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Abstract 

We attempt to develop a general theory of robust processing for 
natural language, and especially Machine Translation purposes. 
That is, a general characterization of methods by which processes 
can be made resistant to malfunctioning of various kinds. 

We distinguish three sources of malfunction: (a) deviant inputs, 
(b) deviant outputs, and (c) deviant pairings of input and 
output, and describe the assumptions that guide our discussion 
(sections 1 and 2).  We classify existing approaches to (a)- and 
(b)-robustness, noting that not only do such approaches fail to 
provide a solution to (c)-type problems, but that the natural 
consequence of these solutions is to make (c)-type malfunctions 
harder to detect (section 3) In the final section (4) we outline 
possible solutions to (c)-type malfunctions. 

1. Introduction. 

In this paper we attempt to develop a general theory of robust 
processing and explore its consequences for certain kinds of 
Machine Translation. Specifically, we assume without argument the 
goal of a general purpose, fully automatic multilingual MT system 
to be developed within a highly decentralized organizational 
framework (for example, the European Commission's EUROTRA 
project*). The acceptance of such a goal influences our approach 
in a number of ways. 

* Our debt to Eurotra is great: collaboration on this paper 
has developed out of work on Eurotra and has only been 
possible because of opportunities made available by the 
Eurotra project. We are also indebted to many colleagues in 
the project for ideas, insights and support. We would mention 
in particular Louis Des Tombe, Lieven Jaspaert, Maggie King, 
Stephen Krauer, Serge Pershke, Mike Rosner, Nino Varile, and 
our colleagues at Essex and UMIST.  The views (and in 
particular, the errors) expressed in the paper are our own 
responsibility, however, and should not be interpreted as 
representing 'official' Eurotra doctrine. 



First, the requirement that the system be developed in a highly 
decentralized organizational framework results in the need for a 
theory which is both logically strong and highly general, 
abstracting from many details of purely local relevance. 

Second, accepting the goal of multi-lingual MT means that the 
process of translation cannot be considered simply as a mapping 
of strings to strings: one is forced to consider the status of 
intermediate representations of various kinds. 

Third, the fact that we consider the issue of robustness at all 
is a reflection of the difficulty of MT, and the aim of full 
automation is reflected in our concentration on a theory of 
robust processing rather than 'developmental robustness'. The 
general idea of system robustness conflates two quite separate 
ideas: on the one hand, the idea that systems should be capable 
of extension and repair by their designers (being, for example, 
resistant to unforeseen 'ripple effects' under modification). 
Notice that systems which have only this kind of robustness can 
never be fully automatic, thus, despite its importance, we will 
have little to say about this aspect of robustness here. On the 
other hand, there is the idea that systems should be robust in 
the sense of capable of dealing with unexpected or deviant data: 
we will use the terra 'robustness' and related expressions to 
refer to this. 

Three kinds of problem give rise to the need for robustness. For 
any given process or procedure one may encounter: 

case (a). Illegal inputs, i.e. inputs which have not been 
foreseen. Notice that from the processing (as opposed to the 
developmental) point of view, it is irrelevant whether the 
illegality arises from a deficiency in the input itself or a 
deficiency in the process, i.e., whether it is the input or the 
process that requires repair. 

case (b). Illegal intermediate results. This will occur if some 
process malfunctions so as to produce deviant output (again the 
source of this malfunction is irrelevant). It may be that this is 
not detected until some other process takes this output as input 
— in which case we have an instance of case (a). However, it may 
be that in order to produce anything at all some process requires 
its output to satisfy some condition, so that this is 
conceptually a separate problem from case (a). 

case (c). Suppose both input i and output j of some process are 
legal objects, it nevertheless does not follow that they have 
been correctly paired by the process. For example, in the case of 
a parsing process, i may be some sentence and j some 
representation. The fact that i and j are legal objects for the 
parsing process and that j is the output of the parser for input 
i does not guarantee that j is a 'correct' representation of i. Of 
course, robust processing should be resistant to this kind of 
malfunctioning also. 



We regard the problem of (c)-type fragility as the most serious, 
and most resistant to solution: no existing approach is capable 
of dealing with it, and we will argue that the natural 
consequence of introducing solutions to (a)- and (b)- type errors 
is a proliferation of the more dangerous and insidious (c)—type 
errors. 

