATION OF NATURAL LANGUAGE

Ian M. Pigott,
Commission of the European
Communities, Luxembourg

Abstract

In studying machine translation software design, computer experts
and linguists have traditionally concentrated on a number of
phenomena deemed to present special problems and thus require
particular attention. Among the favourites in this connection are
morphological analysis, prepositional dependencies and the
establishment of antecedents. These and similar subjects have been
dealt with at great length in the numerous papers written over the
years to demonstrate the necessity of adding one or more specific
processing features to the software under design or pilot
development.

Experience in the practical upgrading of operational systems has
however tended to reveal a surprising variety of quite different
problems and has shown that the fears of designers and theorists are
frequently unfounded. Indeed, in tailoring a system for use by
translators, many quite unexpected types of error emerge which, in
the absence of sufficiently comprehensive studies, have to be
eliminated largely on the basis of trial and error.

The paper presents several examples of translation problems of this
type and explains how difficult it can be to formalize their
resolution in computer programs. Special reference is made to the
English-French version of Systran, under development at the European
Commission in Luxembourg. Explanations are given of the
identification of error types, the human effort involved in their
study, and the testing procedures used to check the validity of the
action taken to reduce their occurrence in routine translation work.

Finally, a number of suggestions are made for those working on
design aspects of new systems in the hope that by paying less
attention to problems which have already been solved, efforts can be
concentrated on the specific areas which continue to cause
frustration for those required to correct or use machine
translations in practice.

Introduction

Despite the proliferation of operational machine translation systems
in the last two or three years, the majority of linguistics and
research departments working on the design of new systems continue to
pay little or no attention to what has been achieved, preferring to
propose totally innovative solutions to the problems considered to be
of most significance.

One of the favourite arguments used to justify the new approach is
based on a recommendation made in the ALPAC report in 1966, namely
that as high quality machine translation is not likely to be realized
for several decades, efforts should be based on the development of
less ambitious aids in the area.

However, a great deal of water has flowed under the bridge since 1966.
A number of extremely useful MT systems have been developed up to
surprisingly high quality levels, levels which either provide a degree
of intelligibility fully adapted to the use of raw machine translation
for information scanning (as in the Russian-English system at the U.S.
Air Force) or which produce machine output which can be post-edited by
translators at rates of up to five pages per hour (as at the
Commission or in the translation of equipment maintenance manuals at
firms like Xerox).

Systran is just one of half a dozen systems used on a day-to-day basis
to give assistance to translators and end-users. In terms of quality,
it is undoubtedly still in the lead but other systems are catching up
quickly as increasingly high volumes of translation are channelled
through them. I shall however use Systran as an illustration for my
talk today, not only because we now have over eight years' experience
of its development and use, but also because, much like the IBM
mainframe computers, Systran which started off as a very modest
system, has grown stage by stage on the basis of user requirements
into a package containing well over 100,000 lines of macro-assembler
programming for each language pair.

Basic achievements

Before going into detail, at this point it may be useful to list the
areas where Systran has achieved a level of success which would be
difficult to beat whatever new approach were to be used.

On the morphology side, Systran is 100 per cent successful in
identifying all the inflexional endings of verbs, nouns and adjectives
in the source language and in re-establishing their equivalents for
the target. The approach here differs somewhat according to the source
language in question: for the less inflected languages such as
English, full forms are automatically created from the stems and
listed in the dictionary whereas for highly inflected languages like
French, the endings are dynamically analysed by means of a
table-driven algorithm.

The all important problem of grammatical homograph resolution (i.e.
deciding whether a word such as 'light' is in fact a noun, a verb or
an adjective in a given context) is also handled surprisingly
successfully by Systran. The large majority of the most frequently
occurring homograph types are invariably correctly resolved (noun vs
verb, adverb vs preposition, finite verb vs infinitive, etc.) and even
in cases where errors do still occur (past tense vs past participle or
adjective), the hit rate is well over 90%.

