
[From: Internat.conf. Methodology & Techniques of Machine Translation, British Computer Society,
Cranfield, 13-15 February 1984]

Robust Processing in Machine Translation

Doug Arnold and Rod Johnson

Doug Arnold,

Centre for Cognitive Studies
University of Essex.

Rod Johnson
Centre for Computational Linguistics

UMIST.

Abstract

We attempt to develop a general theory of robust processing for
natural language, and especially Machine Translation purposes.
That is, a general characterization of methods by which processes
can be made resistant to malfunctioning of various kinds.

We distinguish three sources of malfunction: (a) deviant inputs,
(b) deviant outputs, and (c) deviant pairings of input and
output, and describe the assumptions that guide our discussion
(sections 1 and 2). We classify existing approaches to (a)- and
(b)-robustness, noting that not only do such approaches fail to
provide a solution to (c)-type problems, but that the natural
consequence of these solutions is to make (c)-type malfunctions
harder to detect (section 3) In the final section (4) we outline
possible solutions to (c)-type malfunctions.

1. Introduction.

In this paper we attempt to develop a general theory of robust
processing and explore its consequences for certain kinds of
Machine Translation. Specifically, we assume without argument the
goal of a general purpose, fully automatic multilingual MT system
to be developed within a highly decentralized organizational
framework (for example, the European Commission's EUROTRA
project*). The acceptance of such a goal influences our approach
in a number of ways.

* Our debt to Eurotra is great: collaboration on this paper
has developed out of work on Eurotra and has only been
possible because of opportunities made available by the
Eurotra project. We are also indebted to many colleagues in
the project for ideas, insights and support. We would mention
in particular Louis Des Tombe, Lieven Jaspaert, Maggie King,
Stephen Krauer, Serge Pershke, Mike Rosner, Nino Varile, and
our colleagues at Essex and UMIST. The views (and in
particular, the errors) expressed in the paper are our own
responsibility, however, and should not be interpreted as
representing 'official' Eurotra doctrine.

First, the requirement that the system be developed in a highly
decentralized organizational framework results in the need for a
theory which is both logically strong and highly general,
abstracting from many details of purely local relevance.

Second, accepting the goal of multi-lingual MT means that the
process of translation cannot be considered simply as a mapping
of strings to strings: one is forced to consider the status of
intermediate representations of various kinds.

Third, the fact that we consider the issue of robustness at all
is a reflection of the difficulty of MT, and the aim of full
automation is reflected in our concentration on a theory of
robust processing rather than 'developmental robustness'. The
general idea of system robustness conflates two quite separate
ideas: on the one hand, the idea that systems should be capable
of extension and repair by their designers (being, for example,
resistant to unforeseen 'ripple effects' under modification).
Notice that systems which have only this kind of robustness can
never be fully automatic, thus, despite its importance, we will
have little to say about this aspect of robustness here. On the
other hand, there is the idea that systems should be robust in
the sense of capable of dealing with unexpected or deviant data:
we will use the terra 'robustness' and related expressions to
refer to this.

Three kinds of problem give rise to the need for robustness. For
any given process or procedure one may encounter:

case (a). Illegal inputs, i.e. inputs which have not been
foreseen. Notice that from the processing (as opposed to the
developmental) point of view, it is irrelevant whether the
illegality arises from a deficiency in the input itself or a
deficiency in the process, i.e., whether it is the input or the
process that requires repair.

case (b). Illegal intermediate results. This will occur if some
process malfunctions so as to produce deviant output (again the
source of this malfunction is irrelevant). It may be that this is
not detected until some other process takes this output as input
— in which case we have an instance of case (a). However, it may
be that in order to produce anything at all some process requires
its output to satisfy some condition, so that this is
conceptually a separate problem from case (a).

case (c). Suppose both input i and output j of some process are
legal objects, it nevertheless does not follow that they have
been correctly paired by the process. For example, in the case of
a parsing process, i may be some sentence and j some
representation. The fact that i and j are legal objects for the
parsing process and that j is the output of the parser for input
i does not guarantee that j is a 'correct' representation of i. Of
course, robust processing should be resistant to this kind of
malfunctioning also.

We regard the problem of (c)-type fragility as the most serious,
and most resistant to solution: no existing approach is capable
of dealing with it, and we will argue that the natural
consequence of introducing solutions to (a)- and (b)- type errors
is a proliferation of the more dangerous and insidious (c)—type
errors.