In this paper we briefly review existing approaches to process 
robustness in Natural language processing and MT, with some 
discussion of their deficiencies in relation to our general 
goals, and the goal of (c)-type robustness in particular, and 
attempt to develop a partial solution to the problem of (c)-type 
robustness. 

2. Basic notions and background assumptions. 

To begin with it is useful to narrow the discussion somewhat by 
noting a number of ways in which the problem of system fragility 
in the kind of environment we are concerned with differs from 
that encountered in Natural Language Processing (NLP) generally. 
For example, we are not particularly concerned with failures that 
result from different kinds of mis-spelling, and mis-segmentation 
in the input, since we imagine that texts submitted for 
translation will already have been processed for such errors 
(perhaps automatically), nor are we concerned with dialogue 
related problems such as highly fragmentary input, interjections, 
or false starts, though these clearly present serious 
difficulties in some kinds of NLP (e.g. in front ends to Expert 
Systems). 

On the other hand, certain common solutions to problems of 
fragility are obviously not open to us.  In particular, the aim 
of a general theory for robust MT excludes the use of highly 
domain specific knowledge such as is exploited by many special 
purpose NLP systems (cf. Hayes and Mouradian [5]), and the fact 
that we are concerned with translation militates against the 
disregard for input that is characteristic of some robust systems 
(it is displayed in an extreme form in e.g. PARRY [2]): it is not 
enough that an MT system behaves robustly, producing some output, 
it should produce output that stands as nearly as possible in the 
'translation of relation to its inputs.  Finally, though we are 
not discussing the issue of developmental robustness here, we 
will obviously prefer robust processing to preserve a high degree 
of transparency — we take it as axiomatic that general purpose 
MT systems must be capable of extension and repair. 

From the point of view we adopt, it is possible to regard an MT 
system as a set of processes implementing relations between 
representations (input and output texts can be considered 
representations of themselves).  We distinguish three different 
kinds of relation: 

(1) The correct, or intended relation R between 



representations. E.g. the relation 'is a (correct) 

translation of, which pairs texts in one language with 
texts in another. We have only pre-theoretical and rather 
vague ideas about Rs, in virtue of being bi-lingual 
speakers, or having some intuitive grasp of the semantics of 
artificial representations. 

(2) A theoretical construct T that is supposed to embody R. 

(3) A process P that is supposed to implement T. 

The need to distinguish R from T and P is obvious: it is possible 
to perform evaluations of a system only by comparing actual 
performance of P against ideas about R.  However, it is also 
necessary to distinguish T from P.  In some cases T may exist as 
a separate entity (e.g. if P is a process that implements an 
explicit grammar of some sort) so that the need to separate 
evaluation of T (the grammar) and P (the programs) is obvious. 
However, even when T does not exist as an explicit set of 
propositions, it is useful to consider it separately, as an 
interface between pre-theory and process.  It is a fact that 
every actual process implements a theory of inputs and outputs, 
however implicit, and the existence of such an interface is 
essential to our presentation. We want to distinguish carefully 
between evaluation of T (e.g. checking the adequacy of ones 
representational devices) and evaluation of P (checking how far 
an implementation delivers representation). We are concerned 
with automatic approaches to error detection and repair, and we 
can imagine no automatic method for checking the correctness of a 
representational device (T).  For this reason we want to ignore 
questions of how far T can be considered a good instantiation of 
R. 

Thus, in what follows, we will simply assume that T is both well- 
defined and a correct embodiment of R (e.g. in the case where T 
is a theory of translation between L and L', this assumption says 
that the membership of L, and L' is well-defined and members of L 
are paired with their correct translations in L'). Realistically, 
in the context of NLP, the assumption of the correctness of T in 
relation to R will amount to assuming it to be the most correct 
available — that all T' distinct from T are in some way less 
correct — in fact, this assumption is sufficient for our 
purposes. 