Unfortunately, those working on the development of new systems do not
appear to appreciate the importance of this aspect of MT analysis.
Many seem to assume it is of relatively minor importance and can
somehow be simply resolved by the establishment of semantic
dependencies. This is certainly not the case and I would advise all
those of you working on new systems to give this problem special
attention from the very start.

Dictionary structure is another feature of Systran which functions
remarkably well. The Systran dictionaries provide for about fifteen
different levels of coding ranging from basic one-word entries to
highly complex multi-word contextual rules which can be powerful
enough to override analysis algorithms if and when this proves to be
necessary. Admittedly, months if not years of experience are required
for a coder to make optimal use of these dictionary features.
Nevertheless, the wide variety of dictionary support available is no
accident. Each and every feature has its own special function and has
been specifically developed to meet a given requirement.

As a good dictionary is a prerequisite to high-quality MT, system
developers would be recommended to design lexical data bases which not
only provide a firm basis for the various levels of coding required
but which can be updated at reasonable cost. It will be remembered
that the TAUM system was discontinued mainly because of the excessive
cost of increasing the size of the dictionary. TAUM entries used to
cost up to $40 each while the cost per entry in other production
systems, including Systran, is below $5.

Target language generation in Systran also presents very few problems
at this stage of development. In other words, provided the results of
source language analysis are correct, the target synthesis and
rearrangement processing rarely produces any surprises. Target
generation has two main functions: the first is to inflect correctly
(person, number, gender, case, etc.) all nouns, verbs and adjectives
in the sentence, while the second is to place all the words into the
correct order for the target language in question.

Although this, like other developments, took time, people and money,
the amount of effort was not nearly as great as might have been
feared. The establishment of synthesis rules proved to be a relatively
straightforward task, requiring no more than about three man-years for
each new target language.

I have, in recent years, seen several learned accounts of the
difficulties of handling target generation. I can only say that in
practice this level of processing, unlike analysis of source language,
has turned out to be fairly mechanical, representing not more than
about ten per cent of the effort required on any language combination.
Those who continue to propose new approaches based on the 'special
requirements' of the target language in question would be well advised
to investigate the dependability of what has already been achieved.

Finally, turning to source language analysis, which is certainly by
far the most complicated part of MT, I would only say at this stage
that Systran has indeed achieved a relatively high level of success.
Most of the source-language sentences are satisfactorily parsed, even
though some annoying errors still occur at times. I shall attempt to
explain why they occur and how they could be eliminated later in my
talk.

The pragmatic approach

My colleague, Peter Wheeler, also speaking at this conference has
commented on the importance of meeting user requirements by a
pragmatic approach to the problems in hand. I in turn should like to
consider some of the linguistic problems which have caused real
difficulty and explain how they were solved, before going on to argue
why many of the fears of more theoretically oriented linguists working
on MT developments are largely unfounded.

Let us therefore go back to February 1976 when the Commission first
started to develop the English-French Systran system. With a
dictionary of only a few thousand words and only a fairly small
program, there was ample opportunity for eliminating errors. Indeed,
in those early days, practically every sentence contained a wide
variety of mistakes at all levels, enough to persuade most of those
assigned to the project to give up in despair.

The errors, as might be expected, occurred at two main levels -
dictionary and program.

It was quickly realized that the performance of the program could not
be properly judged until an adequate amount of basic vocabulary was
available. The first priority was thus to create a well-coded
dictionary for the text corpus on which we were working. This happened
to be the Food Science and Technology Abstracts data base which had
been chosen in view of the subject area involved (agriculture) and
owing to the fact that it already contained thousands of pages of text
in machine-readable form, thus eliminating the need to input source
text manually.

The dictionary

In this initial dictionary work, we made wide use of three types of
tool, a key-word-in-context listing of all the words in a
20,000-sentence sample of text, word-frequency counts for the same
sample and raw machine translations of about 1000 sentences a time
complete with not-found-word lists.