In this paper we briefly review existing approaches to process
robustness in Natural language processing and MT, with some
discussion of their deficiencies in relation to our general
goals, and the goal of (c)-type robustness in particular, and
attempt to develop a partial solution to the problem of (c)-type
robustness.

2. Basic notions and background assumptions.

To begin with it is useful to narrow the discussion somewhat by
noting a number of ways in which the problem of system fragility
in the kind of environment we are concerned with differs from
that encountered in Natural Language Processing (NLP) generally.
For example, we are not particularly concerned with failures that
result from different kinds of mis-spelling, and mis-segmentation
in the input, since we imagine that texts submitted for
translation will already have been processed for such errors
(perhaps automatically), nor are we concerned with dialogue
related problems such as highly fragmentary input, interjections,
or false starts, though these clearly present serious
difficulties in some kinds of NLP (e.g. in front ends to Expert
Systems).

On the other hand, certain common solutions to problems of
fragility are obviously not open to us. In particular, the aim
of a general theory for robust MT excludes the use of highly
domain specific knowledge such as is exploited by many special
purpose NLP systems (cf. Hayes and Mouradian [5]), and the fact
that we are concerned with translation militates against the
disregard for input that is characteristic of some robust systems
(it is displayed in an extreme form in e.g. PARRY [2]): it is not
enough that an MT system behaves robustly, producing some output,
it should produce output that stands as nearly as possible in the
'translation of relation to its inputs. Finally, though we are
not discussing the issue of developmental robustness here, we
will obviously prefer robust processing to preserve a high degree
of transparency — we take it as axiomatic that general purpose
MT systems must be capable of extension and repair.

From the point of view we adopt, it is possible to regard an MT
system as a set of processes implementing relations between
representations (input and output texts can be considered
representations of themselves). We distinguish three different
kinds of relation:

(1) The correct, or intended relation R between

representations. E.g. the relation 'is a (correct)

translation of, which pairs texts in one language with
texts in another. We have only pre-theoretical and rather
vague ideas about Rs, in virtue of being bi-lingual
speakers, or having some intuitive grasp of the semantics of
artificial representations.

(2) A theoretical construct T that is supposed to embody R.

(3) A process P that is supposed to implement T.

The need to distinguish R from T and P is obvious: it is possible
to perform evaluations of a system only by comparing actual
performance of P against ideas about R. However, it is also
necessary to distinguish T from P. In some cases T may exist as
a separate entity (e.g. if P is a process that implements an
explicit grammar of some sort) so that the need to separate
evaluation of T (the grammar) and P (the programs) is obvious.
However, even when T does not exist as an explicit set of
propositions, it is useful to consider it separately, as an
interface between pre-theory and process. It is a fact that
every actual process implements a theory of inputs and outputs,
however implicit, and the existence of such an interface is
essential to our presentation. We want to distinguish carefully
between evaluation of T (e.g. checking the adequacy of ones
representational devices) and evaluation of P (checking how far
an implementation delivers representation). We are concerned
with automatic approaches to error detection and repair, and we
can imagine no automatic method for checking the correctness of a
representational device (T). For this reason we want to ignore
questions of how far T can be considered a good instantiation of
R.

Thus, in what follows, we will simply assume that T is both well-
defined and a correct embodiment of R (e.g. in the case where T
is a theory of translation between L and L', this assumption says
that the membership of L, and L' is well-defined and members of L
are paired with their correct translations in L'). Realistically,
in the context of NLP, the assumption of the correctness of T in
relation to R will amount to assuming it to be the most correct
available — that all T' distinct from T are in some way less
correct — in fact, this assumption is sufficient for our
purposes.

It will considerably simplify the exposition below if T can be
regarded as a function; this can be achieved if we abstract away
from the phenomenon of ambiguity (it will not matter if we regard
T as a relation between individual representations, or between
individual representations and sets of representations which are
equivalent). While we think this simplification is essential to
the exposition here, it is regrettable, since the inter-relation
of ambiguity and robustness is an important matter.

Finally, we will assume that hardware and low-level software
operate error-free and that P can be guaranteed to terminate for

all inputs: there are well known ways to ensure system robustness

at this kind of level (e.g. termination is guaranteed by simply
restricting allocation of resources to P), so that this
assumption seems unproblematic.

Given these assumptions the possible sources of error in a system
or process P are restricted to two:

Problem 1: Correctness of P. P is not a correct
implementation of T. One might expect this situation in
cases where T is extremely complex, which we consider will
be a common situation in NLP and MT — even for domains
which are reasonably well understood, theories are extremely
complex, and there are severe problems devising
implementations of them.