It will considerably simplify the exposition below if T can be 
regarded as a function; this can be achieved if we abstract away 
from the phenomenon of ambiguity (it will not matter if we regard 
T as a relation between individual representations, or between 
individual representations and sets of representations which are 
equivalent).  While we think this simplification is essential to 
the exposition here, it is regrettable, since the inter-relation 
of ambiguity and robustness is an important matter. 

Finally, we will assume that hardware and low-level software 
operate error-free and that P can be guaranteed to terminate for 



all inputs:  there are well known ways to ensure system  robustness 

at this kind of level (e.g. termination is  guaranteed  by simply 
restricting  allocation of resources to P), so that this 
assumption seems  unproblematic. 

Given  these  assumptions   the  possible  sources  of error in a system 
or  process  P are  restricted   to  two: 

Problem   1:  Correctness  of P.     P is not a correct 
implementation of  T.     One might  expect   this   situation  in 
cases where T is extremely complex,  which we consider will 
be a common situation in NLP and MT — even  for domains 
which  are reasonably well understood,   theories are extremely 
complex,  and  there are severe  problems  devising 
implementations  of  them. 

Problem   2:_ Completeness  of_ T.  T, while correct, is not 
complete.    We have assumed that T is  correct, i.e. that  it 
correctly pairs  all items  in its domain with items  in its 
range.    It  is  not a  consequence  of  this assumption that the 
domain of  T  is  co-extensive   with  the set of  actual inputs to 
P.   In fact, in  realistic NLP we  expect  the  set  of actual 
inputs  regularly  to  be  a  strict  superset  of   the domain of  T, 
for non-trivial Ts.     Even if T were   to  include  what  amounts 
to  a complete grammatical description of the input language 
this would be so, since we can expect  some inputs  of  only 
marginal grammaticality, and all languages allow scope for 
creativity that is under determined by the rule system (e.g. 
creation of  new, derivationally simple terms). 

In principle, it might  turn  out that a combination of advances in 
understanding  together with restrictions on input might eliminate 
both sources of error.    It seems  reasonable to disregard  this 
possibility, and  assume  that robust processing  will always be 
necessary. 

We can now  state  the  possible manifestations of  system  fragility 
described in the  introduction more concisely: 

case (a): P(x)=Ø.  i.e. P halts producing Ø output for input 
x.   This is the effect of illegal (unforeseen) input. 

case (b): P(x)=z where z is not a legal output for P 
according to T. 

case (c): P(x)=y, where y is a legal output for P according 
to T, but is not the intended output according to T. i.e. y 
is in the range of T, but y≠T(x). 

We should also be precise about the alternative to 
malfunctioning: 'correct' processing, and in particular 
processing which avoids  (c)-type   malfunctions.   We will speak of 
outputs  being 'T-correct' when they are the results of such 
processing.   By abstracting away from ambiguity, we are able to 
consider T to be a function.   It does not follow that the inverse 



of T (that is, T-1) is also a function, since T may be many-to- 
one.  This complicates the definition of T-correctness slightly: 

Given P(x) = y, and a set W such that for all w in W, T(w) = 
y, then y is T-correct with respect to w iff x is a member 
of W. 

When x is not a member of W, there is a (c)-type error. 

3. Existing approaches. 

We now present a classification of existing solutions to 
instances of (a)- and (b)- type fragility.  None of these 
provides a solution to (c)-type fragility. 

Case-(a) errors: 'input' robustness: 

Case (a) errors, where P halts without producing any output for 
input x, have their source in a mismatch between the expectations 
of P and the data it is presented with.  They are the most 
commonly considered in the literature.  There are two basic 
approaches to making systems 'input robust': 

(i)  to call some alternative process P' to manipulate the 
data so that it satisfies the expectations of P: for 
example, the LIFER [6] approach to elliptical input involves 
attempting to restore the ellipsis, so that the input can be 
processed by the normal rules.   Notice that P' cannot 
guarantee to do more than make x formally acceptable to P, 
which will generally lead to (b)- and (c)- type problems, as 
later processes find inconsistent or incomplete information. 
The alternative would be fortuitous, and not very likely: 
(1) that P and P' together simply constitute a more correct 
implementation of T, hence solving problem 1; (2) that P and 
P' together implement a theory T' which differs from T only 
in having a larger domain, hence solving problem 2. 