The raw MT served as a basis for deciding which words and expressions
required coding while the KWIC and frequency listings provided an
indication of the various contexts in which a given word was likely to
appear, together with its more general frequency of occurrence. The
normal practice was to go through the raw MT sentence-by-sentence,
code up missing vocabulary, check against the not-found-word-list in
order to avoid duplication and choose the most generally acceptable
basic meaning making full use of the KWIC information.

It may be thought that by working on a supposedly limited corpus of
this type, problems of meaning could be avoided. In fact, this was
seldom the case. We soon learnt that the data base covered all aspects
of food science from farming to processing, from chemical testing to
legislature and standards, and from biology to environmental
pollution. As a result, it proved to be an excellent testbed for the
work in hand.

Very quickly we abandoned the idea of the topical glossary approach
which is available in Systran and has been used to good effect by
those who deal principally with one major sector of interest. This
facility quite simply allows a basic meaning to be selected on the
basis of a subject-field parameter in preference to other meanings a
word might have in other contexts.

There were two reasons why we decided not to use topical glossaries.
On the one hand we soon discovered that constantly occurring terms
such as 'plant' could, even in the field of food science have quite
different meanings - either a growing vegetable organism (F - plante)
or an industrial facility (F - installation). Surprisingly enough, it
turned out that the second meaning was the more frequent even in this
subject sector. The other reason was that although we based our
initial development on the food sector, we realized from the very
beginning that if MT was to be of real use at the Commission, it would
have to be able to cope with practically any subject sector under the
sun.

A good illustration of a general purpose basic meaning is the
translation assigned to the word 'station'. 'Gare' would have been too
specific, 'station' although understandable would rarely be correct,
and so we finally opted for 'poste' which is correct in most contexts
and understandable in many more. 'Poste de chemin de fer' is not too
bad a translation of 'railway station' but 'gare de
telecommunications' would be quite unintelligible.

This last example brings on to the next level of dictionary coding,
the string expression, which can be assigned both a basic meaning and
additional syntactic information. 'Railway station' can be given its
own meaning 'gare' and coded in such a way that 'station' will in this
context be systematically recognized as a noun rather than as a verb.

I might add that as often as not, the use of common nouns such as
'station' as verbs is overlooked by the dictionary coder until the day
when we get a sentence such as 'France has decided to station troops
in Beirut'

Many interesting pages could be written on expressions coding, but I
would just like to mention here the usefulness of coding various types
of string expression as a means of overcoming syntactic ambiguity. The
phrase 'in order to' could theoretically have two quite different
meanings, depending on whether 'order' is interpreted as a noun in its
own right (as in 'He returned it in order to the owner') or simply as
part of an infinitive particle expression of purpose. In practice of
course, the infinitive particle occurrence is by far the most common
and can be entered as the only possibility to be considered. I must
admit, however, that although I once predicted the other meaning would
never turn up, I have since been proved wrong, but in my opinion, 5000
hits to one miss is far better than 4800 hits and 200 misses even if
it happened that one of the 4800 gave the correct resolution of the
less common meaning. Indeed, I would say that it is just this kind of
pragmatic approach which has been responsible for the success of our
development.

The program

Once we had built up a reasonable dictionary, we were in a position to
take a more objective look at the translation program. We could run
new raw batches of MT and study the results of the sentences which,
despite the fact that all the words were in the dictionary, still
continued to produce errors.

At this stage the errors fell into four basic types, those which
resulted from insufficient information in the dictionary and which
could normally be eliminated without too much difficulty, those
resulting from poor homograph analysis which required much more work,
those requiring extension to the various stages of the parsing
routines which accounted for a substantial amount of effort over the
first four years, and those which necessitated the introduction of
contextual dictionary rules often in conjunction with semantic
markers. I shall try to give you a typical example of each in order to
illustrate what is bound to happen during the development of any
system and how efforts can be made to solve the problems involved.