Problem 2:_ Completeness of_ T. T, while correct, is not
complete. We have assumed that T is correct, i.e. that it
correctly pairs all items in its domain with items in its
range. It is not a consequence of this assumption that the
domain of T is co-extensive with the set of actual inputs to
P. In fact, in realistic NLP we expect the set of actual
inputs regularly to be a strict superset of the domain of T,
for non-trivial Ts. Even if T were to include what amounts
to a complete grammatical description of the input language
this would be so, since we can expect some inputs of only
marginal grammaticality, and all languages allow scope for
creativity that is under determined by the rule system (e.g.
creation of new, derivationally simple terms).

In principle, it might turn out that a combination of advances in
understanding together with restrictions on input might eliminate
both sources of error. It seems reasonable to disregard this
possibility, and assume that robust processing will always be
necessary.

We can now state the possible manifestations of system fragility
described in the introduction more concisely:

case (a): P(x)=Ø. i.e. P halts producing Ø output for input
x. This is the effect of illegal (unforeseen) input.

case (b): P(x)=z where z is not a legal output for P
according to T.

case (c): P(x)=y, where y is a legal output for P according
to T, but is not the intended output according to T. i.e. y
is in the range of T, but y≠T(x).

We should also be precise about the alternative to
malfunctioning: 'correct' processing, and in particular
processing which avoids (c)-type malfunctions. We will speak of
outputs being 'T-correct' when they are the results of such
processing. By abstracting away from ambiguity, we are able to
consider T to be a function. It does not follow that the inverse

of T (that is, T-1) is also a function, since T may be many-to-
one. This complicates the definition of T-correctness slightly:

Given P(x) = y, and a set W such that for all w in W, T(w) =
y, then y is T-correct with respect to w iff x is a member
of W.

When x is not a member of W, there is a (c)-type error.

3. Existing approaches.

We now present a classification of existing solutions to
instances of (a)- and (b)- type fragility. None of these
provides a solution to (c)-type fragility.

Case-(a) errors: 'input' robustness:

Case (a) errors, where P halts without producing any output for
input x, have their source in a mismatch between the expectations
of P and the data it is presented with. They are the most
commonly considered in the literature. There are two basic
approaches to making systems 'input robust':

(i) to call some alternative process P' to manipulate the
data so that it satisfies the expectations of P: for
example, the LIFER [6] approach to elliptical input involves
attempting to restore the ellipsis, so that the input can be
processed by the normal rules. Notice that P' cannot
guarantee to do more than make x formally acceptable to P,
which will generally lead to (b)- and (c)- type problems, as
later processes find inconsistent or incomplete information.
The alternative would be fortuitous, and not very likely:
(1) that P and P' together simply constitute a more correct
implementation of T, hence solving problem 1; (2) that P and
P' together implement a theory T' which differs from T only
in having a larger domain, hence solving problem 2.

Thus, though if it is successful, this strategy will
eliminate case (a) errors, case (b) and (c) errors will
remain, and are likely to be more wide-spread.

(ii) Provide some mechanism for modifying the expectations
of P: e.g. by calling some alternative process P' which
embodies weaker expectations about data, or by attempting
some temporary re-arrangement of P (cf. Kwasny and
Sondheimer [7]), or simply relaxing P's requirements on
inputs (as in 'Preference' type approaches, (Wilks [9])).
Variants of this approach are extremely common: (cf.
Weischedel and Black [8], HEARSAY [4], and in general,
systems that favour a bottom up approach to exception
processing). The effect of this is to create some new
process P' which accepts a superset of the inputs of P.
Again, it is unlikely that this will simply yield a more
correct implementation of T. It is more likely that P'

implements a new theoretical construct T', distinct from T,
and with a wider domain.

If this is successful, it will eliminate type (a)-errors,
but now the existence of type-b and c errors is likely:
given that T and T' are different, they may well differ in
terms of range, as well as domain, and anything which P'
delivers outside the range of T constitutes a (b)- or (c)-
type error.

We return to the case where the ranges of T and T' are known
to coincide in section 4.

(Notice, incidentally, that if making P robust does involve
implementing an alternative to T, then the assumption about the
correctness of the theory in relation to R is no longer valid,
so that even if our processor is guaranteed to deliver what the
theory T' predicts it should, there is no guarantee that this is
what is really intended (i.e. what is correct for R). Of course,
it might, in principle turn out that T' actually better
approximates to R, and performs better by accident — such
accidents are extremely improbable, and we think we can disregard
them).