Thus, though if it is successful, this strategy will 
eliminate case (a) errors, case (b) and (c) errors will 
remain, and are likely to be more wide-spread. 

(ii) Provide some mechanism for modifying the expectations 
of P: e.g. by calling some alternative process P' which 
embodies weaker expectations about data, or by attempting 
some temporary re-arrangement of P (cf. Kwasny and 
Sondheimer [7]), or simply relaxing P's requirements on 
inputs (as in 'Preference' type approaches, (Wilks [9])). 
Variants of this approach are extremely common: (cf. 
Weischedel and Black [8], HEARSAY [4], and in general, 
systems that favour a bottom up approach to exception 
processing). The effect of this is to create some new 
process P' which accepts a superset of the inputs of P. 
Again, it is unlikely that this will simply yield a more 
correct implementation of T.  It is more likely that P' 



implements  a  new   theoretical  construct  T',  distinct   from  T, 
and  with a   wider   domain. 

If   this  is  successful,   it  will eliminate  type  (a)-errors, 
but  now   the  existence   of   type-b  and  c  errors  is   likely: 
given  that T  and  T' are  different,   they  may  well differ in 
terms   of   range,  as   well  as   domain,  and  anything  which P' 
delivers  outside the range of T constitutes  a  (b)-  or (c)- 
type error. 

We  return to  the case where  the ranges  of  T and T' are known 
to   coincide   in   section 4. 

(Notice,   incidentally,   that  if  making P  robust  does   involve 
implementing an alternative  to T,   then the assumption  about   the 
correctness   of   the  theory  in relation  to R is  no longer valid, 
so that even  if  our  processor  is  guaranteed  to  deliver  what  the 
theory  T'  predicts  it  should,   there  is no guarantee that this  is 
what  is really intended (i.e. what  is correct for R). Of course, 
it  might,   in principle   turn  out   that  T' actually better 
approximates  to R,   and performs  better  by  accident — such 
accidents  are extremely  improbable,   and we  think we can disregard 
them). 

Case-(b)  errors;  'output robustness' 

Case-(b)  errors, where the output of P is ill-formed according to 
T  can  be   trapped  straightforwardly,   by  imposing  a  'goal  filter' 
or well-formedness  check on the  output   of  P  (as   in TAUM AVIATION 
[1], where the output of  Transfer  is  checked  in this  way).   This 
approach is  particularly useful  where  it  is  expected   that 
collectively coherent  and useful  sub-parts of   the output of  P can 
be   salvaged  by   the   filter. 

The  effect   of   this   is   that  P  either produces  0  (an (a)-type 
error),   or something more well-formed,   so that   the  likely result 
of  filtering  output  in this  way  is  to  produce a proliferation of 
type-a errors  as  P is  unable   to  produce any output  that  satisfies 
its  goal. There are  a  number  of   ways   to  avoid  this, the value of 
which  is  that  processing  successfully performed  by P is  not 
wasted, as it would  be  if  P  simply failed, producing Ø.  The 
obvious  danger of all this is that the 'fall  back'   output of  P 
may be illegal or unusable for some  process  that P  feeds. 

We  can  distinguish  three   methods   for  achieving 'output 
robustness': 

(i)     introduce  a  fall-back  process   that  will massage  the 
output  so  that  it  becomes  well-formed according to the 
goal.     This   is  suitable  when  the actual  output is very 
close  to the desired output (e.g. if P is  to output a 
complete labelled tree,  the case where the actual output 
lacks  only one label could be saved by a process which 
introduces  a 'wild  card  label' that  matches  on anything, 



and thus satisfies the goal). 

(ii)  introduce some 'ranking' of successively weaker 
conditions in the output, so that if output fails one, it 
may still be passed by another less stringent filter.  This 
would be a natural part of a strategy implementing a 
version of 'Preference' [9] to make sure that if a process 
produces a number of inputs, the best of these is output, 
even if it is less than perfect. 