Lack of dictionary information

As an illustration of lack of dictionary information, let us take the
sentence:

- Many institutions but particularly the Commission had been
considered by the study.

The raw MT might have come out:

- Plusieurs institutions mais la Commission avait été particulièrement
considerée par l'étude.

The translation is of course quite wrong but at first sight, it is
difficult to see why it has gone wrong. On checking the dictionary
information, we find that everything appears to be correct and even
the program seems to have functioned as it should. Only when we get a
dump of the actual analysis do we find that 'particularly' has been
marked as an adverb governing 'considered'. Had other adverbs been
used (e.g. unfortunately the Commission had been considered by the
study), the analysis would have been correct.

The reason things went wrong was quite simply that while the system
provided for codes to mark the affinity between an adverb and a verb
or an adjective, no such code existed for an adverb governing a noun.
Yet in our sentence 'particularly' is indeed governing a noun. Once we
had diagnosed the trouble, we were able to add a new code, slightly
modify the analysis program and obtain the correct translation:

- Plusieurs institutions mais en particulier la Commission avaient été
considerées par l'étude.

Not purple prose perhaps, but at least syntactically correct and quite
intelligible.

Homograph errors

The type of homograph error that might have occurred in the early
stages can be illustrated by the translation of:
- The laboratory analyses improved awareness of the problem.
as:

- Le laboratoire analyse la conscience ameliorée du problème.

What has happened, of course, is that 'analyses' has been resolved as
a verb with the result that 'improved' becomes a past participle
adjective instead of a simple past tense. This kind of error is far
more difficult to eliminate and while special cases such as this could
be dealt with quite simply by entering 'laboratory analysis' in the
dictionary as a noun phrase, a more general approach to the problem
would require systematic study of hundreds, if not thousands of
sentences of the same type.

Such studies have indeed been conducted over the years and I am
pleased to report that they have been largely successful. By and
large, we attempt to design the program to make full use of the
syntactic and semantic information available on each word in order to
arrive at the most likely solution on the basis of a sizable error
corpus. Once the program has been modified, similar but new material
is run for checking, negative side effects are noted and further
modifications are made. Slowly but surely performance increases.
However, for some of the more common homograph types such as noun vs
verb, a routine can easily run to thirty or forty pages of contextual
programming.

Parsing errors

As an example of a typical parsing error, I would give the following
example:
- The committee discussed faulty equipment and office management.

Early in development, this might have been translated:

- Le comité a étudié l'équipement et l'administration de bureau
défectueux.

as the adjective 'faulty' would be analysed as qualifying both
'equipment' and 'management' rather than just 'equipment'. When we
read a sentence such as this, there is absolutely no doubt in our
minds that the 'faulty' refers only to 'equipment' and not to
'management', the reason being that we have all had plenty of
experience of faulty equipment and we know only too well that
management committees are unlikely to criticise management, however
bad it may be.

Yet the computer has no such inborn intelligence. The problem can
however be solved on the basis of the most likely syntactic and
semantic relationships between nouns and adjectives of given types.
For example in

- faulty typewriters and photocopiers

'faulty' would govern both nouns as they both come into the same
semantic category (both are devices), whereas in our first example, it
would qualify only 'equipment' which would not carry the same semantic
markers as 'management'.

Contextual dictionary entries

Finally, to turn to the contextual dictionary entries, I will take a
seemingly very simple example, the preposition 'in'. I may say that in
practice the correct translation of the preposition 'in' has turned
out to be one of our most difficult meaning problems. Indeed, there
are some 550 contextual entries attached to this unassuming little
word, not to speak of a series of special routines which deal with its
translation in date structures and in connection with place names.

The basic dictionary default for the translation of 'in' is 'dans' but
there are a great many cases where that meaning is incorrect.

Three simple examples will illustrate the point:

'In' governing the name of an organization (on the basis of semantic
coding) will be translated 'à' (à la Commission, aux Nations Unies).