Case-(b) errors; 'output robustness'

Case-(b) errors, where the output of P is ill-formed according to
T can be trapped straightforwardly, by imposing a 'goal filter'
or well-formedness check on the output of P (as in TAUM AVIATION
[1], where the output of Transfer is checked in this way). This
approach is particularly useful where it is expected that
collectively coherent and useful sub-parts of the output of P can
be salvaged by the filter.

The effect of this is that P either produces 0 (an (a)-type
error), or something more well-formed, so that the likely result
of filtering output in this way is to produce a proliferation of
type-a errors as P is unable to produce any output that satisfies
its goal. There are a number of ways to avoid this, the value of
which is that processing successfully performed by P is not
wasted, as it would be if P simply failed, producing Ø. The
obvious danger of all this is that the 'fall back' output of P
may be illegal or unusable for some process that P feeds.

We can distinguish three methods for achieving 'output
robustness':

(i) introduce a fall-back process that will massage the
output so that it becomes well-formed according to the
goal. This is suitable when the actual output is very
close to the desired output (e.g. if P is to output a
complete labelled tree, the case where the actual output
lacks only one label could be saved by a process which
introduces a 'wild card label' that matches on anything,

and thus satisfies the goal).

(ii) introduce some 'ranking' of successively weaker
conditions in the output, so that if output fails one, it
may still be passed by another less stringent filter. This
would be a natural part of a strategy implementing a
version of 'Preference' [9] to make sure that if a process
produces a number of inputs, the best of these is output,
even if it is less than perfect.

(iii) It may be that P fails to produce an output of the
desired kind, but that the system that includes P has been
set up so that it has some alternative strategies which it
is able to employ, using intermediate results of P. The
example we have in mind is of a Transfer based MT system
(such as EUROTRA) in which analysis aims to produce a
semantic representation, as input to normal transfer, but
which includes a 'safety net' transfer module employing the
syntactic representation that analysis routinely builds and
maintains as it is attempting to produce the semantic
representation. Here the possibility of subsequent
procedures failing by being unable to utilize the 'fall-
back' output of P is extreme, and this solution incurs a
considerable developmental overhead, as alternative
processors must be designed to cope with the fall-back
output.

Of course, a fourth alternative is to simply allow P to produce
Ø, and rely on standard (a)-type solutions. Notice that in any
case, trapping (b)-type errors is likely to lead to some (a)-type
errors. Though the combination of P and P' may accept a superset
of the inputs of P, the well-formedness check will mean that P
itself sometimes outputs Ø, and it is likely that P and P'
together will sometimes produce imperfect output that will cause
some later process to fail, producing Ø.

Moreover, making P more robust by weakening the well-formedness
check on the lines of (i)-(iii) has the same sort of pernicious
effect as (a)-type solutions. Again, it is unlikely that P and P'
together are simply more correct implementations of T, or that
they implement T' which differs from T only in having a wider
domain. The most probable effect of making P output robust is
that it now implements a version of a theoretical construct T'
which differs from T both in domain (since output robust P may
well accept a superset of P) and range (since robust P is likely
to produce a superset of P).

The problem of (c)-type errors is now acute: the effect of
increasing robustness has been to ensure that some approximation
to superficially correct output is reliably produced. But, of
course, there are many cases where no output is to be preferred to
one which is superficially well-formed, but actually wrong as a
representation of the input.

In fact, the situation is somewhat worse, for not only has the

number of (c)-type errors increased as processing has been made
(a)- and (b)- robust, but introducing (a)- and (b)- robustness
has weakened our grip on the notion of correctness in relation to
R itself, since the modifications P has undergone in being made
robust have meant that it no longer implements T, but T', which
may be distinct from, and weaker than T.

From this we can draw an immediate and obvious conclusion about
the need to distinguish sharply between 'ideal' and 'robust'
processing. We have assumed that T is a correct (or the best
approximation to a correct) instantiation of R, so that there is
simply no point in checking for errors in relation to anything
other than T (such a check would have no clear relation to the
intuitive ideas about correctness that constitute R). If it is
to be worthwhile, then, checking for (c)-type errors requires that
we are able to distinguish T from the T' which is implemented by
a robust version of P. Theoretically, this is unproblematic.
However, in a domain such as MT it will be rather unusually for T
and T' to exist separately from P and P' that instantiate them.
Thus, the need to separate 'ideal' and 'robust' processing in
this context comes down to the need to be able to separate out
those aspects of a robust processor that implement 'ideal' T.
This will normally mean distinguishing sharply between P and P'.
This is worth pointing out, since this distinction is not one
that is made in most robust systems.