(iii) It may be that P fails to produce an output of the 
desired kind, but that the system that includes P has been 
set up so that it has some alternative strategies which it 
is able to employ, using intermediate results of P.  The 
example we have in mind is of a Transfer based MT system 
(such as EUROTRA) in which analysis aims to produce a 
semantic representation, as input to normal transfer, but 
which includes a 'safety net' transfer module employing the 
syntactic representation that analysis routinely builds and 
maintains as it is attempting to produce the semantic 
representation. Here the possibility of subsequent 
procedures failing by being unable to utilize the 'fall- 
back' output of P is extreme, and this solution incurs a 
considerable developmental overhead, as alternative 
processors must be designed to cope with the fall-back 
output. 

Of course, a fourth alternative is to simply allow P to produce 
Ø, and rely on standard (a)-type solutions.  Notice that in any 
case, trapping (b)-type errors is likely to lead to some (a)-type 
errors.  Though the combination of P and P' may accept a superset 
of the inputs of P, the well-formedness check will mean that P 
itself sometimes outputs Ø, and it is likely that P and P' 
together will sometimes produce imperfect output that will cause 
some later process to fail, producing Ø. 

Moreover, making P more robust by weakening the well-formedness 
check on the lines of (i)-(iii) has the same sort of pernicious 
effect as (a)-type solutions. Again, it is unlikely that P and P' 
together are simply more correct implementations of T, or that 
they implement T' which differs from T only in having a wider 
domain. The most probable effect of making P output robust is 
that it now implements a version of a theoretical construct T' 
which differs from T both in domain (since output robust P may 
well accept a superset of P) and range (since robust P is likely 
to produce a superset of P). 

The problem of (c)-type errors is now acute: the effect of 
increasing robustness has been to ensure that some approximation 
to superficially correct output is reliably produced.  But, of 
course, there are many cases where no output is to be preferred to 
one which is superficially well-formed, but actually wrong as a 
representation of the input. 

In fact, the situation is somewhat worse, for not only has the 



number of (c)-type errors increased as processing has been made 
(a)- and (b)- robust, but introducing (a)- and (b)- robustness 
has weakened our grip on the notion of correctness in relation to 
R itself,  since the modifications P has undergone in being made 
robust have meant that it no longer implements T, but T', which 
may be distinct from, and weaker than T. 

From this we can draw an immediate and obvious conclusion about 
the need to distinguish sharply between 'ideal' and 'robust' 
processing.  We have assumed that T is a correct (or the best 
approximation to a correct) instantiation of R, so that there is 
simply no point in checking for errors in relation to anything 
other than T (such a check would have no clear relation to the 
intuitive ideas about correctness that constitute R).  If it is 
to be worthwhile, then, checking for (c)-type errors requires that 
we are able to distinguish T from the T' which is implemented by 
a robust version of P.  Theoretically, this is unproblematic. 
However, in a domain such as MT it will be rather unusually for T 
and T' to exist separately from P and P' that instantiate them. 
Thus, the need to separate 'ideal' and 'robust' processing in 
this context comes down to the need to be able to separate out 
those aspects of a robust processor that implement 'ideal' T. 
This will normally mean distinguishing sharply between P and P'. 
This is worth pointing out, since this distinction is not one 
that is made in most robust systems. 

In the final section we discuss some ways in which automatic 
evaluation of P might be made feasible, and (c)-type errors 
detected. 

4. Two approaches to (c)-type robustness 

There are two distinct issues with respect to (c)-type errors: 
detection and repair. Clearly, the second presupposes the first, 
and though one of the approaches we describe yields a method 
repair, directly, we will have relatively little to say at this 
time about repair as such. 

(c)-type errors differ from (a)- and (b)-type errors in an 
important way: (a)- and (b)-type errors can be detected quite 
simply by a check on well-formedness with respect to the domain 
and range of T respectively.  (c)-type errors can only be 
detected with certainty by computing the pairing of elements of 
the domain and range of T.  This is, of course, the task which P 
itself was designed to do. 

What is required is an implementation of a relation that pairs 
items in exactly the same way as T: the obvious candidate is the 
inverse of T, that is, T-l.  We will return to this below, but 
notice this will only be feasible provided there is known to be a 
way of implementing T-l which is considered to be reliable. 