'In' immediately governing a material will be translated 'en' with no
article (en acier, en bois).

'In' immediately governing an animate noun will be translated 'chez'
with a definite article (chez les hommes, chez les rats).

These examples might appear childish in their simplicity, but as I
said before, there are over 500 such codings of greater or lesser
complexity and it has taken many man years of effort to cover them all
adequately. No printed dictionary will give anything like a proper
explanation of the variety of translations required. Only on the basis
of working through thousands of pages of real text does the true
extent of the problem become apparent, and only then can it be dealt
with successfully.

Academic concerns

Now that we have looked at some typical practical problems in MT
development, let us turn for a moment to some of the concerns about
machine translation often expressed by academic linguists working at
research centres or at the universities.

Reams and reams have been written about prepositional dependency and
its importance in machine translation. How important is the problem,
how easy is it to resolve and to what extent can existing systems cope
with it?

First I would say that the establishment of prepositional dependencies
is nowhere like as important as finding the correct translation of the
prepositions once their relationships have been established. We have
already seen the magnitude of the problem of dealing with the
translation of 'in' but the same can be said of most common
prepositions (at, to, with, by, for, etc.).

By contrast, the actual setting of relationships is a comparatively
simple process, particularly as in the majority of cases in written
texts, prepositions govern the noun phrase to the right and are rarely
governed by the noun, verb or adjective to the left. Where special
government does need to be handled, it can almost always be
efficiently handled by appropriate contextual coding. It is also of
interest to note here that translators seem far less concerned than
might be expected by the occasional incorrect setting of prepositional
dependencies resulting in the wrong translation.

On the subject of antecedents, which again has been given considerable
attention in academic circles, in practice we have found that a
pronoun subject normally has as its antecedent, the noun which was the
subject of the last main clause. Often, of course, the last main
clause with a noun, rather than a pronoun, as subject is to be found
in a previous sentence. In Systran, however, information about
previous sentences is stored and the problem can be easily solved.

There are of course exceptions to this general rule, some of which can
be successfully handled by the program, some of which can not. And
although there have been one or two complaints from translators, by
and large the system appears to perform well. At the human level, this
type of error is, in any case, among the easiest to correct.

I have mentioned these two examples in the interest of restoring some
kind of reasonable perspective regarding the problems to be solved in
developing new MT systems. Indeed, on the basis of our experience to
date, the real problems reside at quite different levels.

Problems to be solved

Rather surprisingly perhaps, the ongoing quality enhancement of raw MT
output at this stage seems to be more dictionary bound than program
dependent. We do of course continue to enhance the programs,
particularly in regard to the establishment of enumerations and the
resolution of grammatical homographs and

clause boundary setting, but most of our effort goes into the addition
of contextual coding entries aimed at providing the translator with as
much reliable technical terminology as possible. This is a long,
rather tedious process, particularly in an institution like ours where
there seems to be no end to the number and complexity of subject
matter covered in day to day work. However, as post-editing work
consists essentially of finding the 'mot juste' for each and every
context, the better the terminology provided by the machine, the
easier the job for the translator.

I would therefore suggest that in the development of new systems,
designers pay far more attention than they have in the past, to
creating the best possible dictionary structures and terminology
updating features, so as to minimize the human effort involved in
dictionary improvement and expansion. Such a system could be based on
the interfacing of source language analysis results with word
processing systems used for post-editing. If this could be achieved, a
dictionary coder would be able to avoid a great deal of analytical
coding work as he would be able to make use of menu proposals as a
basis for dictionary creation.

For example, the post-editing changes made by a translator could be
coupled to the source text to provide potential equivalences for
inclusion in the dictionary. At the simplest level, these would be at
the one-word level and would simply propose as a basic meaning, the
equivalent inserted by the post-editor. For example, potential
information on a not found word such as 'post-editor' could be created
on the basis of its ending (e.g. noun, plural in -s, human,
profession, etc.) and the meaning inserted by the translator
(post-editeur).