In the final section we discuss some ways in which automatic
evaluation of P might be made feasible, and (c)-type errors
detected.

4. Two approaches to (c)-type robustness

There are two distinct issues with respect to (c)-type errors:
detection and repair. Clearly, the second presupposes the first,
and though one of the approaches we describe yields a method
repair, directly, we will have relatively little to say at this
time about repair as such.

(c)-type errors differ from (a)- and (b)-type errors in an
important way: (a)- and (b)-type errors can be detected quite
simply by a check on well-formedness with respect to the domain
and range of T respectively. (c)-type errors can only be
detected with certainty by computing the pairing of elements of
the domain and range of T. This is, of course, the task which P
itself was designed to do.

What is required is an implementation of a relation that pairs
items in exactly the same way as T: the obvious candidate is the
inverse of T, that is, T-l. We will return to this below, but
notice this will only be feasible provided there is known to be a
way of implementing T-l which is considered to be reliable.

However, we might consider a partial solution derived from a
well-known technique in systems theory: insuring against the

effect of faulty components in crucial parts of a system by
computing the result for a given input by a number of different
routes. For our purposes, the method would consist essentially
in implementing the same computation in parallel a number of
times and using statistical criteria to determine the correctness
of the computation. We will call this the 'statistical solution'.
(Notice that certain kinds of system architecture make this quite
feasible, even given real time constraints.) Clearly, however,
while this should significantly improve the chances that output
will be correct, it can provide no guarantee.

Moreover, the kind of situation we are considering is more
complex than that arising given failure of relatively simple
pieces of hardware. This is because we have to consider three
distinct cases of failure.

(1) Where we believe T to be adequate, but expect P will be
error prone. (c.f. Problem 1: Correctness of P) In this
case the obvious solution would involve implementing T many
times, as independent Ps, taking the result that is most
frequent.

The other two cases arise where we are relatively confident of
the implementation, but are concerned with the incompleteness of
T (cf Problem 2: Completeness of T). On the face of it, we can
proceed in this case by implementing a number of different T's.
However, this leads to new problems, as we have already suggested
above.

(2) If the range of all these Ts coincides, then
statistically at least, this method should yield adequate
results. Normally, however, it is likely to be difficult to
construct distinct T's which have this property, and which
at the same time correctly embody R. Nevertheless, this
would appear to be a natural way of extending approaches to
(a)-type robustness to cope with (c)-type errors.

(3) We expect the normal situation to be that the ranges of
the different T's are distinct. The problem now is that we
have no basis for comparison of the results, and hence no
longer any sensible statistical criterion. Notice that the
technique of producing robustness in response to (a) and (b)
errors virtually guarantee that this situation arises.
(Note also that the apparent solution offered by some
systems (e.g. GETA [3]), ranking Ts and accepting the
results that conform to the highest valued T subject to some
measure of completeness, is evidently not a solution to the
problem here, since it offers no guarantee that the output
is T-correct with respect to any T). Thus in this case,
if we wish to check for (c)-type errors we have no
alternative but to implement a process which computes the
inverse of T.

The statistical solution is attractive because it shifts the
emphasis in coping with (c)-type errors from detection to repair,

effect of faulty components in crucial parts of a system by
computing the result for a given input by a number of different
routes. For our purposes, the method would consist essentially
in implementing the same computation in parallel a number of
times and using statistical criteria to determine the correctness
of the computation. We will call this the 'statistical solution'.
(Notice that certain kinds of system architecture make this quite
feasible, even given real time constraints.) Clearly, however,
while this should significantly improve the chances that output
will be correct, it can provide no guarantee.

Moreover, the kind of situation we are considering is more
complex than that arising given failure of relatively simple
pieces of hardware. This is because we have to consider three
distinct cases of failure.

(1) Where we believe T to be adequate, but expect P will be
error prone. (c.f. Problem 1: Correctness of P) In this
case the obvious solution would involve implementing T many
times, as independent Ps, taking the result that is most
frequent.

The other two cases arise where we are relatively confident of
the implementation, but are concerned with the incompleteness of
T (cf Problem 2: Completeness of T). On the face of it, we can
proceed in this case by implementing a number of different T's.
However, this leads to new problems, as we have already suggested
above.