However, we might consider a partial solution derived from a 
well-known technique in systems theory: insuring against the 



effect of faulty components in crucial parts of a system by 
computing the result for a given input by a number of different 
routes.  For our purposes, the method would consist essentially 
in implementing the same computation in parallel a number of 
times and using statistical criteria to determine the correctness 
of the computation. We will call this the 'statistical solution'. 
(Notice that certain kinds of system architecture make this quite 
feasible, even given real time constraints.) Clearly, however, 
while this should significantly improve the chances that output 
will be correct, it can provide no guarantee. 

Moreover, the kind of situation we are considering is more 
complex than that arising given failure of relatively simple 
pieces of hardware. This is because we have to consider three 
distinct cases of failure. 

(1) Where we believe T to be adequate, but expect P will be 
error prone.  (c.f. Problem 1: Correctness of P) In this 
case the obvious solution would involve implementing T many 
times, as independent Ps, taking the result that is most 
frequent. 

The other two cases arise where we are relatively confident of 
the implementation, but are concerned with the incompleteness of 
T (cf Problem 2: Completeness of T).  On the face of it, we can 
proceed in this case by implementing a number of different T's. 
However, this leads to new problems, as we have already suggested 
above. 

(2) If the range of all these Ts coincides, then 
statistically at least, this method should yield adequate 
results.  Normally, however, it is likely to be difficult to 
construct distinct T's which have this property, and which 
at the same time correctly embody R.  Nevertheless, this 
would appear to be a natural way of extending approaches to 
(a)-type robustness to cope with (c)-type errors. 

(3) We expect the normal situation to be that the ranges of 
the different T's are distinct.  The problem now is that we 
have no basis for comparison of the results, and hence no 
longer any sensible statistical criterion.  Notice that the 
technique of producing robustness in response to (a) and (b) 
errors virtually guarantee that this situation arises. 
(Note also that the apparent solution offered by some 
systems (e.g. GETA [3]), ranking Ts and accepting the 
results that conform to the highest valued T subject to some 
measure of completeness, is evidently not a solution to the 
problem here, since it offers no guarantee that the output 
is T-correct with respect to any T). Thus in this case, 
if we wish to check for (c)-type errors we have no 
alternative but to implement a process which computes the 
inverse of T. 

The statistical solution is attractive because it shifts the 
emphasis in coping with (c)-type errors from detection to repair, 
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and because they avoid the need to map backwards from output to 
input.  Such solutions are certainly worth further consideration. 
However, realistically, we expect the normal situation to be as 
described in (3), so that it is worthwhile to consider the 
feasibility 'inverse solutions' involving construction of P-l 
implementing the inverse of T. 

The basic method here would be to compute an enumeration of the 
set of all possible inputs W that could have yielded the actual 
output, given T, and some hypothetical ideal P which correctly 
implements it.  (Again, this is not unrealistic; certain system 
architectures would allow forward computation to proceed while 
this inverse processing is carried out). 

To make this worthwhile involves two assumptions: 

1. That P-l terminates in reasonable time. This cannot be 
guaranteed, but it can be rendered a more reasonable 
assumption by observing characteristics of the input, and 
thus restricting W (e.g. restricting the members of W in 
relation to the length of the input guarantees that W is 
finite, and for some Ts it may be possible to exploit more 
interesting characteristics of internal structure). 

2. That construction of P-l is somehow more straightforward 
than construction of P, so that P-l is likely to be more 
reliable than P.  In fact this is not implausible for some 
applications (e.g. consider the case where P is a parser: it 
is a widely held idea that generators are easier to build 
than parsers). 

Granted these assumptions, one simply examines the enumeration 
for the input if it is present. If it is present, then given that 
P-l is likely to be more reliable than P, then it is likely that 
the output of P was T-correct, and hence did not constitute a 
(c)-type error.  At least, the chances of the output of P being 
correct have been increased. 

In the nature of things, we will ultimately be lead to the 
original problems of robustness, but now in connection with P-1. 
For this reason we cannot foresee any complete solution to 
problems of robustness generally.  What we have seen is that 
solutions to one sort of fragility are normally only partly 
successful, leading to error of another kind elsewhere.  Clearly, 
what we have to hope is that each attempt to eliminate a source 
of error nevertheless leads to a net decrease in the overall 
number of errors. 
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