At the next level, expressions requiring post-editing corrections
could be listed for approval as string technical terms. 'Word
processing' could lead to information such as: noun expression, main
meaning - traitement de textes.

Finally, in order to facilitate the introduction of the correct
meaning of a term in context, the updating algorithm could make use of
the parsing information available from analysis in a given text and
propose selection criteria for the correct contextual equivalent. As
an example, let us take the sentence:

 - The equipment appeared to work successfully under normal operating
conditions.

In the absence of contextual meanings, the verb 'work' might well have
been assigned its basic meaning 'travailler' rather than the
post-editor's choice 'fonctionner'. The updating proposals, based on
the sentence structure, might look something like this:

- WORK, meaning 'fonctionner' when:
* a. semantic subject = DEVice
* b. noun subject = equipment
* c. modified by adverb = successfully
* d. used intransitively
* e. dependent on modal = appear

The translator would then simply select one or more of the proposals
as a basis for contextual meaning selection. Here he might choose a)
and c), or, if he wished to be more specific, he might only select b).
Following his selection, which would only take seconds, the necessary
syntactic and semantic information would be correctly formatted into a
dictionary rule. After updating, which ideally should be immediate for
each entry, any conflicts with existing information would be
displayed, allowing the coder to make any additional changes with or
without the assistance of his colleagues.

This kind of computerized aid to dictionary making would certainly be
a tremendous aid to the coder and would make for cheap, rapid
dictionary building. If this could be ensured, the overall cost of MT
improvement would be drastically cut. And once the algorithm had been
successfully developed for dictionaries alone, it could possibly be
extended to interface with the program itself as an aid to program
enhancement.

Logical algorithms for natural language

And this brings me to my last and most important point.

In our experience, the most time-consuming part of development work
has been related to the difficulty experienced by linguists in
reducing natural language to logical processing at the programming and
dictionary levels. At all levels of the system, translators,
linguist-programmers and systems experts have constantly had
difficultly in predicting the overall consequences of an addition or
modification to the program or dictionaries.

More often than not, it has been necessary to make use of the only
remaining tool available, that of trial and error. In language
processing there are indeed very few, if any, hard and fast rules.
This has meant that each basic rule has led to a general series of
exceptions, each of these has in turn led to more specific exceptions
and so on, down the line. Even the seemingly most straightforward
rules such as 'a pronoun immediately preceding a finite verb is the
subject of that verb' can lead to dozens of general exceptions and
hundreds of specific ones.

It has taken us over eight years to create software packages of well
over 100,000 lines of assembler programming and some 150,000
dictionary entries for each language pair. The capacity of the
computer has, by the way, not proved to be a problem, nor has running
time or even running cost. The basic problem has been one of training
translators and linguists to reduce their knowhow to logical patterns
of thought which can be programmed into the computer, tested, amended,
added to, further tested and so on until reliable results can be
obtained.

The work continues year by year and as the quality of the raw MT
improves, so the number of enthusiastic users expands.

However, with more and more users of MT - and remember that over
400,000 pages of MT were run in 1983 on the various production systems
now in use - the problem of successfully integrating user feedback
becomes ever more complex.

Conclusion

My conclusion today is, then, a very simple one.

I would urge all those concerned with the basic design or further
improvement of MT systems to concentrate their efforts towards
assisting dictionary makers and programmers in their routine work.

Rather than coming up with new revolutionary theories based on
artificial intelligence or Chomskian linguistics, they should attempt
to find ways and means of prompting the human beings concerned with
development into making the best possible use of their knowledge and
experience by providing them with efficient updating features enabling
them to make full use of the feedback received from users.

Finally, let us never forget that MT systems are intended to help
overcome language barriers by speeding up the rate at which
translators can handle their work. Translators' requirements are thus
of paramount importance and should be borne in mind at every stage of
design and development.