(2) If the range of all these Ts coincides, then
statistically at least, this method should yield adequate
results. Normally, however, it is likely to be difficult to
construct distinct T's which have this property, and which
at the same time correctly embody R. Nevertheless, this
would appear to be a natural way of extending approaches to
(a)-type robustness to cope with (c)-type errors.

(3) We expect the normal situation to be that the ranges of
the different T's are distinct. The problem now is that we
have no basis for comparison of the results, and hence no
longer any sensible statistical criterion. Notice that the
technique of producing robustness in response to (a) and (b)
errors virtually guarantee that this situation arises.
(Note also that the apparent solution offered by some
systems (e.g. GETA [3]), ranking Ts and accepting the
results that conform to the highest valued T subject to some
measure of completeness, is evidently not a solution to the
problem here, since it offers no guarantee that the output
is T-correct with respect to to any T). Thus in this case,
if we wish to check for (c)-type errors we have no
alternative but to implement a process which computes the
inverse of T.

The statistical solution is attractive because it shifts the
emphasis in coping with (c)-type errors from detection to repair,

and because they avoid the need to map backwards from output to
input. Such solutions are certainly worth further consideration.
However, realistically, we expect the normal situation to be as
described in (3), so that it is worthwhile to consider the
feasibility 'inverse solutions' involving construction of P-l
implementing the inverse of T.

The basic method here would be to compute an enumeration of the
set of all possible inputs W that could have yielded the actual
output, given T, and some hypothetical ideal P which correctly
implements it. (Again, this is not unrealistic; certain system
architectures would allow forward computation to proceed while
this inverse processing is carried out).

To make this worthwhile involves two assumptions:

1. That P-l terminates in reasonable time. This cannot be
guaranteed, but it can be rendered a more reasonable
assumption by observing characteristics of the input, and
thus restricting W (e.g. restricting the members of W in
relation to the length of the input guarantees that W is
finite, and for some Ts it may be possible to exploit more
interesting characteristics of internal structure).

2. That construction of P-l is somehow more straightforward
than construction of P, so that P-l is likely to be more
reliable than P. In fact this is not implausible for some
applications (e.g. consider the case where P is a parser: it
is a widely held idea that generators are easier to build
than parsers).

Granted these assumptions, one simply examines the enumeration
for the input if it is present. If it is present, then given that
P-l is likely to be more reliable than P, then it is likely that
the output of P was T-correct, and hence did not constitute a
(c)-type error. At least, the chances of the output of P being
correct have been increased.

In the nature of things, we will ultimately be lead to the
original problems of robustness, but now in connection with P-1.
For this reason we cannot foresee any complete solution to
problems of robustness generally. What we have seen is that
solutions to one sort of fragility are normally only partly
successful, leading to error of another kind elsewhere. Clearly,
what we have to hope is that each attempt to eliminate a source
of error nevertheless leads to a net decrease in the overall
number of errors.

REFERENCES

1. BOURBEAU, L. (1981): Linguistic documentation of the
computerized chain of the TAUM-AVIATION system. TAUM, University
of Montreal.

2. COLBY, K. (1975): Artificial Paranoia Pergamon Press, Oxford.

3. BOITET, CH., & NEDOBEJKINE, N. (1980) 'Russian-French at GETA:
an outline of method and a detailed example' RR 219, GETA,
Grenoble.

4. ERMAN, L.D. and LESSER, V.R. (1978) 'HEARSAY-II: Tutorial
Introduction and Retrospective View', Tech. Rep. Computer Science
Dept, Carnegie Mellon University.

5. HAYES, P.J. and MOURADIAN, G.V. (1981): "Flexible parsing",
AJCL 7, 4:232-242.

6. HENDRIX, G.G. (1977): "Human Engineering for Applied Natural
Language Processing". Proc 5th IJCAI, 183-191, MIT Press.

7. KWASNY, S.C. and SONDHEIMER, N.K. (1981): "Relaxation
Techniques for Parsing Grammatically Ill-formed Input in Natural
Language Understanding Systems". AJCL 7, 2:99-108.

8. WEISCHEDEL , R.M, and BLACK, J. (1980) 'Responding
Intelligently to Unparsable Inputs' AJCL 6.2: 97-109.

9. WILKS, Y. (1975): "A Preferential Pattern Matching Semantics
for Natural Language". A.I. 6:53-74.

